\ MICROCHIP
Ir:

PIC18XXX Tools Quick Chart

MPLAB® C18 Compiler Software Installation

To install the MPLAB C18 Compiler, run the setup program
from the CD-ROM. A series of dialogs will step through the
setup process. When installing MPLAB C18 for the first
time, the default installation directory is C: \mcc18.

Environment Variables

Use these settings either through the AUTOEXEC . BAT file
or your DOS properties so that when using MPLAB C18
from the command line, the path to the executables and
header files will not have to be specified.
PATH=C:\MCC18\BIN; <additional paths for other apps>
Allows MPLAB C18 and the MPLINK™ linker to be
executed at the command shell prompt from any directory.
PATH=C:\MCC18\MPASM; C:\MCC18\BIN;C: \Program
Files\MPLAB IDE\MCHIP Tools;%PATH%

Allows the MPASM™ assembler to be executed at the
command shell prompt from any directory.

SET MCC_INCLUDE=c:\mccl8\h

Specifies the default search path for include files.

Help Resources

Refer to the Troubleshooting section of MPLAB IDE Help
and the Microchip web site (www.microchip.com) for:

* On-line support

» Latest development tool downloads and updates, data
sheets, application notes, user's guides, articles and
sample programs

* Web Conference, Design Tips, Device Errata
* Microchip Change Notification System

Development Systems Information Line and Technical
Support:

1-800-755-2345 for U.S. and most of Canada
1-480-792-7302 for the rest of the world.

Key to PIC18XXX Instruction Set

Field Description

f, fs, fd 8-bit file register address

r 0, 1 or 2 for FSRO, FSR1, FSR2 register

b 3-bit value representing bit position 0-7

a Access bit, 0=Access reg, 1=Use BSR

d Destination bit, 0=WREG, 1=f

kb, kk, kc 4-, 8- and 12-bit literal value, respectively

nn 8-bit relative offset (signed, 2’s complement)
nd 11-bit relative offset (signed, 2’'s complement)
mm 20-bit program memory address

Literal Instructions

Mnemonic Description Function
ADDLW kk |ADD literal to WREG |W+kk - W
ANDLW kk |AND literal with W .AND. kk - W
WREG
CLRWDT Clear Watchdog Timer |0 - WDT, 0 -» WDT
postscaler,
1—-T0,1—>PD
DAW Decimal Adjust WREG |if W<3:0> >9 or DC=1,
W<3:0>+6—>W<3:0>,
else W<3:0> —» W<3:0>;
if W<7:4> >9 or C=1,
W<7:4>+6>W<7:4>,
else W<7:4> —» W<7:4>
IORLW kk [Inclusive OR literal W .OR. kk > W
with WREG
LFSR rkc |Load 12-bit Literalto |kc — FSRr
FSR (second word)
MOVLB kb |Set BSR bank kb — BSR
MOVLW kk |Move literal to WREG |kk -> W
MULLW kk [Multiply lit with WREG |W * kk - PRODH:PRODL
SUBLW kk |Subtract W from literal |kk-W — W
XORLW kk |Excl OR lit with WREG | W .XOR. kk —» W

Core Memory Instructions

Mnemonic Description Function
TBLRD* Table Read Prog Mem
(no change to TBLPTR) |(TBLPTR) — TABLAT
TBLRD*+ Table Read Prog Mem
(post-increment (TBLPTR) — TABLAT
TBLPTR) TBLPTR +1 — TBLPTR
TBLRD*- Table Read Prog Mem
(post-decrement (TBLPTR) — TABLAT
TBLPTR) TBLPTR -1 - TBLPTR
TBLRD+* Table Read TBLPTR +1 —» TBLPTR
(pre-increment Prog Mem (TBLPTR) —
TBLPTR) TABLAT
TBLWT* Table Write TABLAT — Prog
(no change to TBLPTR) |Mem(TBLPTR)
TBLWT*+ Table Write TABLAT — Prog
(post-increment Mem(TBLPTR)
TBLPTR) TBLPTR +1 — TBLPTR
TBLWT*- Table Write TABLAT — Prog
(post-decrement Mem(TBLPTR)
TBLPTR) TBLPTR -1 — TBLPTR
TBLWT+* Table Write TBLPTR +1 - TBLPTR
(pre-increment TABLAT — Prog
TBLPTR) Mem(TBLPTR)

Control Instructions File Register Instructions

Mnemonic Description Function Mnemonic Description Function

BC nn Relative Branch if [if C=1, PC+2+2*nn—PC ADDWF fd,a |ADDWREGtof |W+f — dest
Carry ADDWFC fda |ADDWREGand |W++C — dest
BN nn Relative Branch if |if N=1, PC+2+2*"nn—>PC Carry bitto f
Negative ANDWF fd,a |ANDWREG withf |W .AND. f — dest
BNC nn Relative Branch if [if C=0, PC+2+2*nn—PC CLRF fa Clear f 05f
Not Carry COMF f’d C | f f—>d
BNN nn |Relative Branch if |if N=0, PC+2+2"nn—»>PC d.a_|Complement — dest
Not Negative CPFSEQ f,a Compare fwith |f-W, if =W, PC+4 — PC
i 1 WREG, else PC+2 — PC
BNOV nn Relative Branch if |if OV=0, PC+2+2*nn—>PC skip if =WREG
Not Overflow - .
- — CPFSGT fa Compare fwith |-W, if f> W, PC+4 — PC
BNz nn Relative Branch if |if Z=0, PC+2+2*nn—PC WREG, else PC+2 —» PC
Not Zero skip if f > WREG
BOV nn Relative Branch if |if OV=1, PC+2+2*nn—PC CPFSLT f,a Compare f with -W, if f <W, PC+4 — PC
Overflow WREG, else PC+2 —» PC
BRA nd | Unconditional PC+2+2'nd>PC skip if f < WREG
Relative Branch DECF f.d,a [Decrementf f-1 — dest
BZ nn Relative Branch if |if Z=1, PC+2+2*nn—PC DECFSZ fd,a |Decrementf, f—1 — dest, if dest=0,
Zero skip if 0 PC+4 — PC else PC+2 —» PC
CALL mm,s |Absolute PC+4 — TOS, DCFSNzZ fd,a |[Decrementf, f-1 — dest, if dest = 0,
Subroutine Call mm — PC<20:1>, skip if not 0 PC+4 — PC else PC+2 — PC
(second word) if SVCL WS INCF fd,a [Incrementf f+1 - dest
STATUS - STATUSS, INCFSZ fd,a |Incrementf, +1 > dest, if dest=0,
BSR — BSRS skip if 0 PC+4 — PC else PC+2 — PC
GOTO mm Absolute Branch mm — PC<20:1> INFSNZ fd,a [Incrementf, f+1 — dest, if dest = 0,
(second word) skip if not 0 PC+4 — PC else PC+2 - PC
NOP No Operation No operation IORWF fd.,a {/’\}%‘ésévsv%ﬁ W .OR. f — dest
POP Pop Top/stack TOS-1 - TOS MOVF Tda [Movef T dest
PUSH Push Top/stack PC +2 > TOS MOVEE fsfd |Move fs r——
RCALL nd Relative PC+2 - TOS, (first word) to
Subroutine Call PC+2+2*nd—PC fd (second word)
RESET Generate a Reset |same as MCLR reset MOVWF f,a Move WREG to f [W — f
(same as MCLR MULWF fa Multiply WREG ~ |W * f > PRODH:PRODL
reset) with f
RETFIE s Return from TOS —» PC, 1 —» GIE/GIEH NEGF fa Negate f ~f+1>f
interrupt (and or PEIE/GIEL, -
enable interrupts) |if s=1, WS > W, RLCF fda tl?‘otatehf Eeft register £
STATUSS — STATUS, rough Larry Teons 0
BSRS —» BSR
RETLW kk |Return from TOS — PC, kk - W RINCFE fda |Rowte 5"
subroutine, store | [| |7 [t
literal in W RRCF _ fda |Rotate fright Tooister f
RETURN s Return from TOS - PC, through Carry r’."h_l
subroutine if s=1,
WS —> W, -
: RRNCF fd,a [|Rotate fright register f
BSRS SpsR T (no carry)
SLEEP Enter Sleep Mode |0 —» WDT, 0 » SETF fa Set f OXFF = f
WDT tscaler,
1> T‘()DO,SOSE?SFD SUBFWB f,d,a |[Subtract f from —
WREG with W -f-C — dest
. . Borrow
Bit Instructions SUBWF fda |Subtract WREG |f-W — dest
: e . from f
Mnemonic Description Function SUBWFB Tda |Subtract WREG —
BCF f,b,a Bit Clear f 0 — f from f with f-W-C — dest
- Borrow
BSF fb,a Bit Set f 1 — f _
: — - SWAPF fd,a [Swap nibbbles of f|f<3:0> — dest<7:4>,
BTFSC fb,a Bit test f, skip if clear if f=0, PC+4—>PC f<7:4> — dest<3:0>
BTFSS fb,a Bit test f, skip if set if f=1, PC+4—>PC TSTFSZ f,a Test f, skip if 0 if =0, PC+4 — PC
BTG fba |BitToggle > f else PC+2 - PC

XORWF fd,a [Exclusive OR W .XOR. f - dest
WREG with f

Two Word Instructions

The PIC18XXX instruction set consists of mainly single
word (two byte) and a few double word (four byte)
instructions. The second word of every two word
instruction always has a value of OxFn for the first byte.
Such instructions always execute as a NOP. This allows a
“skip” instruction, such as BTFSC to be used before any
two word instruction. If the skip is taken, it will skip over the
first word of a two word instruction to the second word,
execute a NOP and continue on with the next instruction.

FAST Interrupts and FAST CALLs

Bit 8 in the CALL instruction determines whether the WREG,
STATUS and BSR registers are automatically saved on the
FAST hardware stack (fast=1). Use:

call mysub, FAST
then use:
return FAST

to let the CPU automatically save and restore WREG,
STATUS and BSR. Bit 1 in the RETURN instruction is set to
one for FAST returns. Note that this special stack is only
one level deep, and FAST CALLs and FAST Interrupts
cannot be nested. If FAST interrupts are used, FAST
CALLs must be avoided.

MPLAB C18 Data Types

Type Bit Width Range

void - none

char 8 -128 to 127

unsigned char 8 0 to 255

int 16 -32,768 to 32,767

unsigned int 16 0 to 65,535

short 16 -32,768 to 32,767

unsigned short 16 0 to 65,535

short long 24 -8,388,608 to 8,388,607

unsigned short 24 0to 16,777,215

long

long 32 -2,147,483,648 to
2,147,483,647

unsigned long 32 0 to 4,294,967,295

float 32 1.7549435E-38 to
6.80564693E+38

double 32 1.7549435E-38 to
6.80564693E+38

Note: A plain char is signed by default.

A plain char may be unsigned by default via the
-k command-line option.

MPLAB C18 Floating-Point Format

The MPLAB C18 format for floating-point numbers is a
modified form of the IEEE 754 format. The difference
between the MPLAB C18 format and the IEEE 754
format consists of a rotation of the top nine bits of the
representation. A left rotate will convert from the IEEE 754
format to the MPLAB C18 format. A right rotate will convert
from the MPLAB C18 format to the IEEE 754 format.

Floating-
Point
Standard

IEEE 754 seeeeeee | egddd dddd4g |dddd ddddg|dddd ddddg

Byte 3

Byte 0 Byte 1 Byte 2

MPLAB C18 | eeeeeeeey| sddd dddd4g |dddd ddddg|dddd ddddg

Legend: s = sign bit, d = mantissa, e = exponent

Common Variable Modifiers

Modifier Use

const Variable will not be modified

far Variable is paged/banked regardless of
memory model selected

extern Variable is allocated in another module

near Variable is not paged/banked regardless of
memory model selected

ram Locate object in data memory

rom Locate object in program memory

static Variable is retained unchanged between
executions of the defining block.

volatile Variable may change from other sources
(e.g., input port)

Data Storage Format

Endian refers to the ordering of bytes in a multi-byte value.
MPLAB C18 stores data in little-endian format. Bytes at
lower addresses have lower significance (the value is
stored “little-end-first”). For example:

#pragma idata test = 0x0200
long ltemp = O0xAABBCCDD;

results in a memory layout as follows:

Itemp Address 0x0200 0x0201 0x0202 0x0203

Iltemp Contents 0xDD 0xCC 0xBB 0xAA
Pointer Sizes

Pointer Type Example Size

Data memory char * dmp; 16 bits

near char * npmp;
Near pgm memory |rom near char * npmp;| 16 bits
Far pgm memory rom far char * fpmp; 24 bits

Instruction Macros

These macros are provided for efficient use of some of the
PIC18XXX instructions directly from C code:

Instruction’ Macro Action

Compiler Managed Resources at Interrupts

MPLAB C18 will save some registers automatically when
an interrupt occurs. In order to make sure that other
registers are saved and restored properly use the save=
construct in the #pragma interrupt declaration.

Nop () Execute a no Compiler-
operation. Managed Primary Use(s)
Clrwdt () Clear the watchdog Resource
timer. PC execution control X
Sleep () Execute a SLEEP WREG intermediate calculations X
instruction. STATUS calculation results X
Reset () Execute a device BSR bank selection X
reset.
PROD multiplication results,
Rlcf (var, dest, access)2® |Rotatevar tothe left return values, intermediate
through the carry bit. calculations
Rlncf (var, dest, access)?23 |Rotate var to the left section.tmpdata |intermediate calculations
without affecting the SRO inters to RAM
carry bit. FSR pointers to
- FSR1 stack pointer
Rrcf (var, dest, access)23 |Rotate var to the right P -
through carry bit. FSR2 frame pointer
2,3 |Rotate to the right TBLPTR accessing values in
Renef (var, dest, access) without_\;aflffacting theg program memory
carry bit. TABLAT accessing values in
Swapf (var, dest, access)23|Swap the upperand ng@n1m?mow ,
lower nibble of var. PCLATH function pointer invocation
Note 1: Using any of these macros in a function affects PCLATU function pointer invocation
the ability of the MPLAB C18 compiler to perform section arguments, return values
optimizations on that function. MATH_DATA and temporary locations for
2: var must be an 8-bit quantity (i.e., char) and not - math library functions

located on the stack.

3: If dest is 0, the result is stored in WREG, and if
dest is 1, the result is stored in var. If access is
0, the access area will be selected, overriding the
BSR value. If access is 1, then the bank will be
selected according to the BSR value.

MPLAB C18 Interrupts

To create an interrupt service routine no additional libraries
are required. Follow these steps:

» Create a code section at the interrupt vector that
contains a goto isr statement, either using inline
assembly or a separate assembly file.

» Declare the interrupt routine in the source code using
one of the following statements:

High-priority interrupts — w, BSR and STATUS are saved in

shadow registers.

#pragma interrupt <isr> [save=symbol-list]
Low-priority interrupts — W, BSR and STATUS are saved on
the software stack.

#pragma interruptlow <isr> [save=sym-list]
If your ISR calls non-ISR functions, the temporary data

section must be saved. This is done using the section
qualifier on the save= keyword.

#pragma interruptlow <isrs>
| save=section (".tmpdata" |

Note: Compiler temporary variables for non-ISR functions
are placed in an access qualified udata section
named . tmpdata. Interrupt service routines each
create a separate section for temporary data storage,
s0, section .tmpdata doesn’t need to be saved if the
ISR makes no function calls.

18F452i Linker Script

Linker scripts tell MPLINK which areas of memory are
available for data and program code. Here is a linker script
for debugging a PIC18F452 application with MPLAB ICD 2.

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x7DBF
CODEPAGE NAME=debug START=0x7DCO END=0xX7FFF PROTECTED

CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xFOOOFF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x7F
DATABANK NAME=gpr0 START=0x80 END=0xXFF
DATABANK NAME=gprl START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5F3
DATABANK NAME=dbgspr START=0x5F4 END=0x5FF PROTECTED

ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED
SECTION NAME=CONFIG ROM=config

This linker script is for use with MPLAB ICD 2, so the area
in program memory assigned to the CODEPAGE area
debug and the area in RAM noted by the DATABANK area
dbgspr are marked PROTECTED.

Locating Code

Following a #pragma code directive, all generated code
will be assigned to the specified code section until another
#pragma code directive is encountered. An absolute
code section allows the location of code to a specific
address. For example:

#pragma code my_ code=0x2000

will locate the code section my_code at program memory
address 0x2000. If the address is left blank, the linker will
choose from available free blocks of code space.

Locating Data

Data can be placed in either data or program memory with
the MPLAB C18 compiler. To locate data in RAM, it can
either be uninitialized data (udata) or initialized data
(idata). When using intialized data, all the data is stored
in program memory and then moved to RAM before the
main application function at main is executed (this is done
in the object file c018i . 0). The following declares a
section for statically allocated uninitialized data (udata) at
absolute address 0x120:

#pragma udata my new_data_section=0x120

Data that is placed in on-chip program memory can be

read but not written without additional user-supplied code.
The rom keyword tells the compiler that the data should be
placed in program memory. The compiler will allocate this

data into the current romdata type section. For example:

#ipragma romdata const table
const rom char my const array[10]=
{0,1,2,3,4,5,6,7,8,9};
/* Resume allocation of romdata
into the default section */
#pragma romdata

MPLAB C18 In-line Assembly

MPLAB C18 has an internal assembler with a syntax
similar to the MPASM assembler, except that comments
must be in the C (/* */) or C++ (//) style. The block of
assembly code must begin with _asm and end with
_endasm. For example:

_asm
/* User assembly code */
MOVLW 10 // Move decimal 10 to count
MOVWF count, 0
/* Loop until count is 0 */
start:
DECFSZ count, 1, 0
GOTO done
BRA start
done:
_endasm

Note that with in-line assembly, the access bit and the
destination bit must be explicitly entered for each
instruction.

Configuration Bits

The #pragma romdata CONFIG directive is used to set
the current romdata section to the section named CONFIG.
The configuration for the device can be specified using the
_CONFIG_DECL macro and the #defines located in the
processor-specific header file.

#include <pl8c452.h>
#pragma romdata CONFIG
_CONFIG DECL
(_CP_ON_1L,
_0SCS_ON_1H & _OSC_LP_ 1H,
_PWRT ON 2L & _BOR OFF 2L &
_BORV_42 2L,
_WDT OFF 2H & _WDTPS 1 2H,
_CCP2MUX_OFF_3H,
_CONFIG4L_DEFAULT) ;
#pragma romdata
void main (void)

{

}
Return Values

Functions that return values will return them in different
registers depending upon the return value size:

ValTS(teugilze Return Value Location
8 bits WREG
16 bits |PRODH: PRODL
24 bits (AARGB2+2) : (AARGB2+1) : AARGB2
32 bits (AARGB3+3) : (AARGB3+2) : (AARGB3+1) :
ARGB3
> 32 bits | On the stack, FSR0 points to the return value

PIC18XXX Library Files

clib.1lib Standard C routines, math routines.

c018i.0 Startup code with initialized data support.

c018iz.o Startup code with initialized data support
that clears unused RAM.

c018.0 Startup code without initialized data support.

pl8xxxx.1lib |Peripheral library routines and SFR
definitions.

xxxx = Processor type (e.g., C452 for PIC18C452)

MPLAB ICD 2 Alerts

PLL

Care should be taken when programming the Phase
Locked Loop oscillator (PLL). The PLL only changes when
power is first applied to the chip. When programming the
PLL for the first time, remove power from the PIC18FXXX
part after programming and reapply for the PLL to be
enabled. When reprogramming the device from PLL mode
to another mode, first reprogram with PLL off, then remove
power and reapply.

Flash Memory Blocks

For a range of program memory, the Start Address must
be set to the beginning of an 8-byte block. The End
Address must be set to the end of an 8-byte block, i.e., a
Start Address of 0x10 and an End Address of 0x1F.

If a programming error is received due to an incorrect End
Address, click the Connect button, correct the End
Address and click the Program button again.

PIC18FXX20

All AVDD and AVss pins must be connected for the device
to program.

General Alerts

SLEEP

Do not single step into, set a breakpoint on or break/halt
during execution of a SLEEP instruction. If this happens,
select Debugger>Reinitialize ICE Hardware in order to
wake up the processor module. In code, use a Watchdog
Timer time-out or other suitable method to wake the
processor from SLEEP mode.

Interrupts While Single Stepping

Interrupts will not work when single stepping through code.
Interrupts will work only when running.

MCLR While Single Stepping

Initiating a master clear on the MCLR pin will not reset the
processor when in step mode.

Emulator Unimplemented GPRs

Some unimplemented General Purpose Registers in the
emulator can be written. Therefore, their read values are
not guaranteed to be zero (as is the case in the actual
device).

Low Voltage Emulation

In-circuit emulation is limited to 2.5 to 5.5 volts.

Table Write Results in MPLAB IDE Windows

If performing table writes, "Upload Program Memory from
ICE" must be selected before the Program Memory
window will be modified.

Table Reads of Breakpoint Locations

If performing table reads, a software breakpoint will be a
TRAP instruction, so these locations will not read correctly
when performing program memory reads. This will affect
any run-time checksum routines. It is recommended that
run-time checksums be disabled while debugging.

Additional Reference Documents

PICmicro 18C MCU Family Reference Manual (DS39500)
MPLAB C18 C Compiler Getting Started (DS51295)
MPLAB C18 C Compiler User’s Guide (DS51288)
MPLAB C18 C Compiler Libraries (DS51297)

Embedded Design with the PIC18F452 Microcontroller,
by John B. Peatman, Prentice Hall, (c) 2003 Pearson
Edication, Inc., ISBN 0-13-046213-6.

MICROCHIP
I

Microchip Technology Inc. * 2355 West Chandler Blvd.
Chandler, AZ 85224-6199 » 480-792-7200

www.microchip.com

The Microchip name and logo, the Microchip logo, dsPIC, KEELoQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Accuron, Application Maestro, dsPICDEM, dsPICDEM.net, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM,
PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of
Microchip Technology Incorporated n the U.S.A. and other countries. Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated
in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2003, Microchip Technology Incorporated, Printed in the U.S.A.

All Rights Reserved. DS51426A

