
AN2438
USB-to-I2C Bridging with USB47xx/USB49xx Hubs
INTRODUCTION

The USB-to-I2C Bridging feature gives system designers using Microchip hubs expanded system control and potential
BOM reduction. The use of a separate USB-to-I2C device is no longer required and a downstream USB port is not lost
as occurs when a standalone USB-to-I2C device is implemented. This feature is available on the Microchip USB47xx/
USB49xx Automotive Hubs.

Commands may be sent from the USB host to the internal Hub Feature Controller device in the Microchip hub to perform
the following functions:

• Configure I2C Pass-Through Interface

• I2C Write

• I2C Read

SECTIONS

General Information

Part Number-Specific Information

Microchip Software Solutions

Manual Implementation

Examples

Clock Configuration

REFERENCES

Consult the following documents for details on the specific parts referred to in this application note:

• Microchip USB4712 Data Sheet

• Microchip USB4715 Data Sheet

• Microchip USB4912 Data Sheet

• Microchip USB4914 Data Sheet

• Microchip USB4916 Data Sheet

• Microchip USB4925 Data Sheet

• Microchip USB4927 Data Sheet

• Microchip Configuration Options for USB491x/492x/4715 Application Note

Author: Mick Davis and Jeffrey Hunt
Microchip Technology Inc.
 2017-2018 Microchip Technology Inc. DS00002438C-page 1

AN2438
GENERAL INFORMATION

The USB-to-I2C Bridging features in Microchip hubs work via host commands sent to a Hub Feature Controller embed-
ded within the hub located on an additional internal USB port. For the bridging features to work correctly, this internal
Hub Feature Controller must be enabled by default. Table 1 provides details on default Hub Feature Controller setters
by device.

TABLE 1: DEFAULT SETTINGS FOR THE HUB FEATURE CONTROLLER ENABLE

Part Number Part Summary
Hub Feature Controller Default

Setting

USB4712 One USB upstream port and one USB Flex port Enabled by default
PID = 0x4940

USB4715 One USB upstream port and four USB Flex ports Enabled by default
PID = 0x4940

USB4912 One USB upstream port, one USB CarPlay port, and
one non-removable standard USB port

Enabled by default
PID = 0x4940

USB4914 One USB upstream port, two USB CarPlay ports, and
one non-removable standard USB port

Enabled by default
PID = 0x4940

USB4916 One USB upstream port, four USB CarPlay ports, and
one non-removable standard USB port

Enabled by default
PID = 0x4940

USB4925 One USB upstream port, one secondary USB down-
stream port, two USB CarPlay ports, and one non-
removable standard USB port

Enabled by default
PID = 0x4940

USB4927 One USB upstream port, one secondary USB down-
stream port, four USB CarPlay ports, and one non-
removable standard USB port

Enabled by default
PID = 0x4940

The Hub Feature Controller is a USB 2.0 WinUSB class device connected to an internal USB 2.0 port in the hub. For
example, in a four-port hub, the Hub Controller is connected to port 5 of the USB 2.0 portion of the hub. The Product ID
(PID) for the Hub Controller is 0x4940. All bridging commands are addressed to the Hub Controller and not the hub.
See Figure 1.

FIGURE 1: MICROCHIP HUB CONTROLLER EXAMPLE

USB Host

Microchip
Hub GPIO

I2C
SPI

prt2

prt(x+1)

Upstream
Port

Hub Feature
Controller

Downstream
Port

U S B D e v i c e s

VID = 0x0424
PID = (see Table 1)

prt1

Downstream
Port

prt(x)

Downstream
Port

UART
DS00002438C-page 2  2017-2018 Microchip Technology Inc.

AN2438
I2C Bridging Commands

The following I2C functions are supported:

• I2C Write

• I2C Read

I2C WRITE

The I2C interface works as a complete pass-through. This means that the host must properly arrange data payloads in
the appropriate I2C-compatible format and bit order, including the I2C slave device address. Up to 255 bytes of data
payload may be sent per I2C write command sequence.

I2C READ

The I2C interface works as a complete pass-through. This means that the host must properly arrange data payloads in
the appropriate I2C-compatible format and bit order, including the I2C slave device address. Up to 255 bytes of data
payload may be sent per I2C read command sequence.

I2C INTERFACE SETUP REQUIREMENTS

The I2C interface operates at 100 kHz clock speed by default. Refer to Clock Configuration for other supported
speeds.The I2C interface is supported in all configuration options.
 2017-2018 Microchip Technology Inc. DS00002438C-page 3

AN2438
PART NUMBER-SPECIFIC INFORMATION

Part Summary

Table 2 and Table 3 display the I2C interface pins by part number.

TABLE 2: USB4712/USB4715/USB4912/USB4914/USB4925 I2C Interface Pins

Pin Number Name Notes

37 PROG_FUNC1 This pin is the I2C Data, SMB1_DAT.

38 PROG_FUNC8 This pin is the I2C Clock, SMB1_CLK.

TABLE 3: USB4916/4927 I2C INTERFACE PINS

Pin Number Name Notes

26 PROG_FUNC17 This pin is the I2C Data, SMB1_DAT.

15 PROG_FUNC7 This pin is the I2C Clock, SMB1_CLK.
DS00002438C-page 4  2017-2018 Microchip Technology Inc.

AN2438
MICROCHIP SOFTWARE SOLUTIONS

Microchip currently offers two publicly available software solutions to facilitate USB-to-I2C Bridging in a USB47xx/
USB49xx series hub on Windows and Linux.

MPLAB® Connect Configurator Package (For Windows)

The MPLAB® Connect Configurator (MPLABC) package consists of both GUI-based and CLI-based tools which support
USB-to-I2C Bridging in a standalone form. In addition to these, it contains a Dynamically Linked Library (DLL) for Win-
dows which can be used for implementing USB-to-I2C Bridging feature in custom applications using C programming
language. The MPLABC DLL consists of the following:

• User's guide: A detailed description of how to use the DLL API to call each function

• Release notes

• Library files: A .dll and a .lib file

• Example code

Application Code Examples (For Linux)

For implementing USB-to-I2C Bridging on Linux, you can use the following USB47xx/USB49xx Linux Application Code
Example (ACE):

• ACE009 USB-to-I2C Bridging: This ACE demonstrates how to use the I2C Master interface of the hub to perform
read/write operations. It also allows the user to select from a range of I2C clock frequencies.

This application example uses libusb library for Linux to build and send USB packets as described in Manual Implemen-
tation. It is a full-feature code example that consists of:

• Example code with minimal abstraction and in-line comments describing the various steps involved

• A Makefile

• README

This ACE can be used as a standalone application and can be integrated into existing applications.

Note: Visit the product page on www.microchip.com for any of the hubs listed in this document to download the
software solution for the desired operating system.
 2017-2018 Microchip Technology Inc. DS00002438C-page 5

www.microchip.com
www.microchip.com
www.microchip.com

AN2438
MANUAL IMPLEMENTATION

The USB-to-I2C Bridging features may be implemented at the lowest level if you have the ability to build USB packets.
This approach is required if you are not using a Windows host system and cannot use the solutions specified in Micro-
chip Software Solutions.

The details of the I2C pass-through control packets are shown below. All USB-to-I2C Bridging commands must be sent
directly to Endpoint 0 of the Hub Feature Controller connected to the last downstream port of the Microchip hub (i.e.:
located on port 5 of a 4-port hub).

I2C Control Flags

Both the Read and Write commands have a special control flag parameter which is defined in Table 4:

TABLE 4: I2C CONTROL FLAGS

Bits Control Usage

2–7 Reserved N/A

2 SEND_NACK If asserted, NACK the last byte in the transfer.

1 SEND_START If asserted, send a Start condition as the first step in the I2C com-
mand.

0 SEND_STOP If asserted, send a Stop condition as the last step of this command.

I2C Write Command

This command is used to send data to an I2C peripheral connected to the USB hub. Both the I2C control flags (defined
in I2C Control Flags) and the I2C slave address are bundled into the wValue field. See Table 5.

TABLE 5: USB SETUP COMMAND

SETUP Parameter Value Description

bmRequestType 0x41 Vendor-specific command, host-to-device data transfer

bRequest 0x71 Register read command: CMD_I2C_WRITE

wValue 0xXXYY MSB (XX): I2C Control Flags (See I2C Control Flags.)
LSB (YY): I2C Slave device address

wIndex 0x0000 Reserved

wLength 0xNN N bytes of data to be sent in the data stage 
(in the OUT EP0 control transfer packets)

I2C WRITE USB TRANSACTION SEQUENCE

Command Phase: The Hub Feature Controller receives the SETUP packet with the parameters specified above.

Data Phase: The host sends multiple EP0 OUT packets of 64 bytes each with a total length of N bytes.

Status Phase: If an IN-ZERO length packet is sent from the Hub Feature Controller, the transfer was a success. If an
IN-STALL packet is sent from the Hub Feature Controller, there was an error during the transfer, likely due to missing
ACK from the I2C slave.
DS00002438C-page 6  2017-2018 Microchip Technology Inc.

AN2438
I2C Read Command

This command is used to read data from an I2C peripheral connected to the USB hub. Both the I2C control flags (defined
in I2C Control Flags) and the I2C slave address are bundled into the wValue field. (See Table 6.)

TABLE 6: USB SETUP COMMAND

SETUP Parameter Value Description

bmRequestType 0xC1 Vendor-specific command, device-to-host data transfer

bRequest 0x72 Register read command: CMD_I2C_READ

wValue 0xXXYY MSB (XX): I2C Control Flags (See I2C Control Flags.)
LSB (YY): I2C Slave device address

wIndex 0x0000 Reserved

wLength 0xNN N bytes of data to be sent in the data stage 
(in the OUT EP0 control transfer packets)

I2C READ USB TRANSACTION SEQUENCE

Command Phase: The Hub Feature Controller receives the SETUP packet with the parameters specified above.

Data Phase: The Hub Feature Controller sends Multiple EP0 IN packets of 64 bytes each with a total length of N bytes.

Status Phase: The host sends an OUT-Zero length ACK packet to acknowledge receipt of data.
 2017-2018 Microchip Technology Inc. DS00002438C-page 7

AN2438
EXAMPLES

Sending an I2C Write to an attached Device

1. Command Phase (SETUP Transaction): I2C address 0x61: Write a value of 0x12 to Register 0x15. Send the
following SETUP Register Write command (See Table 7 and Figure 2.) to Endpoint 0 of the Hub Feature Con-
troller to send an I2C Write command to the attached I2C device with the I2C address as defined in the wValue
field:

TABLE 7: I2C WRITE SETUP PACKET EXAMPLE

Field Value Note

bmRequestType 0x41 —

bRequest 0x71 —

wValue 0x0362 I2C Control Flag 0x03, I2C address 0x62 (0110 0010b)

wIndex 0x0000 —

wLength 0x0002 2 bytes of data (Register address + 1 byte of data)

FIGURE 2: I2C WRITE SETUP TRANSACTION EXAMPLE

2. Data Phase (OUT Transaction): The host sends an OUT packet followed by the data bytes of length wLength
starting from the specified address after receiving an IN packet. In this instance, Register 0x12 is being written
to Register 0x15 (Data = 0x15, 0x12). The Hub Feature Controller responds with a NYET after receiving the data.
(See Figure 3).

FIGURE 3: I2C WRITE OUT TRANSACTION EXAMPLE

3. Status Phase (IN Transaction): The host sends an IN packet to complete the USB Transfer. The Hub Feature
Controller responds with a zero-length data packet. The host ACKs to complete the bridging command. (See
Figure 4).

FIGURE 4: I2C WRITE IN TRANSACTION EXAMPLE
DS00002438C-page 8  2017-2018 Microchip Technology Inc.

AN2438
Sending an I2C Read to an attached Device

A read requires two operations:

• Transaction 1: Write the register to be read using I2C Write

• Transaction 2: Read the register content(s), depending on length

1. Command Phase 1 (SETUP Transaction 1): I2C address 0x62: Read Register 0x15. Send the following SETUP
Register Read command to Endpoint 0 of the Hub Feature Controller to prepare the I2C device to return data.
(See Table 8 and Figure 5.)

TABLE 8: I2C READ SETUP COMMAND 1 EXAMPLE

SETUP Parameter Value Note

bmRequestType 0xC1 —

bRequest 0x72 —

wValue 0x0762 Control Flag = 0x07, I2C address = 0x62 (01100010b)

wIndex 0x0000 —

wLength 0x0001 —

FIGURE 5: I2C READ SETUP TRANSACTION 1 EXAMPLE

2. Data Phase 1 (OUT Transaction 1): The host sends an OUT packet followed by the data. The data in this
instance is 0x15. The Hub Feature Controller responds with a NYET. (See Figure 6.)

FIGURE 6: I2C READ OUT TRANSACTION 1 EXAMPLE
 2017-2018 Microchip Technology Inc. DS00002438C-page 9

AN2438
3. Status Phase 1 (IN Transaction 1): The host sends an IN packet to complete the USB transfer. The Hub Feature
Controller responds with a zero-length data packet. The host sends an ACK. (See Figure 7.)

FIGURE 7: I2C READ IN TRANSACTION 1 EXAMPLE

4. Command Phase 2 (SETUP Transaction 2): Send the following SETUP Register Read command to Endpoint
0 of the Hub Feature Controller to retrieve the requested data. (See Table 9 and Figure 8.)

TABLE 9: I2C READ SETUP COMMAND 2 EXAMPLE

SETUP Parameter Value Note

bmRequestType 0xC1 —

bRequest 0x71 —

wValue 0x0763 Control Flag = 0x07, I2C address = 0x63 (01100011b)

wIndex 0x0000 —

wLength 0x0001 —

FIGURE 8: I2C ADDRESS DATA PHASE BYTE 3 TRANSACTION 2 EXAMPLE

5. Data Phase 2 (IN Transaction 2): The host sends an IN packet, and the Hub Feature Controller responds with
the register contents (0x12). The host responds with an ACK. (See Figure 9.)

FIGURE 9: I2C READ IN TRANSACTION 2 EXAMPLE

6. Status Phase 2 (OUT Transaction 2): The host sends an OUT packet followed by a zero-data length packet.
The Hub Feature Controller responds with an ACK to complete the bridging command. (See Figure 10.)

FIGURE 10: I2C READ OUT TRANSACTION 2 EXAMPLE
DS00002438C-page 10  2017-2018 Microchip Technology Inc.

AN2438
CLOCK CONFIGURATION

There is a register to control I2C clock frequency named bI2CInter128Delay located at Address 0xBFD23410. If the DLL
API is used, Register bI2CInter128Delay is written automatically. The value of bI2CInter128Delay is determined using
this formula:

bI2CInter128Delay = 2 * (Time period of the I2C bus clock in microseconds).

The default value is 0x14 for 100 kHz clock. A value of 0x5A creates a delay of 900 μs.

This value will be multiplied by 10 in the firmware to have some buffer time in order not to miss any byte when operating
at a lower speed, thereby ensuring data integrity.

The maximum value that can be programmed in bI2CInter128Delay is 0x63. 
(i.e. a maximum of 99 * 10 = 990 μs can be added as the maximum Inter-128Byte delay)

To configure the USB-to-I2C bridge for 40 kHz clock operation, it is only necessary to write a value of 0x32 to
bI2CInter128Delay after any other I2C bridge setups have been made. The bI2CInter128Delay and Bus Frequency Con-
trol register values are provided for various supported clock frequencies in Table 10.

The method for writing to registers (including bI2CInter128Delay) through the SMBus (slave) is explained in Section 2.4
of AN2439 Configuration of the USB491x/USB492x/USB4715. The method for writing to registers (including
bI2CInter128Delay) through the SDK (DLL) is explained in “MPLAB Connect Configurator DLL User Manual.” An exam-
ple clock configuration is provided in the Clock Configuration Example.

TABLE 10: BUS FREQUENCY CONTROL AND B12CINTER128DELAY REGISTER VALUES FOR
COMMON 12C CLOCK FREQUENCIES

Frequency (kHz)
Bus Frequency Register

Value (Hex)

bI2CInter128Delay Value

Decimal Hexadecimal

400 0A00 5 05

250 081B 8 08

200 1818 10 0A

100 (default) 3131 20 14

80 3D3E 25 19

50 6363 40 28

40 7C7C 50 32

25 C7C7 80 50

20 F9F9 100 64

Clock Configuration Example

An example clock configuration for 40 kHz operation is provided below.

1. Write bI2CInter128Delay located at 0xBFD23410 with a value of 0x32 (40 kHz per Table 10). (See Table 11.)

TABLE 11: CLOCK CONFIGURATION COMMAND 1 EXAMPLE

SETUP Parameter Value Note

bmRequestType 0x40 Host-to-device data transfer

bRequest 0x03 CMD_MEMORY_WRITE

wValue 0x3410 Least-significant 16 bits of memory address in little-endian
format

wIndex 0xBFD2 Most-significant 16 bits of memory address in little-endian
format

wLength 0x0001 Number of data bytes to write
Data to be written: 0x32
 2017-2018 Microchip Technology Inc. DS00002438C-page 11

AN2438
2. Enable I2C pass-through and set frequency. (See Table 12.)

TABLE 12: CLOCK CONFIGURATION COMMAND 2 EXAMPLE

SETUP Parameter Value Note

bmRequestType 0x41 Host-to-device data transfer

bRequest 0x70 CMD_I2C_ENTER_PASSTHRU

wValue 0x7C7C I2C Clock Frequency: 40 kHz

wIndex 0x0000 —

wLength 0x0000 —

3. Write the start address from which data needs to be read. (See Table 13.)

TABLE 13: CLOCK CONFIGURATION COMMAND 3 EXAMPLE

SETUP Parameter Value Note

bmRequestType 0x41 Host-to-device data transfer

bRequest 0x71 CMD_I2C_WRITE

wValue 0x03A0 03: I2C Control Flags (START, STOP)
A0: Slave address

wIndex 0x0000 —

wLength 0x0001 1 byte of data
Data to be written: 0x00

4. Read 2 bytes of data. (See Table 14.)

TABLE 14: CLOCK CONFIGURATION COMMAND 4 EXAMPLE

SETUP Parameter Value Note

bmRequestType 0xC1 Host-to-device data transfer

bRequest 0x72 CMD_I2C_READ

wValue 0x07A1 07: I2C Control Flags (NACK, START, STOP)
A1: Slave address

wIndex 0x0000 —

wLength 0x0002 2 bytes of data
DS00002438C-page 12  2017-2018 Microchip Technology Inc.

AN2438
APPENDIX A: APPLICATION NOTE REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision Level & Date
Section/Figure/

Entry
Correction

DS00002438C (10-11-18) Title Changed the document title from “USB to I2C Bridging with
USB491x/USB492x/USB4715” to “USB-to-I2C Bridging with
USB47xx/USB49xx Hubs”

Microchip Soft-
ware Solutions

This section replaced the MPLAB Connect Configuration sec-
tion.

All Added specifications for USB4917 and USB4712.
Made minor text and formatting changes

DS00002438B (05-18-18) Figure 1 Added UART.

I2C Interface
Setup Require-
ments

Added sentence: “Refer to Clock Configuration for other sup-
ported speeds.”

MPLAB Connect
Configuration

Replaced “PT2 DLL” reference with “MPLABConnect.dll”.
Clarified that the MPLAB package is for the Windows operating
system. Removed mention of .lib file from section.

Table 4 Corrected table title to “I2C Control Flags”.

Table 6, Table 8,
Table 9

Corrected bmRequestType value from 0x41 to 0xC1.

Figure 2,
Figure 5

Updated figures to match table updates.

Table 9 Corrected bRequest value from 0x71 to 0x72.
Corrected wValue value from 0x0762 to 0x0763.

Figure 8 Changed figure name to “I2C Address Data Phase Byte 3
Transaction 2 Example”

Sending an I2C
Write to an
attached Device

Added “I2C Address 0x61: Write a value of 0x12 to Register
0x15.” to Command Phase step.

Sending an I2C
Read to an
attached Device

Added additional context to beginning of section, before steps.
Added “I2C Address 0x62: Read Register 0x15.” to Command
Phase step.

Clock Configura-
tion

Moved section to end of document, added new clock configura-
tion example and updated Table 10 with frequency configura-
tion register values.

DS00002438A (08-22-17) Initial release.
 2017-2018 Microchip Technology Inc. DS00002438C-page 13

AN2438

DS00002438C-page 14  2017-2018 Microchip Technology Inc.

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make
files and information easily available to customers. Accessible by using your favorite Internet browser, the website
contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion
groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or
development tool of interest.

To register, access the Microchip website at www.microchip.com. Under “Support”, click on “Customer Change Notifi-
cation” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales
offices are also available to help customers. A listing of sales offices and locations is included in the back of this
document.

Technical support is available through the website at: http://microchip.com/support

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

 2017-2018 Microchip Technology Inc. DS00002438C-page 15

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY	MANAGEMENT		SYSTEM	
CERTIFIED	BY	DNV	

== ISO/TS	16949	==	

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Micro-
chip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold
harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR,
MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other
countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision
Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication,
CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN,
In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other
countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-3643-0

DS00002438C-page 16  2017-2018 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

08/15/18

http://support.microchip.com
http://www.microchip.com

	USB-to-I2C Bridging with USB47xx/USB49xx Hubs
	Introduction
	Sections
	References

	General Information
	TABLE 1: Default Settings for the Hub Feature Controller Enable
	FIGURE 1: Microchip Hub Controller Example
	I2C Bridging Commands
	I2C Write
	I2C Read
	I2C Interface Setup Requirements

	Part Number-Specific Information
	Part Summary
	TABLE 2: USB4712/USB4715/USB4912/USB4914/USB4925 I2C Interface Pins
	TABLE 3: USB4916/4927 I2C Interface Pins

	Microchip Software Solutions
	MPLAB® Connect Configurator Package (For Windows)
	Application Code Examples (For Linux)

	Manual Implementation
	I2C Control Flags
	TABLE 4: I2C Control Flags

	I2C Write Command
	TABLE 5: USB SETUP Command
	I2C Write USB Transaction Sequence

	I2C Read Command
	TABLE 6: USB Setup Command
	I2C Read USB Transaction Sequence

	Examples
	Sending an I2C Write to an attached Device
	TABLE 7: I2C Write Setup Packet Example
	FIGURE 2: I2C Write SETUP Transaction Example
	FIGURE 3: I2C Write OUT Transaction Example
	FIGURE 4: I2C Write IN Transaction Example

	Sending an I2C Read to an attached Device
	TABLE 8: I2C Read Setup Command 1 EXAMPLE
	FIGURE 5: I2C Read SETUP Transaction 1 Example
	FIGURE 6: I2C Read OUT Transaction 1 Example
	FIGURE 7: I2C Read IN Transaction 1 Example
	TABLE 9: I2C Read Setup Command 2 Example
	FIGURE 8: I2C Address Data Phase Byte 3 Transaction 2 Example
	FIGURE 9: I2C Read IN Transaction 2 Example
	FIGURE 10: I2C Read OUT Transaction 2 Example

	Clock Configuration
	TABLE 10: Bus Frequency Control and b12cinter128delay Register values for common 12c clock frequencies
	Clock Configuration Example
	TABLE 11: Clock Configuration Command 1 Example
	TABLE 12: Clock Configuration Command 2 Example
	TABLE 13: Clock Configuration Command 3 Example
	TABLE 14: Clock Configuration Command 4 Example

	Appendix A: Application Note Revision History
	TABLE A-1: Revision History

	Worldwide Sales and Service

