
PIC18XXX Tools Quick Chart

MPLAB® C18 Compiler Software Installation
To install the MPLAB C18 Compiler, run the setup program
from the CD-ROM. A series of dialogs will step through the
setup process. When installing MPLAB C18 for the first
time, the default installation directory is C:\mcc18.

Environment Variables
Use these settings either through the AUTOEXEC.BAT file
or your DOS properties so that when using MPLAB C18
from the command line, the path to the executables and
header files will not have to be specified.

PATH=C:\MCC18\BIN;<additional paths for other apps>

Allows MPLAB C18 and the MPLINK™ linker to be
executed at the command shell prompt from any directory.

PATH=C:\MCC18\MPASM;C:\MCC18\BIN;C:\Program
Files\MPLAB IDE\MCHIP_Tools;%PATH%

Allows the MPASM™ assembler to be executed at the
command shell prompt from any directory.

SET MCC_INCLUDE=c:\mcc18\h

Specifies the default search path for include files.

Help Resources
Refer to the Troubleshooting section of MPLAB IDE Help
and the Microchip web site (www.microchip.com) for:

• On-line support

• Latest development tool downloads and updates, data
sheets, application notes, user's guides, articles and
sample programs

• Web Conference, Design Tips, Device Errata

• Microchip Change Notification System

Development Systems Information Line and Technical
Support:

1-800-755-2345 for U.S. and most of Canada
1-480-792-7302 for the rest of the world.

Key to PIC18XXX Instruction Set

Literal Instructions

Core Memory Instructions

Field Description

f, fs, fd 8-bit file register address

r 0, 1 or 2 for FSR0, FSR1, FSR2 register

b 3-bit value representing bit position 0-7

a Access bit, 0=Access reg, 1=Use BSR

d Destination bit, 0=WREG, 1=f

kb, kk, kc 4-, 8- and 12-bit literal value, respectively

nn 8-bit relative offset (signed, 2’s complement)

nd 11-bit relative offset (signed, 2’s complement)

mm 20-bit program memory address

Mnemonic Description Function

ADDLW kk ADD literal to WREG W+kk → W

ANDLW kk AND literal with
WREG

W .AND. kk → W

CLRWDT Clear Watchdog Timer 0 → WDT, 0 → WDT
postscaler,
1 → TO,1 → PD

DAW Decimal Adjust WREG if W<3:0> >9 or DC=1,
W<3:0>+6→W<3:0>,
else W<3:0> → W<3:0>;
if W<7:4> >9 or C=1,
W<7:4>+6→W<7:4>,
else W<7:4> → W<7:4>

IORLW kk Inclusive OR literal
with WREG

W .OR. kk → W

LFSR r,kc Load 12-bit Literal to
FSR (second word)

kc → FSRr

MOVLB kb Set BSR bank kb → BSR

MOVLW kk Move literal to WREG kk → W

MULLW kk Multiply lit with WREG W * kk → PRODH:PRODL

SUBLW kk Subtract W from literal kk–W → W

XORLW kk Excl OR lit with WREG W .XOR. kk → W

Mnemonic Description Function

TBLRD* Table Read
(no change to TBLPTR)

Prog Mem
(TBLPTR) → TABLAT

TBLRD*+ Table Read
(post-increment
TBLPTR)

Prog Mem
(TBLPTR) → TABLAT
TBLPTR +1 → TBLPTR

TBLRD*- Table Read
(post-decrement
TBLPTR)

Prog Mem
(TBLPTR) → TABLAT
TBLPTR -1 → TBLPTR

TBLRD+* Table Read
(pre-increment
TBLPTR)

TBLPTR +1 → TBLPTR
Prog Mem (TBLPTR) →
TABLAT

TBLWT* Table Write
(no change to TBLPTR)

TABLAT → Prog
Mem(TBLPTR)

TBLWT*+ Table Write
(post-increment
TBLPTR)

TABLAT → Prog
Mem(TBLPTR)
TBLPTR +1 → TBLPTR

TBLWT*- Table Write
(post-decrement
TBLPTR)

TABLAT → Prog
Mem(TBLPTR)
TBLPTR -1 → TBLPTR

TBLWT+* Table Write
(pre-increment
TBLPTR)

TBLPTR +1 → TBLPTR
TABLAT → Prog
Mem(TBLPTR)

Control Instructions

Bit Instructions

File Register Instructions

Mnemonic Description Function

BC nn Relative Branch if
Carry

if C=1, PC+2+2*nn→PC

BN nn Relative Branch if
Negative

if N=1, PC+2+2*nn→PC

BNC nn Relative Branch if
Not Carry

if C=0, PC+2+2*nn→PC

BNN nn Relative Branch if
Not Negative

if N=0, PC+2+2*nn→PC

BNOV nn Relative Branch if
Not Overflow

if OV=0, PC+2+2*nn→PC

BNZ nn Relative Branch if
Not Zero

if Z=0, PC+2+2*nn→PC

BOV nn Relative Branch if
Overflow

if OV=1, PC+2+2*nn→PC

BRA nd Unconditional
Relative Branch

PC+2+2*nd→PC

BZ nn Relative Branch if
Zero

if Z=1, PC+2+2*nn→PC

CALL mm,s Absolute
Subroutine Call
(second word)

PC+4 → TOS,
mm → PC<20:1>,
if s=1,
 W → WS,
 STATUS → STATUSS,
 BSR → BSRS

GOTO mm Absolute Branch
(second word)

mm → PC<20:1>

NOP No Operation No operation

POP Pop Top/stack TOS-1 → TOS

PUSH Push Top/stack PC +2 → TOS

RCALL nd Relative
Subroutine Call

PC+2 → TOS,
PC+2+2*nd→PC

RESET Generate a Reset
(same as MCLR
reset)

same as MCLR reset

RETFIE s Return from
interrupt (and
enable interrupts)

TOS → PC, 1 → GIE/GIEH
or PEIE/GIEL,
if s=1, WS → W,
STATUSS → STATUS,
BSRS → BSR

RETLW kk Return from
subroutine, store
literal in W

TOS → PC, kk → W

RETURN s Return from
subroutine

TOS → PC,
if s=1,
 WS → W,
 STATUSS → STATUS,
 BSRS → BSR

SLEEP Enter Sleep Mode 0 → WDT, 0 →
WDT postscaler,
1 → TO, 0 → PD

Mnemonic Description Function

BCF f,b,a Bit Clear f 0 → f

BSF f,b,a Bit Set f 1 → f

BTFSC f,b,a Bit test f, skip if clear if f=0, PC+4→PC

BTFSS f,b,a Bit test f, skip if set if f=1, PC+4→PC

BTG f,b,a Bit Toggle f ~f → f

Mnemonic Description Function

ADDWF f,d,a ADD WREG to f W+f → dest

ADDWFC f,d,a ADD WREG and
Carry bit to f

W+f+C → dest

ANDWF f,d,a AND WREG with f W .AND. f → dest

CLRF f,a Clear f 0 → f

COMF f,d,a Complement f ~f → dest

CPFSEQ f,a Compare f with
WREG,
skip if f=WREG

f–W, if f=W, PC+4 → PC
else PC+2 → PC

CPFSGT f,a Compare f with
WREG,
skip if f > WREG

f–W, if f > W, PC+4 → PC
else PC+2 → PC

CPFSLT f,a Compare f with
WREG,
skip if f < WREG

f–W, if f < W, PC+4 → PC
else PC+2 → PC

DECF f,d,a Decrement f f–1 → dest

DECFSZ f,d,a Decrement f,
skip if 0

f–1 → dest, if dest=0,
PC+4 → PC else PC+2 → PC

DCFSNZ f,d,a Decrement f,
skip if not 0

f–1 → dest, if dest ≠ 0,
PC+4 → PC else PC+2 → PC

INCF f,d,a Increment f f+1 → dest

INCFSZ f,d,a Increment f,
skip if 0

f+1 → dest, if dest=0,
PC+4 → PC else PC+2 → PC

INFSNZ f,d,a Increment f,
skip if not 0

f+1 → dest, if dest ≠ 0,
PC+4 → PC else PC+2 → PC

IORWF f,d,a Inclusive OR
WREG with f

W .OR. f → dest

MOVF f,d,a Move f f → dest

MOVFF fs,fd Move fs
(first word) to
fd (second word)

fs → fd

MOVWF f,a Move WREG to f W → f

MULWF f,a Multiply WREG
with f

W * f → PRODH:PRODL

NEGF f,a Negate f ~f + 1 → f

RLCF f,d,a Rotate f left
through Carry

RLNCF f,d,a Rotate f left
(no carry)

RRCF f,d,a Rotate f right
through Carry

RRNCF f,d,a Rotate f right
(no carry)

SETF f,a Set f 0xFF → f

SUBFWB f,d,a Subtract f from
WREG with
Borrow

W - f - C → dest

SUBWF f,d,a Subtract WREG
from f

f - W → dest

SUBWFB f,d,a Subtract WREG
from f with
Borrow

f - W - C → dest

SWAPF f,d,a Swap nibbbles of f f<3:0> → dest<7:4>,
f<7:4> → dest<3:0>

TSTFSZ f,a Test f, skip if 0 if f=0, PC+4 → PC
else PC+2 → PC

XORWF f,d,a Exclusive OR
WREG with f

W .XOR. f → dest

7......0C
register f

7......0
register f

7......0C
register f

7......0
register f

Two Word Instructions
The PIC18XXX instruction set consists of mainly single
word (two byte) and a few double word (four byte)
instructions. The second word of every two word
instruction always has a value of 0xFn for the first byte.
Such instructions always execute as a NOP. This allows a
“skip” instruction, such as BTFSC to be used before any
two word instruction. If the skip is taken, it will skip over the
first word of a two word instruction to the second word,
execute a NOP and continue on with the next instruction.

FAST Interrupts and FAST CALLs
Bit 8 in the CALL instruction determines whether the WREG,
STATUS and BSR registers are automatically saved on the
FAST hardware stack (fast=1). Use:

 call mysub,FAST

then use:

 return FAST

to let the CPU automatically save and restore WREG,
STATUS and BSR. Bit 1 in the RETURN instruction is set to
one for FAST returns. Note that this special stack is only
one level deep, and FAST CALLs and FAST Interrupts
cannot be nested. If FAST interrupts are used, FAST
CALLs must be avoided.

MPLAB C18 Data Types

MPLAB C18 Floating-Point Format
The MPLAB C18 format for floating-point numbers is a
modified form of the IEEE 754 format. The difference
between the MPLAB C18 format and the IEEE 754
format consists of a rotation of the top nine bits of the
representation. A left rotate will convert from the IEEE 754
format to the MPLAB C18 format. A right rotate will convert
from the MPLAB C18 format to the IEEE 754 format.

Common Variable Modifiers

Data Storage Format
Endian refers to the ordering of bytes in a multi-byte value.
MPLAB C18 stores data in little-endian format. Bytes at
lower addresses have lower significance (the value is
stored “little-end-first”). For example:

 #pragma idata test = 0x0200
 long ltemp = 0xAABBCCDD;

results in a memory layout as follows:

Pointer Sizes

Type Bit Width Range

void – none

char 8 -128 to 127

unsigned char 8 0 to 255

int 16 -32,768 to 32,767

unsigned int 16 0 to 65,535

short 16 -32,768 to 32,767

unsigned short 16 0 to 65,535

short long 24 -8,388,608 to 8,388,607

unsigned short
long

24 0 to 16,777,215

long 32 -2,147,483,648 to
2,147,483,647

unsigned long 32 0 to 4,294,967,295

float 32 1.7549435E-38 to
6.80564693E+38

double 32 1.7549435E-38 to
6.80564693E+38

Note: A plain char is signed by default.
A plain char may be unsigned by default via the
-k command-line option.

Floating-
Point

Standard
Byte 3 Byte 0 Byte 1 Byte 2

IEEE 754 seeeeeee1 e0ddd dddd16 dddd dddd8 dddd dddd0

MPLAB C18 eeeeeeee0 sddd dddd16 dddd dddd8 dddd dddd0

Legend: s = sign bit, d = mantissa, e = exponent

Modifier Use

const Variable will not be modified

far Variable is paged/banked regardless of
memory model selected

extern Variable is allocated in another module

near Variable is not paged/banked regardless of
memory model selected

ram Locate object in data memory

rom Locate object in program memory

static Variable is retained unchanged between
executions of the defining block.

volatile Variable may change from other sources
(e.g., input port)

ltemp Address 0x0200 0x0201 0x0202 0x0203

ltemp Contents 0xDD 0xCC 0xBB 0xAA

Pointer Type Example Size

Data memory char * dmp;
near char * npmp;

16 bits

Near pgm memory rom near char * npmp; 16 bits

Far pgm memory rom far char * fpmp; 24 bits

Instruction Macros

These macros are provided for efficient use of some of the
PIC18XXX instructions directly from C code:

MPLAB C18 Interrupts
To create an interrupt service routine no additional libraries
are required. Follow these steps:

• Create a code section at the interrupt vector that
contains a goto isr statement, either using inline
assembly or a separate assembly file.

• Declare the interrupt routine in the source code using
one of the following statements:

High-priority interrupts – W, BSR and STATUS are saved in
shadow registers.

 #pragma interrupt <isr> [save=symbol-list]

Low-priority interrupts – W, BSR and STATUS are saved on
the software stack.

 #pragma interruptlow <isr> [save=sym-list]

If your ISR calls non-ISR functions, the temporary data
section must be saved. This is done using the section
qualifier on the save= keyword.

#pragma interruptlow <isr>
 |save=section(".tmpdata"|

Compiler Managed Resources at Interrupts
MPLAB C18 will save some registers automatically when
an interrupt occurs. In order to make sure that other
registers are saved and restored properly use the save=
construct in the #pragma interrupt declaration.

18F452i Linker Script
Linker scripts tell MPLINK which areas of memory are
available for data and program code. Here is a linker script
for debugging a PIC18F452 application with MPLAB ICD 2.

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x7DBF
CODEPAGE NAME=debug START=0x7DC0 END=0x7FFF PROTECTED
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF000FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x7F
DATABANK NAME=gpr0 START=0x80 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5F3
DATABANK NAME=dbgspr START=0x5F4 END=0x5FF PROTECTED
ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config

This linker script is for use with MPLAB ICD 2, so the area
in program memory assigned to the CODEPAGE area
debug and the area in RAM noted by the DATABANK area
dbgspr are marked PROTECTED.

Instruction1 Macro Action

Nop() Execute a no
operation.

ClrWdt() Clear the watchdog
timer.

Sleep() Execute a SLEEP
instruction.

Reset() Execute a device
reset.

Rlcf(var, dest, access)2,3 Rotate var to the left
through the carry bit.

Rlncf(var, dest, access)2,3 Rotate var to the left
without affecting the
carry bit.

Rrcf(var, dest, access)2,3 Rotate var to the right
through carry bit.

Rrncf(var, dest, access)2,3 Rotate var to the right
without affecting the
carry bit.

Swapf(var, dest, access)2,3 Swap the upper and
lower nibble of var.

Note 1: Using any of these macros in a function affects
the ability of the MPLAB C18 compiler to perform
optimizations on that function.

2: var must be an 8-bit quantity (i.e., char) and not
located on the stack.

3: If dest is 0, the result is stored in WREG, and if
dest is 1, the result is stored in var. If access is
0, the access area will be selected, overriding the
BSR value. If access is 1, then the bank will be
selected according to the BSR value.

Compiler-
Managed
Resource

Primary Use(s)
Auto
Saved

PC execution control x

WREG intermediate calculations x

STATUS calculation results x

BSR bank selection x

PROD multiplication results,
return values, intermediate
calculations

section.tmpdata intermediate calculations

FSR0 pointers to RAM x

FSR1 stack pointer x

FSR2 frame pointer x

TBLPTR accessing values in
program memory

TABLAT accessing values in
program memory

PCLATH function pointer invocation

PCLATU function pointer invocation

section
MATH_DATA

arguments, return values
and temporary locations for
math library functions

Note: Compiler temporary variables for non-ISR functions
are placed in an access qualified udata section
named .tmpdata. Interrupt service routines each
create a separate section for temporary data storage,
so, section .tmpdata doesn’t need to be saved if the
ISR makes no function calls.

Locating Code
Following a #pragma code directive, all generated code
will be assigned to the specified code section until another
#pragma code directive is encountered. An absolute
code section allows the location of code to a specific
address. For example:

 #pragma code my_code=0x2000

will locate the code section my_code at program memory
address 0x2000. If the address is left blank, the linker will
choose from available free blocks of code space.

Locating Data
Data can be placed in either data or program memory with
the MPLAB C18 compiler. To locate data in RAM, it can
either be uninitialized data (udata) or initialized data
(idata). When using intialized data, all the data is stored
in program memory and then moved to RAM before the
main application function at main is executed (this is done
in the object file c018i.o). The following declares a
section for statically allocated uninitialized data (udata) at
absolute address 0x120:

 #pragma udata my_new_data_section=0x120

Data that is placed in on-chip program memory can be
read but not written without additional user-supplied code.
The rom keyword tells the compiler that the data should be
placed in program memory. The compiler will allocate this
data into the current romdata type section. For example:

 #pragma romdata const_table
 const rom char my_const_array[10]=
 {0,1,2,3,4,5,6,7,8,9};
 /* Resume allocation of romdata
 into the default section */
 #pragma romdata

MPLAB C18 In-line Assembly
MPLAB C18 has an internal assembler with a syntax
similar to the MPASM assembler, except that comments
must be in the C (/* */) or C++ (//) style. The block of
assembly code must begin with _asm and end with
_endasm. For example:

_asm
 /* User assembly code */
 MOVLW 10 // Move decimal 10 to count
 MOVWF count, 0
 /* Loop until count is 0 */
start:
 DECFSZ count, 1, 0
 GOTO done
 BRA start
done:
_endasm

Note that with in-line assembly, the access bit and the
destination bit must be explicitly entered for each
instruction.

Configuration Bits
The #pragma romdata CONFIG directive is used to set
the current romdata section to the section named CONFIG.
The configuration for the device can be specified using the
_CONFIG_DECL macro and the #defines located in the
processor-specific header file.

 #include <p18c452.h>
 #pragma romdata CONFIG
 _CONFIG_DECL
 (_CP_ON_1L,
 _OSCS_ON_1H & _OSC_LP_1H,
 _PWRT_ON_2L & _BOR_OFF_2L &
 _BORV_42_2L,
 _WDT_OFF_2H & _WDTPS_1_2H,
 _CCP2MUX_OFF_3H,
 _CONFIG4L_DEFAULT);
 #pragma romdata
 void main (void)
 {
 ...
 }

Return Values

Functions that return values will return them in different
registers depending upon the return value size:

PIC18XXX Library Files

Return
Value Size

Return Value Location

8 bits WREG

16 bits PRODH:PRODL

24 bits (AARGB2+2):(AARGB2+1):AARGB2

32 bits (AARGB3+3):(AARGB3+2):(AARGB3+1):
ARGB3

> 32 bits On the stack, FSR0 points to the return value

File Use

clib.lib Standard C routines, math routines.

c018i.o Startup code with initialized data support.

c018iz.o Startup code with initialized data support
that clears unused RAM.

c018.o Startup code without initialized data support.

p18xxxx.lib Peripheral library routines and SFR
definitions.

xxxx = Processor type (e.g., C452 for PIC18C452)

MPLAB ICD 2 Alerts

PLL

Care should be taken when programming the Phase
Locked Loop oscillator (PLL). The PLL only changes when
power is first applied to the chip. When programming the
PLL for the first time, remove power from the PIC18FXXX
part after programming and reapply for the PLL to be
enabled. When reprogramming the device from PLL mode
to another mode, first reprogram with PLL off, then remove
power and reapply.

Flash Memory Blocks

For a range of program memory, the Start Address must
be set to the beginning of an 8-byte block. The End
Address must be set to the end of an 8-byte block, i.e., a
Start Address of 0x10 and an End Address of 0x1F.
If a programming error is received due to an incorrect End
Address, click the Connect button, correct the End
Address and click the Program button again.

PIC18FXX20

All AVDD and AVSS pins must be connected for the device
to program.

General Alerts

SLEEP

Do not single step into, set a breakpoint on or break/halt
during execution of a SLEEP instruction. If this happens,
select Debugger>Reinitialize ICE Hardware in order to
wake up the processor module. In code, use a Watchdog
Timer time-out or other suitable method to wake the
processor from SLEEP mode.

Interrupts While Single Stepping

Interrupts will not work when single stepping through code.
Interrupts will work only when running.

MCLR While Single Stepping

Initiating a master clear on the MCLR pin will not reset the
processor when in step mode.

Emulator Unimplemented GPRs

Some unimplemented General Purpose Registers in the
emulator can be written. Therefore, their read values are
not guaranteed to be zero (as is the case in the actual
device).

Low Voltage Emulation

In-circuit emulation is limited to 2.5 to 5.5 volts.

Table Write Results in MPLAB IDE Windows

If performing table writes, "Upload Program Memory from
ICE" must be selected before the Program Memory
window will be modified.

Table Reads of Breakpoint Locations

If performing table reads, a software breakpoint will be a
TRAP instruction, so these locations will not read correctly
when performing program memory reads. This will affect
any run-time checksum routines. It is recommended that
run-time checksums be disabled while debugging.

Additional Reference Documents

PICmicro 18C MCU Family Reference Manual (DS39500)

MPLAB C18 C Compiler Getting Started (DS51295)

MPLAB C18 C Compiler User’s Guide (DS51288)

MPLAB C18 C Compiler Libraries (DS51297)

Embedded Design with the PIC18F452 Microcontroller,
by John B. Peatman, Prentice Hall, (c) 2003 Pearson
Edication, Inc., ISBN 0-13-046213-6.

Microchip Technology Inc. • 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 • 480-792-7200

www.microchip.com

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Accuron, Application Maestro, dsPICDEM, dsPICDEM.net, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM,
PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of
Microchip Technology Incorporated n the U.S.A. and other countries. Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated
in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2003, Microchip Technology Incorporated, Printed in the U.S.A.
All Rights Reserved. DS51426A

