
 TB3256
 How to Use the 12-Bit Differential ADC with PGA in Single

Mode

Features

• 8-Bit and 12-Bit Resolution
• Differential and Single-Ended Conversion

– Up to 15 analog inputs
• 15 positive and seven negative inputs

• 4 Internal Inputs
– GND
– VDD/10
– Temperature Sensor
– DACREF from Analog Comparator

• Built-in Internal Reference and External Reference Options
• Programmable Gain Amplifier from 1x to 16x
• Free-Running Mode
• Left or Right Adjusted Result
• Optional: Event-Triggered Conversion
• Configurable Window Comparator

Introduction

Authors: Rupali Honrao, Amund Aune, and Egil Rotevatn, Microchip Technology Inc.

This technical brief explains how to use the Single mode with the 12-bit Analog-to-Digital Converter (ADC) featured in
the tinyAVR® 2 family.

The code examples below are given using the Single mode:
• Interrupt using Window Comparator
• Event-triggered conversion
• Measuring VDD
• Measuring Internal Temperature sensor

In Single mode, when the ADC conversion is triggered, the ADC result is available for a single sample. In this mode,
ADC resolution can be selected to be 8-bit or 12-bit.

The ADC operation modes can be split into three groups:

• Single mode – Single conversion per trigger, with 8- or 12-bit conversion output
• Series Accumulation mode – One conversion per trigger, with accumulation of n samples
• Burst Accumulation mode – A burst with n samples accumulated as fast as possible after a single trigger

Refer to Section 1. Relevant Documents for details on the other ADC modes.

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 1

Table of Contents

Features... 1

Introduction...1

1. Relevant Documents...4

2. Configuration...5

2.1. Single Mode 8-Bit and 12-Bit Configuration... 5
2.2. References...5
2.3. Single-Ended and Differential Modes...5
2.4. Programmable Gain Amplifier.. 6
2.5. Interrupts.. 6
2.6. Window Comparator...7
2.7. Events.. 8

3. Input Circuitry.. 11

3.1. Input Impedance...11
3.2. Sample Duration...12

4. Power and Timing... 13

4.1. Clock.. 13
4.2. PGA Bias and Output Sample Duration... 13
4.3. Conversion Time.. 13
4.4. Free-Running Mode... 14

5. Output Processing...15

5.1. Result Range..15
5.2. Left Adjust.. 15
5.3. Signed and Unsigned Output... 16

6. Measurements.. 17

6.1. Measuring VDD... 17
6.2. Measuring Temperature... 19

7. Get Code Examples from GitHub..21

8. Revision History.. 22

The Microchip Website...23

Product Change Notification Service..23

Customer Support.. 23

Microchip Devices Code Protection Feature.. 23

Legal Notice... 23

Trademarks.. 24

Quality Management System... 24

 TB3256

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 2

Worldwide Sales and Service...25

 TB3256

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 3

1. Relevant Documents
The following documents are relevant to this technical brief:

• Datasheet: tinyAVR 2 Data Sheet (.pdf) on Product Pages:
– www.microchip.com/wwwproducts/en/ATtiny1624
– www.microchip.com/wwwproducts/en/ATtiny1626
– www.microchip.com/wwwproducts/en/ATtiny1627

• How to use the 12-Bit Differential ADC with PGA in Series Accumulation Mode: www.microchip.com/
DS90003257

• How to use the 12-Bit Differential ADC with PGA in Burst Accumulation Mode: www.microchip.com/DS90003254

 TB3256
Relevant Documents

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 4

https://www.microchip.com/wwwproducts/en/ATtiny1624
https://www.microchip.com/wwwproducts/en/ATtiny1626
https://www.microchip.com/wwwproducts/en/ATtiny1627
https://www.microchip.com/DS90003257
https://www.microchip.com/DS90003257
https://www.microchip.com/DS90003254

2. Configuration

2.1 Single Mode 8-Bit and 12-Bit Configuration
There are two available Single modes: Single 8-bit mode and Single 12-bit mode. The two modes can be selected by
writing the MODE bits in the ADCn.COMMAND register. Below are code examples showing the configuration of the
Single modes.
/* 8-bit */
ADC0.COMMAND = ADC_MODE_SINGLE_8BIT_gc;
/* 12-bit */
ADC0.COMMAND = ADC_MODE_SINGLE_12BIT_gc;

2.2 References
• External Reference
• Internal Reference

– 1.024V
– 2.048V
– 2.500V
– 4.096V
– VDD

The reference voltage for the ADC (VREF) controls the conversion range of the ADC. External reference and five
internal references are available.

ADC0.CTRLC = ADC_REFSEL_1024MV_gc; /* Reference selection 1.024V */

Except for VDD, the internal reference voltages are generated from an internal band gap reference. VDD must be at
least 0.5V higher than the selected band gap reference voltage.

Changing the reference while a conversion is ongoing will corrupt the output. To safely change input or reference
when using Free-Running mode, disable Free-Running mode and wait for the conversion to complete before doing
any changes. Enable Free-Running mode before starting the next conversion.

ADC0.CTRLF &= ~ADC_FREERUN_bm; /* Disable Free-Running */
while(!(ADC0.INTFLAGS & ADC_SAMPRDY_bm)); /* Wait until conversion done */
ADC0.CTRLC = ADC_REFSEL_VDD_gc; /* Configure VDD as reference */
ADC0.CTRLF |= ADC_FREERUN_bm; /* Enable Free-Running */

2.3 Single-Ended and Differential Modes
In Single-Ended mode, the ADC reads the voltage of a single selectable input source, while in Differential mode, the
ADC reads the voltage difference between two input sources.

The Differential mode is configured by writing ‘1’ to the DIFF bit as shown below.

/* Differential Mode Configuration */
ADC0.COMMAND |= ADC_DIFF_bm;

The Single-Ended mode is configured by writing ‘0’ to DIFF bit as shown below.

/* Single-Ended Mode Configuration */
ADC0.COMMAND &= ~ADC_DIFF_bm;

 TB3256
Configuration

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 5

2.4 Programmable Gain Amplifier
The Programmable Gain Amplifier (PGA) can be used to amplify the input signal to the ADC. The available range is
from 1x to 16x gain. The PGA is enabled by writing a ‘1’ to the PGA Enable (PGAEN) bit and configuring the GAIN bit
field in the PGA Control (ADCn.PGACTRL) register.

ADC0.PGACTRL |= ADC_GAIN_16X_gc | ADC_PGAEN_bm; /* Enable the PGA with 16x gain */

Note:  PGA Control is one of few AVR registers with a nonzero reset value. This must be taken into account if only
configuring parts of the register.

When PGA is enabled, the configuration of the VIA bit fields in the Positive and Negative Multiplexer
(ADCn.MUXPOS and ADCn.MUXNEG) registers is required. The VIA bits are shared, so a value written to the VIA
bit field in MUXPOS or MUXNEG is updated in both registers. It is, therefore, not possible to have one input using the
PGA and the other not using the PGA.

ADC0.MUXPOS |= ADC_VIA_gm; /* Enable VIA */

2.5 Interrupts
The ADC features three separate interrupt vectors. When one of the interrupt conditions occurs, an interrupt flag is
set, and the CPU is notified and pointed to the corresponding Interrupt Service Routine (ISR). The following table
shows the available interrupt vectors for the ADC.

Table 2-1. Available Interrupt Vectors and Sources

Name Vector Description Interrupt Flag Conditions

ERROR Error interrupt

TRIGOVR A new conversion is triggered while one is ongoing

SAMPOVR A new conversion overwrites an unread sample in
ADCn.SAMPLE

RESOVR A new conversion or accumulation overwrites an unread
result in ADCn.RESULT

SAMPRDY Sample Ready interrupt
SAMPRDY The sample is available in ADCn.SAMPLE

WCMP As defined by WINSRC and WINCM in ADCn.CTRLD

RESRDY Result Ready interrupt
RESRDY The result is available in ADCn.RESULT

WCMP As defined by WINSRC and WINCM in ADCn.CTRLD

An interrupt source is enabled or disabled by writing to the corresponding bit in the Interrupt Control
(ADCn.INTCTRL) register as shown in the code snippet below.

ADC0.INTCTRL = ADC_RESRDY_bm; /* Enable Result Ready interrupt */

The interrupt flag is cleared by writing a '1' to the bit position in the Interrupt Flags (ADCn.INTFLAGS) register as
shown in the code snippet below.

ADC0.INTFLAGS = ADC_RESRDY_bm; /* Clear Result Ready interrupt flag */

Interrupt flags SAMPRDY and RESRDY can also be cleared by reading respectively the ADCn.SAMPLE and
ADCn.RESULT registers.

 TB3256
Configuration

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 6

2.6 Window Comparator
The ADC can raise the Window Comparator Interrupt (WCMP) flag in the Interrupt Flags (ADCn.INTFLAGS) register
and request an interrupt (WCMP) when the output of a conversion or accumulation is above and/or below certain
thresholds. The available modes are:

• ABOVE – The value is above a threshold
• BELOW – The value is below a threshold
• INSIDE – The value is inside a window (above the lower threshold and below the upper threshold)
• OUTSIDE – The value is outside a window (below the lower threshold or above the upper threshold)

The thresholds are set by writing to the Window Comparator Low and High Threshold (ADCn.WINLT and
ADCn.WINHT) registers. The Window mode to use is selected by the Window Comparator Mode (WINCM) bit field in
the Control D (ADCn.CTRLD) register.

The Window Mode Source (WINSRC) bit in the Control D (ADCn.CTRLD) register selects if the comparison is done
on the 16 LSb of the Result (ADCn.RESULT) register or the Sample (ADCn.SAMPLE) register. If an interrupt request
is enabled for the WCMP flag, WINSRC selects which interrupt vector to request, RESRDY or SAMPRDY.

When accumulating multiple samples, if the Window Comparator source is the Result register, the comparison
between the result and the threshold(s) will happen after the last conversion is complete. If the source is the Sample
register, the comparison will happen after every conversion.

The following code shows how to configure the thresholds of the window comparator, and how to configure the
INSIDE mode comparing against the Result register.

ADC0.WINHT = 200; /* Window High Threshold */
ADC0.WINLT = 100; /* Window Low Threshold */
ADC0.CTRLD |= ADC_WINCM_INSIDE_gc | ADC_WINSRC_RESULT_gc; /* Result as Window Comparator
source*/

2.6.1 Code Example
The code example below shows an application example where an ADC reading of below 2000 or above 3000 is
considered an invalid signal spike. The window comparator is used to filter these out by only triggering a SAMPRDY
interrupt when the signal is within the thresholds. The voltage of the signal is calculated in the SAMPRDY Interrupt
Service Routine (ISR).

#define F_CPU 3333333ul

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <math.h>

#define TIMEBASE_VALUE ((uint8_t) ceil(F_CPU*0.000001))
#define ADC_MAX_VALUE ((1 << 12) - 1) /* In single-ended mode, the max value is 4095 */

/* Volatile variables to improve debug experience */
static volatile uint16_t adc_reading;
static volatile float voltage;

/**
ADC initialization
**/
void adc_init()
{
 ADC0.CTRLA = ADC_ENABLE_bm;
 ADC0.CTRLB = ADC_PRESC_DIV2_gc; /* fCLK_ADC = 3.333333/2 MHz */
 ADC0.CTRLC = ADC_REFSEL_VDD_gc | (TIMEBASE_VALUE << ADC_TIMEBASE_gp);
 ADC0.CTRLE = 17; /* (SAMPDUR + 0.5) * fCLK_ADC = 10.5 µs sample duration */

 ADC0.MUXPOS = ADC_MUXPOS_AIN6_gc; /* ADC channel AIN6 -> PA6 */

 ADC0.WINHT = 3000; /* Window High Threshold */
 ADC0.WINLT = 2000; /* Window Low Threshold */
 /* Window Comparator mode: Inside. Use SAMPLE register as Window Comparator source */
 ADC0.CTRLD = ADC_WINCM_INSIDE_gc | ADC_WINSRC_SAMPLE_gc;

 TB3256
Configuration

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 7

 ADC0.INTCTRL = ADC_WCMP_bm; /* Enable window compare interrupt */

 ADC0.COMMAND = ADC_MODE_SINGLE_12BIT_gc; /* Single 12-bit mode */
}

/***
Window Compare interrupt:
In this example, when a sample is outside a certain window, this is considered an
invalid signal spike. The Window Compare interrupt only triggers when the signal
is detected to be inside the window. That way the spikes are disregarded.
***/
ISR(ADC0_SAMPRDY_vect)
{
 ADC0.INTFLAGS = ADC_WCMP_bm; /* Clear WCMP flag */

 adc_reading = ADC0.SAMPLE; /* Read ADC sample */
 /* Calculate voltage on ADC pin, VDD = 3.3V, 12-bit resolution */
 voltage = (float)(adc_reading * 3.3) / ADC_MAX_VALUE;
}

int main(void)
{
 adc_init();
 sei(); /* Enable global interrupts */

 while(1)
 {
 /* Start a conversion once every 1 ms */
 ADC0.COMMAND |= ADC_START_IMMEDIATE_gc;
 _delay_ms(1);
 }
}

2.7 Events
The ADC can be connected to the event system. The event system lets peripherals communicate without CPU
intervention, enabling the CPU to perform other tasks or stay in a sleep mode. The ADC can be connected either as
an event generator, providing signals to another peripheral, or an event user, performing tasks based on the signals
from another peripheral.

The following table shows the different available event generators from the ADC.

Table 2-2. ADC Event Generators

Generator Name Description Event Type Generating
Clock Domain

Length of Event

Peripheral Event

ADCn RESRDY Result ready Pulse CLK_PER One CLK_PER
period

ADCn SAMPRDY Sample ready Pulse CLK_PER One CLK_PER
period

ADCn WCMP Window compare
match

Pulse CLK_PER One CLK_PER
period

Below is a code snippet showing the configuration of event generator ADC0_RESRDY connected through event
channel 1 to the EVOUT event user, which in this case outputs the event to PB2.

• Event Generator: ADC0 RESRDY
• Event USER: EVOUT (PB2)

EVSYS.CHANNEL1 = EVSYS_CHANNEL1_ADC0_RES_gc; /* ADC Result Ready */
EVSYS.USEREVSYSEVOUTB = EVSYS_USER_CHANNEL1_gc; /* Asynchronous Event Channel 1 */

The ADC has one event user for detecting and acting upon input events. The table below describes the event user
and the associated functionality.

 TB3256
Configuration

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 8

Table 2-3. ADC Event Users and Available Event Actions

User Name Description Input Detection Async/Sync

Peripheral Event

ADCn START ADC start on event Edge Async

The START event action can be triggered if the EVENT_TRIGGER setting is written to the START bit field in the
Command (ADCn.COMMAND) register as shown in the code snippet below.

ADC0.COMMAND = ADC_START_EVENT_TRIGGER_gc;

Below is a code snippet showing the configuration of ADC0_START as an event user, reacting to RTC overflow.
EVSYS.CHANNEL0 = EVSYS_CHANNEL0_RTC_OVF_gc; /* Real Time Counter overflow */
EVSYS.USERADC0START = EVSYS_USER_CHANNEL0_gc; /* Asynchronous Event Channel 0 */

2.7.1 Code Example
Below is a code example showing the configuration of the ADC as an event generator and an event user:

• Event user: ADC conversion triggered by RTC overflow event
– RTC is configured to generate an RTC overflow event at the desired ADC sampling rate. The sampling rate

in the example is 100 Hz.
– ADC conversion is triggered at a rate of 100 Hz and the result is read when the Result Ready (RESRDY)

bit in the Interrupt Flags (ADCn.INTFLAGS) register is set.

• Event generator: Pin PB2 outputs an event (Pulse) when the ADC result is ready

#define F_CPU 3333333ul

#include <avr/io.h>
#include <math.h>

#define TIMEBASE_VALUE ((uint8_t) ceil(F_CPU*0.000001))
#define ADC_MAX_VALUE (((1 << 12) / 2) - 1) /* In differential mode, the max value is
2047 */

/* Defines to easily configure RTC event frequency */
#define ADC_SAMPLING_FREQ 100 /* Hz */
#define RTC_CLOCK 32768 /* Hz */
#define RTC_PERIOD (RTC_CLOCK / ADC_SAMPLING_FREQ)

/* Volatile variables to improve debug experience */
static volatile int32_t adc_reading;
static volatile float voltage;

/**
EVSYS initialization:
Channel 0:
 Event system generator: RTC Overflow
 Event system user: ADC0
Channel 1:
 Event system generator: ADC0 Result Ready
 Event system user: EVOUTB (PIN PB2)
***/
void event_system_init(void)
{
 PORTB.DIRSET = PIN2_bm; /* Configure EVOUTB to output */

 EVSYS.CHANNEL0 = EVSYS_CHANNEL0_RTC_OVF_gc; /* RTC Overflow -> Channel 0 */
 EVSYS.USERADC0START = EVSYS_USER_CHANNEL0_gc; /* Channel 0 -> ADC0 Start */

 EVSYS.CHANNEL1 = EVSYS_CHANNEL1_ADC0_RES_gc; /* ADC RESRDY -> Channel 1 */
 EVSYS.USEREVSYSEVOUTB = EVSYS_USER_CHANNEL1_gc; /* Channel 1 -> EVOUTB (PB2) */
}

/***
RTC initialization
**/

 TB3256
Configuration

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 9

void rtc_init(void)
{
 while(RTC.STATUS > 0); /* Wait for all registers to be synchronized */
 RTC.CTRLA = RTC_PRESCALER_DIV1_gc | RTC_RTCEN_bm; /* Enable RTC, no prescaler */
 RTC.CLKSEL = RTC_CLKSEL_INT32K_gc; /* Select 32.768 kHz internal RC oscillator */
 RTC.PER = RTC_PERIOD;
 while(RTC.STATUS > 0); /* Wait for all registers to be synchronized */
}

/**
ADC initialization
**/
void adc_init()
{
 ADC0.CTRLA = ADC_ENABLE_bm;
 ADC0.CTRLB = ADC_PRESC_DIV2_gc; /* fCLK_ADC = 3.333333/2 MHz */
 ADC0.CTRLC = ADC_REFSEL_VDD_gc | (TIMEBASE_VALUE << ADC_TIMEBASE_gp);
 ADC0.CTRLE = 17; /* (SAMPDUR + 0.5) * fCLK_ADC = 10.5 µs sample duration */

 ADC0.MUXPOS = ADC_MUXPOS_AIN6_gc; /* ADC channel AIN6 -> PA6 */
 ADC0.MUXNEG = ADC_MUXNEG_AIN7_gc; /* ADC channel AIN7 -> PA7 */
 /* Start ADC conversion on event trigger */
 ADC0.COMMAND = ADC_DIFF_bm | ADC_MODE_SINGLE_12BIT_gc | ADC_START_EVENT_TRIGGER_gc;
}

int main(void)
{
 event_system_init();
 rtc_init();
 adc_init();

 while(1)
 {
 if(ADC0.INTFLAGS & ADC_RESRDY_bm) /* Check if ADC sample is ready */
 {
 adc_reading = ADC0.RESULT; /* Read ADC result, clears the interrupt flag */
 /* Calculate voltage on ADC pin, VDD = 3.3V, 12-bit resolution */
 voltage = (float)((adc_reading * 3.3) / ADC_MAX_VALUE);
 }
 }
}

 TB3256
Configuration

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 10

3. Input Circuitry

3.1 Input Impedance
When a voltage level imposed on a pin is sampled, it is first captured by the Sample-and-Hold capacitor (CIN). This
ensures that the voltage does not change while the ADC samples the signal.

Figure 3-1. Model of Internal Analog Input Circuit

AINn

IIH

RIN

CIN

 VDD/2

IIL

The time it takes to charge or discharge CIN to a certain voltage level is limited by the input resistance (RIN). The
following equation shows the proportional relation between the time constant τ and the input impedance.� = ��� × ���
Refer to the Electrical Characteristics section in the data sheet for details on the input characteristics of the ADC.

The 12-bit resolution of the ADC (and optional gain) requires the impulse response of the input circuit settled to more
than 99.9% of the final voltage to be certain the measurement will be correct. The following example calculations
without gain and with 16x gain show how settled a signal needs to be for the ADC to sample correctly at 12-bit
resolution.�MSb = �REF − �REF4096 × Gain�MSb % = 1 − 14096 × Gain × 100 %
�MSb %without gain = 1 − 14096 × 1 × 100 % = 99.975 %
�MSb %16x gain = 1 − 14096 × 16 × 100 % = 99.998 %
The impulse response for the input circuit is given by the following equation.� � = �IN × 1 − �−�/�
Solving the two examples for VMSb where VIN is 100%, the following settling times are obtained.�without gain = 8.29��16x gain = 10.81�
The impedance of the external signal should also be taken into consideration when calculating the settling time,
expanding the circuit into a more complex system as shown in the figure below.

 TB3256
Input Circuitry

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 11

Figure 3-2. Model of Analog Input Circuit with External Signal

AINn IIH

RIN

CIN

 VDD/2

IIL

REXT

CEXT

VEXT

Simplified External Input

The characteristics of the external impedance determine how complex the settling time calculation will be. However,
this is not covered by this technical brief.

3.1.1 PGA
The PGA is connected between the analog input pin and the ADC, with an input impedance depending on the
selected gain setting. Refer to the Electrical Characteristics section for details on the input characteristics of the PGA.
The equations above are the same for calculating the appropriate sample duration when using the PGA impedance
values.

When the PGA is used, it is continuously sampling and will only be in the Hold state when the ADC is sampling the
PGA. If the time between conversions is longer than the needed sampling time, this can be utilized to get a shorter
total conversion time by setting the SAMPDUR to the minimum supported value.

3.2 Sample Duration
A suitable ADC sample duration can either be calculated based on the impulse response of the circuit, as shown in
Section 3.1 Input Impedance, or found by tuning the sample duration in firmware until a stable output from the ADC
conversion is achieved.

The sample duration for this ADC can be a maximum of 256 ADC clock (CLK_ADC) cycles, and is configured using
the Sample Duration (SAMPDUR) bit field in the Control E (ADCn.CTRLE) register. The sample duration is
SAMPDUR + 0.5 (CLK_ADC) cycles when the PGA is disabled, and SAMPDUR + 1 (CLK_ADC) when the PGA is
enabled. If the input impedance is very high, increasing the ADC prescaler can also be used to further increase the
sample duration.

Minimum sample duration is configured as shown in the following code snippet. The calculations are based on the
CPU clock running at 16 MHz, with PGA disabled.
ADC0.CTRLB = ADC_PRESC_DIV2_gc; /* ADC clock: 8 MHz */
ADC0.CTRLE = 0; /* Sample Duration: (0 + 0.5) / 8 MHz = 0.06 µS */

Maximum sample duration is configured as shown in the following code snippet. The calculations are based on the
CPU clock running at 16 MHz, with PGA disabled.
ADC0.CTRLB = ADC_PRESC_DIV40_gc; /* ADC clock: 400 kHz */
ADC0.CTRLE = 255; /* Sample Duration: (255 + 0.5) / 400 kHz = 639 µS */

 TB3256
Input Circuitry

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 12

4. Power and Timing

4.1 Clock
The ADC clock (CLK_ADC) is scaled down from the peripheral clock (CLK_PER). This can be configured by the
Prescaler (PRESC) bit field in the CTRLB (ADCn.CTRLB) register.

ADC0.CTRLB = ADC_PRESC_DIV20_gc; /* CLK_ADC = CLK_PER/20 */

Some of the internal timings in the ADC and the PGA are independent of CLK_ADC. To ensure correct internal timing
regardless of the ADC clock frequency, a 1 μs timebase (given in CLK_PER cycles) must be written to the
TIMEBASE bit field in the Control C (ADCn.CTRLC) register. The timebase must be rounded up to the closest
integer. The following code snippet shows how this can be done using the ceil function.

#include <math.h>
#define F_CPU 3333333ul
#define TIMEBASE_VALUE ((uint8_t) ceil(F_CPU*0.000001))

ADC0.CTRLC = (TIMEBASE_VALUE << ADC_TIMEBASE_gp);

4.2 PGA Bias and Output Sample Duration
The PGA Bias Select (PGABIASSEL) bit field in the ADC PGA Control (ADCn.PGACTRL) register can be configured
to reduce the power consumption depending on the ADC clock frequency. The ADC PGA Sample Duration
(ADCPGASAMPDUR) bit field can be configured to reduce the number of CLK_ADC cycles the ADC is sampling the
output of the PGA. This is also dependent of the ADC clock frequency.

See the register description for these bit fields in the data sheet for recommended combinations of fCLK_ADC and
PGABIASSEL and ADCPGASAMPDUR.

An example configuration is shown below.
ADC0.PGACTRL = ADC_GAIN_16X_gc | /* 16x gain */
 ADC_PGABIASSEL_100PCT_gc | /* 100% bias current */
 ADC_ADCPGASAMPDUR_32CLK_gc | /* 32 cycles sampling of the PGA */
 ADC_PGAEN_bm; /* Enable the PGA */

Note:  PGA Control is one of few AVR registers with a nonzero reset value. This must be taken into account if only
configuring parts of the register.

4.3 Conversion Time
The total conversion time for a single result is calculated by:Total Conversion Time(12‐bit) = Initialization + SAMPDUR+15.5�CLK_ADCTotal Conversion Time(8‐bit) = Initialization + SAMPDUR+11.5�CLK_ADC
For example, given initialization = 60 μs, SAMPDUR = 2 and fCLk_ADC = 1 MHz, the 8-bit total conversion time is
given by:Total Conversion Time(8‐bit) = 60 µs + 2+11.51 MHz = 73.5 µs
With the Low Latency (LOWLAT) bit written to ‘1’ in the Control A (ADCn.CTRLE) register, the initialization time is
only needed once upon enabling the ADC. After that, the example above will give a total conversion time of 13.5 µs.

 TB3256
Power and Timing

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 13

The sampling period of the ADC is configured through the Sample Duration (SAMPDUR) bit field in the Control E
(ADCn.CTRLE) register as (SAMPDUR + ½) CLK_ADC cycles.
ADC0.CTRLE = 2; /* Sample duration configured to 2 */

If PGA is used, the input sample duration is (SAMPDUR + 1) CLK_ADC cycles, while the ADC PGA Sample Duration
(ADCPGASAMPDUR) bit field in the PGA Control (ADCn.PGACTRL) register controls how long the ADC samples
the PGA.
ADC0.PGACTRL = ADC_ADCPGASAMPDUR_15CLK_gc; /* 15 CLK_ADC cycles */

4.4 Free-Running Mode
In Free-Running mode, a new conversion is started as soon as the previous conversion has completed.

It is configured by writing the Free-Running (FREERUN) bit to ‘1’ in the Control F (ADCn.CTRLF) register as shown
in the code snippet below.

ADC0.CTRLF = ADC_FREERUN_bm; /* ADC Free-Running mode enabled */

A new conversion is started immediately after a result is available in the Result (ADCn.RESULT) register. This is
signaled by RESRDY in the Interrupt Flags (ADCn.INTFLAGS) register. The Free-Running conversion rate in Single
12-bit is given by:�conv = �CLK_ADCSAMPDUR+15.5
For example, given SAMPDUR = 2 and fCLK_ADC = 3.33 MHz, the conversion rate is 188.571 kHz.

The Free-Running conversion rate in single 8-bit is given by:�conv = �CLK_ADCSAMPDUR+11.5
For example, given SAMPDUR = 2 and fCLK_ADC = 3.33 MHz, the conversion rate is 246.666 kHz.

 TB3256
Power and Timing

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 14

5. Output Processing

5.1 Result Range
The output from an ADC conversion is given by the following equations:Single‐Ended 12‐bit conversion = �INP × Gain�REF × 4096 ∈ 0, 4095
Single‐Ended 8‐bit conversion = �INP × Gain�REF × 256 ∈ 0, 255
Differential 12‐bit conversion = �INP − �INN × Gain�REF × 2048 ∈ −2048, 2047
Differential 8‐bit conversion = �INP − �INN × Gain�REF × 128 ∈ −128, 127
VINP and VINN are the positive and negative inputs to the ADC and VREF is the selected voltage reference. The gain is
between 1x and 16x as configured in the PGA, and 1x if the PGA is not in use.

The ADC has two output registers, the Sample (ADCn.SAMPLE) and Result (ADCn.RESULT) registers. The 16-bit
Sample register will always be updated with the latest ADC conversion output (one sample). In Single conversion
mode, both the Sample (ADCn.SAMPLE) and Result (ADCn.RESULT) registers are identical.

With a Single-Ended 12-bit conversion, the voltage applied to the analog pin is calculated by:�INP = ADCn.SAMPLE × �REF4096 × Gain
5.2 Left Adjust

The Left Adjust (LEFTADJ) bit in the Control F (ADCn.CTRLF) register enables left-shift of the output data in the
modes where this is supported. If enabled, this will left-shift the output from both the Result and the Sample registers.
It is configured as shown in the following code snippet.

ADC0.CTRLF = ADC_LEFTADJ_bm; /* Enable Left Adjust bit */

Left adjust is available in ADC mode 1, Single Conversion 12-bit.

The following tables show how the left adjust feature affects the Result register output format in Single-Ended and
Differential modes.

Table 5-1. RESULT Register – Single-Ended Mode – ADC Mode 1 (Single conversion 12-bit)

LEFTADJ RES[31:24] RES[23:16] RES[15:12] RES[11:8] RES[7:0]

0 0x00 Conversion[11:0]

1 0x00 Conversion[11:0] << 4

Table 5-2. RESULT Register – Differential Mode – ADC Mode 1 (Single conversion 12-bit)

LEFTADJ RES[31:24] RES[23:16] RES[15:12] RES[11:8] RES[7:0]

0 Sign extension Signed conversion[11:0]

1 Sign extension Signed conversion[11:0] << 4

 TB3256
Output Processing

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 15

The following table shows how the left adjust feature affects the Sample register output format in Single-Ended and
Differential modes.

Table 5-3. SAMPLE Register – Single-Ended/Differential Mode – ADC Mode 1 (Single conversion 12-bit)

LEFTADJ DIFF SAMPLE[15:12] SAMPLE[11:8] SAMPLE[7:0]

0
0 0x00 Conversion[11:0]

1 Sign extension Signed conversion[11:0]

1
0 Conversion[11:0] << 4

1 Signed conversion[11:0] << 4

For example, if the Left Adjust feature is disabled and the ADCn.SAMPLE value is 0x0FFF, the corresponding
ADCn.SAMPLE value when Left Adjust is enabled is 0xFFF0.

5.3 Signed and Unsigned Output
The data format for a sample in Single-Ended mode is unsigned one’s complement, where 0x0000 represents zero
and 0x0FFF represents the largest number. If the analog input is higher than the reference level of the ADC, the 12-
bit ADC output will be equal to the maximum value of 0x0FFF. Likewise, if the input is below 0V, the ADC output will
be 0x0000.

For Differential mode, the data format is two's complement with sign extension.

Sample Register Output
The data type of the sample variable should be uint16_t when using Single-Ended mode.

The data type of the sample variable should be int16_t when using Differential mode.

For example, when using Single-Ended mode in 12-bit mode, the voltage of a single sample may be interpreted as
shown in the code snippet below.

uint16_t sample_variable = ADCn.SAMPLE;
float sample_voltage = (sample_variable * VREF) / 4095;

When using Differential mode in 12-bit mode, the voltage of a single sample may be interpreted as shown in the code
snippet below.

int16_t sample_variable = ADCn.SAMPLE;
float sample_voltage = (sample_variable * VREF) / 2047;

Result Register Output
The data type of the result variable should be uint32_t when using Single-Ended mode.

The data type of the result variable should be int32_t when using Differential mode.

For example, when using Single-Ended mode in 12-bit mode, the voltage of SAMPNUM accumulated samples may
be interpreted as shown in the code snippet below.

uint32_t result_variable = ADCn.SAMPLE;
float result_voltage = ((result_variable * VREF) / SAMPNUM) / 4095;

When using Differential mode in 12-bit mode, the voltage of SAMPNUM accumulated samples may be interpreted as
shown in the code snippet below.

int32_t result_variable = ADCn.SAMPLE;
float result_voltage = ((result_variable * VREF) / SAMPNUM) / 2047;

 TB3256
Output Processing

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 16

6. Measurements
In Single mode, upon receiving a conversion trigger, a single sampling result is available in the ADC Result
(ADCn.RESULT) register and Sample (ADCn.SAMPLE) register. When the result is ready, the RESRDY and
SAMPRDY bits in the Interrupt Flags (ADC.INTFLAGS) register are set.

In Single mode, the result in ADCn.RESULT and ADCn.SAMPLE is equal.

The code snippet below shows how to start the ADC conversion, wait until the conversion is done, and read the result
from the sample register.

ADC0.COMMAND |= ADC_START_IMMEDIATE_gc; /* Start ADC conversion */
while(!ADC0.INTFLAGS & ADC_SAMPRDY_bm); /* Wait until the conversion is done */
adc_result = ADC0.SAMPLE; /* Read sample */

Similarly, the code below shows the same as above, but this time reading the result register.

ADC0.COMMAND |= ADC_START_IMMEDIATE_gc; /* Start ADC conversion */
while(!ADC0.INTFLAGS & ADC_RESRDY_bm); /* Wait until the conversion is done */
adc_result = ADC0.RESULT; /* Read result */

6.1 Measuring VDD
The code snippet below shows how to initialize the ADC and how to use the VDD as an internal input to measure the
voltage which is powering the device. It also uses USART to transmit the results in such a manner that it may be
graphed by the Data Visualizer. See Section 7. Get Code Examples from GitHub for instructions on how to download
the code, and Section 6.1.1 Plotting Graph in Data Visualizer for instructions on how to set up the graph in Data
Visualizer.
#define F_CPU 3333333ul

#include <avr/io.h>
#include <util/delay.h>
#include <math.h>

#define TIMEBASE_VALUE ((uint8_t) ceil(F_CPU*0.000001))
#define ADC_MAX_VALUE ((1 << 12) - 1) /* In single-ended mode, the max value is 4095 */
#define BAUD_RATE 9600
#define BAUD_REG_VAL ((float)(64 * F_CPU / (16 * (float)BAUD_RATE)) + 0.5)

static uint16_t adc_reading;
static float voltage;

/**
ADC initialization
**/
void adc_init()
{
 ADC0.CTRLA = ADC_ENABLE_bm;
 ADC0.CTRLB = ADC_PRESC_DIV2_gc; /* fCLK_ADC = 3.333333/2 MHz */
 ADC0.CTRLC = ADC_REFSEL_1024MV_gc | (TIMEBASE_VALUE << ADC_TIMEBASE_gp);
 ADC0.CTRLE = 17; /* (SAMPDUR + 0.5) * fCLK_ADC = 10.5 µs sample duration */

 ADC0.MUXPOS = ADC_MUXPOS_VDDDIV10_gc; /* ADC channel VDD/10 */
 ADC0.COMMAND = ADC_MODE_SINGLE_12BIT_gc; /* Single 12-bit mode */
}

/**
USART initialization
**/
void usart_init()
{
 PORTB.DIRSET = PIN2_bm; /* Set TXD to output */
 USART0.CTRLB = USART_TXEN_bm; /* Enable USART transmitter */
 USART0.BAUD = BAUD_REG_VAL; /* Set baud rate */
}

/**

 TB3256
Measurements

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 17

Send float via USART to Data Visualizer
**/
void USART_send_DV(float *float_ptr)
{
 uint8_t *byte_ptr = (uint8_t *) float_ptr;

 while(!(USART0.STATUS & USART_DREIF_bm));
 USART0.TXDATAL = 0x33; /* Send data stream start byte */

 for(uint8_t i = 0; i < sizeof(float); i++)
 {
 while(!(USART0.STATUS & USART_DREIF_bm));
 USART0.TXDATAL = byte_ptr[i];
 }

 while(!(USART0.STATUS & USART_DREIF_bm));
 USART0.TXDATAL = ~0x33; /* Send data stream stop byte */
}

int main(void)
{
 adc_init();
 usart_init();

 while(1)
 {
 ADC0.COMMAND |= ADC_START_IMMEDIATE_gc; /* Start ADC conversion */
 while(!(ADC0.INTFLAGS & ADC_SAMPRDY_bm)); /* Wait until conversion is done */

 adc_reading = ADC0.SAMPLE; /* Read ADC sample, clears flag */
 /* Calculate VDD, VREF = 1.024V, 12-bit resolution.
 Multiplied by 10 because the input channel is VDD/10. */
 voltage = (float)(adc_reading * 1.024 * 10) / ADC_MAX_VALUE;

 USART_send_DV(&voltage); /* Transmit voltage to Data Visualizer */

 _delay_ms(500);
 }
}

6.1.1 Plotting Graph in Data Visualizer
The following instructions show how to plot USART data in Data Visualizer by using the Data Stream protocol.
Note:  For detailed information on Data Visualizer, refer to the Data Visualizer User's Guide.

1. Open Data Visualizer.
2. Open Configuration > External Connection > Serial Port in Data Visualizer.
3. Select the Curiosity Virtual COM port, Baud rate:

9600

and then select Connect.
4. Open Configuration > Protocols > Data Streamer
5. In Data Stream Control Panel, under Configuration, browse to the configuration file and then select Load.

Note:  In this case, the configuration file is
single_measuring_VDD/single_VDD_voltage.txt
and can be found in the example source code project folder.

Note:  For more details on the Data Stream Protocol, refer to Data Visualizer User's Guide, Data Stream
Protocol section.

1. Open Configuration > Visualization > Graph.
2. Drag the connections as shown with red arrows in the figure below to plot the graph.

 TB3256
Measurements

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 18

https://onlinedocs.microchip.com/pr/GUID-F897CF19-8EAC-457A-BE11-86BDAC9B59CF-en-US-10/index.html
https://onlinedocs.microchip.com/pr/GUID-F897CF19-8EAC-457A-BE11-86BDAC9B59CF-en-US-10/index.html?GUID-A6CB54F0-041D-4B12-A3E1-97602C36ED7B
https://onlinedocs.microchip.com/pr/GUID-F897CF19-8EAC-457A-BE11-86BDAC9B59CF-en-US-10/index.html?GUID-A6CB54F0-041D-4B12-A3E1-97602C36ED7B

Figure 6-1. Data Stream Graph in Data Visualizer

To adjust the Y-axis in the graph, follow the steps below:

1. Under Configuration in Graph, deselect Automatically Fit Y.
2. Click somewhere inside the plot area.
3. Scroll the mouse-wheel while pressing or holding the Ctrl key.

To adjust the X-axis in the graph, follow the steps below:

1. Click somewhere inside the plot area.
2. Scroll the mouse-wheel while pressing or holding the Shift key.

Note:  For more details on Data Visualizer > Graph, refer to the Data Visualizer User's Guide, Graph section.

6.2 Measuring Temperature
The code snippet below shows how to measure temperature using the internal temperature sensor.
#define F_CPU 3333333ul

#include <avr/io.h>
#include <math.h>
#include <util/delay.h>

 TB3256
Measurements

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 19

https://onlinedocs.microchip.com/pr/GUID-F897CF19-8EAC-457A-BE11-86BDAC9B59CF-en-US-10/index.html?GUID-BB6AED57-EDCB-46A7-BA17-C5AE02B6F722

#define TIMEBASE_VALUE ((uint8_t) ceil(F_CPU*0.000001))
#define TEMPSENSE_SAMPDUR ((uint8_t) ceil(F_CPU*0.000032/2)) /* SAMPDUR for TEMPSENSE must be
>= 32 µs * f_ADC ~= 32 µs * 1.67 MHz ~= 54 */

/* Volatile variables to improve debug experience */
static volatile uint16_t adc_reading;
static volatile uint16_t temperature_in_K;
static volatile int16_t temperature_in_degC;

/***
ADC initialization
**/
void adc_init()
{
 ADC0.CTRLA = ADC_ENABLE_bm;
 ADC0.CTRLB = ADC_PRESC_DIV2_gc; /* fCLK_ADC = 3.333333/2 MHz */
 ADC0.CTRLC = ADC_REFSEL_1024MV_gc | (TIMEBASE_VALUE << ADC_TIMEBASE_gp);
 ADC0.CTRLE = TEMPSENSE_SAMPDUR;

 ADC0.MUXPOS = ADC_MUXPOS_TEMPSENSE_gc; /* ADC Internal Temperature Sensor */
 ADC0.COMMAND = ADC_MODE_SINGLE_12BIT_gc; /* Single 12-bit mode */
}

int main(void)
{
 adc_init();

 int8_t sigrow_offset = SIGROW.TEMPSENSE1; /* Read signed offset from signature row */
 uint8_t sigrow_gain = SIGROW.TEMPSENSE0; /* Read unsigned gain/slope from signature
row */

 while(1)
 {
 ADC0.COMMAND |= ADC_START_IMMEDIATE_gc; /* Start ADC conversion */
 while(!(ADC0.INTFLAGS & ADC_RESRDY_bm)); /* Wait until conversion is done */

 /* Calibration compensation as explained in the data sheet */
 adc_reading = ADC0.RESULT >> 2; /* 10-bit MSb of ADC result with 1.024V internal
reference */
 uint32_t temp = adc_reading - sigrow_offset;
 temp *= sigrow_gain; /* Result might overflow 16-bit variable (10-bit + 8-bit) */
 temp += 0x80; /* Add 256/2 to get correct integer rounding on division below */
 temp >>= 8; /* Divide result by 256 to get processed temperature in Kelvin */
 temperature_in_K = temp;
 temperature_in_degC = temperature_in_K - 273;

 _delay_ms(500);
 }
}

 TB3256
Measurements

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 20

7. Get Code Examples from GitHub
The code examples are available through GitHub, which is a web-based server that provides the application codes
through a Graphical User Interface (GUI). The code examples can be opened in both Atmel Studio and MPLAB X. To
open the Atmel Studio project in MPLAB X, select from the menu in MPLAB X, File > Import > Atmel Studio Project
and navigate to .cproj file.

The GitHub webpage: GitHub.

Code Examples

Finding example code for devices in the tinyAVR 2 family can be done by searching for the device name, e.g.
ATtiny1627, in the GitHub example browser.

View Code Examples on GitHub
Click to browse repositories

Download the code as a .zip file from the example page on GitHub by clicking the Clone or download button.

 TB3256
Get Code Examples from GitHub

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 21

https://github.com/
https://github.com/search?q=attiny1627+user:microchiptech+user:microchip-pic-avr-examples&type=Repositories

8. Revision History
Revision Date Description

A 07/2020 Initial document release

 TB3256
Revision History

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 22

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

 TB3256

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 23

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6463-1

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 TB3256

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 24

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. Technical Brief DS90003256A-page 25

http://www.microchip.com/support
http://www.microchip.com

	Features
	Introduction
	Table of Contents
	1. Relevant Documents
	2. Configuration
	2.1. Single Mode 8-Bit and 12-Bit Configuration
	2.2. References
	2.3. Single-Ended and Differential Modes
	2.4. Programmable Gain Amplifier
	2.5. Interrupts
	2.6. Window Comparator
	2.6.1. Code Example

	2.7. Events
	2.7.1. Code Example

	3. Input Circuitry
	3.1. Input Impedance
	3.1.1. PGA

	3.2. Sample Duration

	4. Power and Timing
	4.1. Clock
	4.2. PGA Bias and Output Sample Duration
	4.3. Conversion Time
	4.4. Free-Running Mode

	5. Output Processing
	5.1. Result Range
	5.2. Left Adjust
	5.3. Signed and Unsigned Output

	6. Measurements
	6.1. Measuring VDD
	6.1.1. Plotting Graph in Data Visualizer

	6.2. Measuring Temperature

	7. Get Code Examples from GitHub
	8. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

