

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION. INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microeperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-3369-9

Table of Contents

Preface .		5
	Introduction	
	Document Layout	5
	Conventions Used in this Guide	
	Recommended Reading	
	The Microchip Website	
	Product Change Notification Service	
	•	
	Customer Support	
	Document Revision History	<i>(</i>
Chapter 1	I. Product Overview	
	1.1 Introduction	
	1.2 MIC2253 Device Overview	
	1.3 MIC2253 Evaluation Board Overview	
	1.4 MIC2253 Evaluation Board Kit Contents	1C
Chapter 2	2. Installation and Operation	
	2.1 Introduction	11
	2.2 MIC2253 Device Features	12
	2.3 MIC2253 Evaluation Board Description	
	2.3.1 Soft Start Time Capacitor (C2)	
	2.3.3 Overvoltage Protection (OVP)	
	2.3.4 Output Noise and Ripple Measurements	
	2.3.5 Board Layout Considerations	
	2.4 Powering up the MIC2253 Evaluation Board	14
Appendix	A. Schematic and Layouts	
• •	A.1 Introduction	15
	A.2 Board – Schematic	16
	A.3 Board – Top Silk	17
	A.4 Board – Top Copper and Silk	17
	A.5 Board – Top Copper	18
	A.6 Board – Bottom Copper	18
	A.7 Board – Bottom Copper and Silk	19
	A.8 Board – Bottom Silk	19
Appendix	B. Bill of Materials (BOM)	
	B.1 Introduction	21
Worldwid	le Sales and Service	23

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our website (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXXXXA", where "XXXXXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE online help. Select the Help menu, and then Topics, to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MIC2253 Evaluation Board. Items discussed in this chapter include:

- Document Layout
- · Conventions Used in this Guide
- · Recommended Reading
- The Microchip Website
- Customer Support
- · Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MIC2253 Evaluation Board as a development tool to emulate and debug firmware on a target board. The manual layout is as follows:

- Chapter 1. "Product Overview" provides important information about the MIC2253 Evaluation Board.
- Chapter 2. "Installation and Operation" includes instructions on powering up the MIC2253 Evaluation Board.
- Appendix A. "Schematic and Layouts" shows the schematic and layout diagrams for the MIC2253 Evaluation Board.
- Appendix B. "Bill of Materials (BOM)" lists the parts used to build the MIC2253 Evaluation Board.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples
Arial font:		
Italic characters	Referenced books	MPLAB [®] IDE User's Guide
	Emphasized text	is the only compiler
Initial caps	A window	the Output window
	A dialog	the Settings dialog
	A menu selection	select Enable Programmer
Quotes	A field name in a window or dialog	"Save project before build"
Underlined, italic text with right angle bracket	A menu path	File>Save
Bold characters	A dialog button	Click OK
	A tab	Click the Power tab
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>
Courier New font:		
Plain Courier New	Sample source code	#define START
	Filenames	autoexec.bat
	File paths	c:\mcc18\h
	Keywords	_asm, _endasm, static
	Command-line options	-Opa+, -Opa-
	Bit values	0, 1
	Constants	0xFF, 'A'
Italic Courier New	A variable argument	file.o, where file can be any valid filename
Square brackets []	Optional arguments	mcc18 [options] file [options]
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>
	Represents code supplied by user	<pre>void main (void) { }</pre>

RECOMMENDED READING

This user's guide describes how to use the MIC2253 Evaluation Board. Other useful document is listed below. The following Microchip document is available and recommended as a supplemental reference resource:

MIC2253 Data Sheet – "3.5A 1 MHz High Efficiency Boost Regulator with OVP and Softstart"

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

PRODUCT CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notifications whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com, click on **Product Change Notification** and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support.

DOCUMENT REVISION HISTORY

Revision A (August 2018)

· Initial release of this document.

MIC2253 Evaluation Board User's Guide					
NOTES:					

Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the MIC2253 Evaluation Board and covers the following topics:

- MIC2253 Device Overview
- MIC2253 Evaluation Board Overview
- MIC2253 Evaluation Board Kit Contents

1.2 MIC2253 DEVICE OVERVIEW

The MIC2253 device is a high-power density, 1 MHz Pulse-Width Modulation (PWM) DC/DC boost regulator. The 3.5A switch current minimum limit, combined with a 1 MHz switching frequency, enables the MIC2253 device to use smaller inductors and deliver high power in a very small solution size.

The 2.5V to 10V input voltage range of the MIC2253 device enables direct operation from 1-cell and 2-cell Li-lon or 3-cell to 4-cell NiCd, NiMH or Alkaline batteries. Maximum battery life is assured with a low 0.1 mA shutdown current.

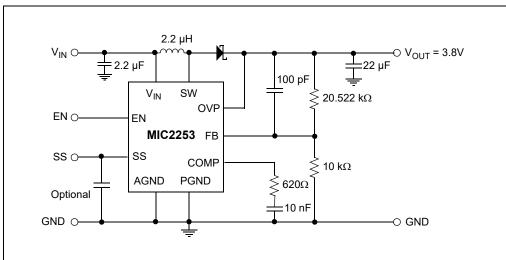


FIGURE 1-1: MIC2253 Typical Application.

1.3 MIC2253 EVALUATION BOARD OVERVIEW

The MIC2253 Evaluation Board is developed to evaluate the capabilities of the MIC2253 device. The board is populated with the MIC2253-06YML-TR device and the output voltage is set to 5V.

The MIC2253 Evaluation Board features an independent Enable connector. To disable the regulator, the enable jumper (JP2) must be removed from header. The MIC2253 Evaluation Board features an 100 k Ω pull-down resistor. It is not recommended to leave the Enable (EN) pin floating; therefore, the default value is OFF when the board is powered up.

The MIC2253 devices have an external soft start pin control, which is dependent on the capacitor (C2) value. The default soft start capacitor value of the MIC2253 Evaluation Board is set to 100 nF. An oscilloscope can be used to detect and measure the Soft Start capacitor voltage or ramp by connecting the probe between the J3 test point and ground.

1.4 MIC2253 EVALUATION BOARD KIT CONTENTS

The MIC2253 Evaluation Board kit contains the following items:

- MIC2253 Evaluation Board (ADM00891)
- Important Information Sheet

Chapter 2. Installation and Operation

2.1 INTRODUCTION

The MIC2253 device is a nonsynchronous, fixed frequency step-up DC/DC converter which has been developed for applications that require high output voltage.

The MIC2253 device can regulate the output up to 30V and can deliver up to 250 mA load. At light loads, the MIC2253 device uses the low-power switching mode (see Figure 2-1) instead of the PWM mode (see Figure 2-2) to reduce the input power consumption.

The MIC2253 Evaluation Board can be powered from 2.5V to 4.5V to obtain 5V output.

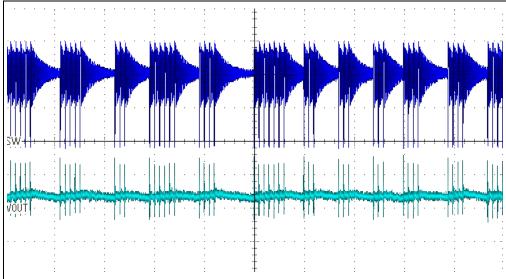


FIGURE 2-1: Waveform in Low-Power Switching Mode.

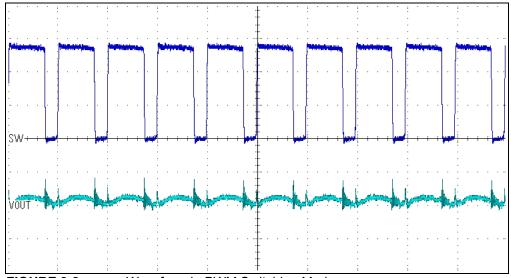


FIGURE 2-2: Waveform in PWM Switching Mode.

2.2 MIC2253 DEVICE FEATURES

The MIC2253 device includes the following key features:

- 2.5V to 10V Input Voltage Range
- · Fixed 1 MHz Operation
- 1.245V ±3% Feedback Voltage
- Output Voltage up to 30V (Maximum)
- · Externally Programmable Soft Start
- Fixed 1 MHz Operation
- <1% Line Regulation
- 0.1 mA Shutdown Current
- · Overtemperature Protection
- Undervoltage Lockout (UVLO)
- -40°C to +125°C Junction Temperature Range

2.3 MIC2253 EVALUATION BOARD DESCRIPTION

2.3.1 Soft Start Time Capacitor (C2)

The MIC2253 device has a programmable soft start time, which is determined by both the C_{SS} capacitor and the compensation capacitor values. As the C_{COMP} has a fixed value for stable operation (typically 10 nF), the C_{SS} capacitor must be used instead, if any increases in the soft start time are desired. The approximate total start-up time is calculated in Equation 2-1.

EQUATION 2-1:

$$T_{SS} = 1ms + 85k \times C_{SS}$$

2.3.2 Feedback Resistors

The Feedback pin (FB) provides the control path to the control output. The FB pin is used to compare the output to an internal reference. Output voltages are adjusted by selecting the appropriate feedback network values. The desired output voltage can be calculated as shown in Equation 2-2.

EQUATION 2-2:

$$V_{OUT} = V_{REF} \left(\frac{R1}{R2} + 1 \right)$$

Where:

 $V_{REF} = 1.245V$

2.3.3 Overvoltage Protection (OVP)

The MIC2253 device provides a fixed 5.6V overvoltage protection (OVP). The overvoltage functionality clamps the sensed voltage on the OVP pin to a safe level (5.6V) when a fault condition causes the output voltage to increase beyond control or if the OVP pin exceeds 5.6V. To ensure the highest level of protection, the MIC2253 OVP pin shuts the switch off and regulates to the OVP set point when an overvoltage condition is detected. The OVP set point must be set below the rating of the output capacitor to ensure protection. Two external resistors can be used to change the OVP from the range 5.7V to 30V. Careful consideration must be given as not to exceed the 30V rating of the switch. The OVP feature may be disabled by grounding the OVP pin.

The OVP pin is internally connected to a reference voltage through a voltage divider circuit. For a 5.6V OVP setting, directly connect the OVP pin to the output voltage with a 0Ω resistor at R3. To increase the OVP voltage above 5.6V, replace the R3 and R6 resistor values on the MIC2253 Evaluation Board with the calculated values as shown in Equation 2-3.

EQUATION 2-3:

$$V_{OVP} = 1.245 \times \frac{67kx(R3 + R6)}{(15k \times R6)}$$

TABLE 2-1: OVP EXAMPLE RESISTOR TABLE

17.5222 11 OV 27.001 12 17.2010 10 17.7522					
V _{OVP} (V)	R3 (k Ω)	R6 (k Ω)			
8	13.0	30.1			
10	23.7	30.1			
12	34.8	30.1			
15	51.1	30.1			
18	66.5	30.1			
20	78.7	30.1			
25	105.0	30.1			
30	130.0	30.1			

2.3.4 Output Noise and Ripple Measurements

To accurately measure the voltage ripple on either the input or the output of any regulator with a switching regulator nearby, a proper ground spring is required. Standard oscilloscope probes come with a grounding clip or with a long wire with an alligator clip. Careful consideration must be given to the high-frequency measurements as this ground clip can pick up high-frequency noise and erroneously inject it into the measured output ripple.

2.3.5 Board Layout Considerations

It is recommended that the switching trace (from the switching node) is kept as short as possible to decrease the noise generated by the MIC2253 device and improve performance.

It is also recommended that a copper plane is immediately placed under the MIC2253 device and it must be connected to the GND copper plane using a path under the device. As the MIC2253 device has an exposed pad, this copper plane helps conduct the heat away from the device and improves thermal performance. Moreover, doing this also helps shield the device and improve output ripple performance.

2.4 POWERING UP THE MIC2253 EVALUATION BOARD

To power-up the MIC2253 Evaluation Board, complete the following steps:

- Connect an external supply between the V_{IN} and the GND terminals. The polarity must be taken into consideration.
- 2. Disable the output of the power supply, then set its value to the desired input test voltage (2.5V \leq V_{IN} \leq 4.5V). An ammeter may be placed between the input supply and the V_{IN} terminals. Ensure to monitor the supply voltage at the V_{IN} terminal as the ammeter or the power lead resistance, or both can reduce the voltage supplied to the device.
- Connect a load to the V_{OUT} and the GND terminals. The load can be either passive (resistive) or active (electronic load). An ammeter may be placed between the load and the output terminals.
- 4. The MIC2253 Evaluation Board has a pull-down resistor from the Enable (EN) pin to GND. By default, the MIC2253 device is disabled. By placing a jumper at JP2, the EN pin is tied to V_{IN} and the board is enabled when the input supply of >2.5V is applied. To enable the device, it is necessary to apply a voltage higher than 1.5V on the EN pin. To put in shutdown, apply less than 0.4V on the EN pin.

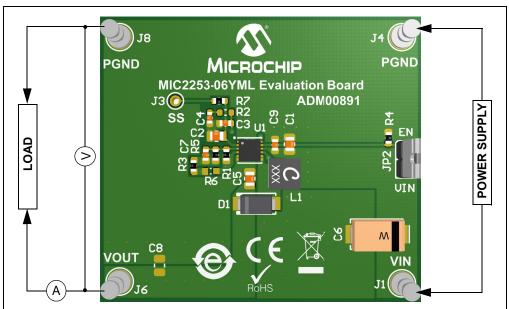
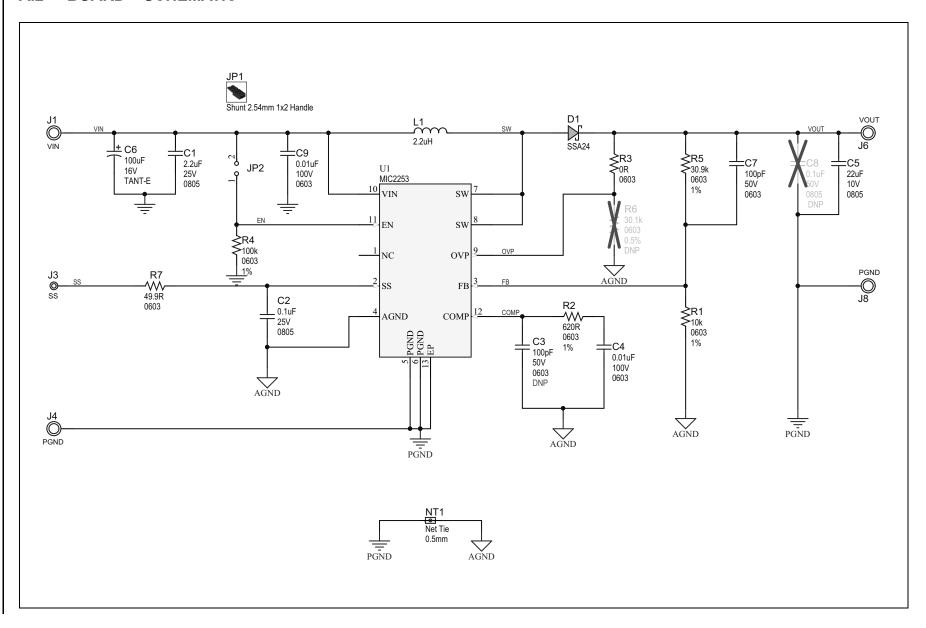
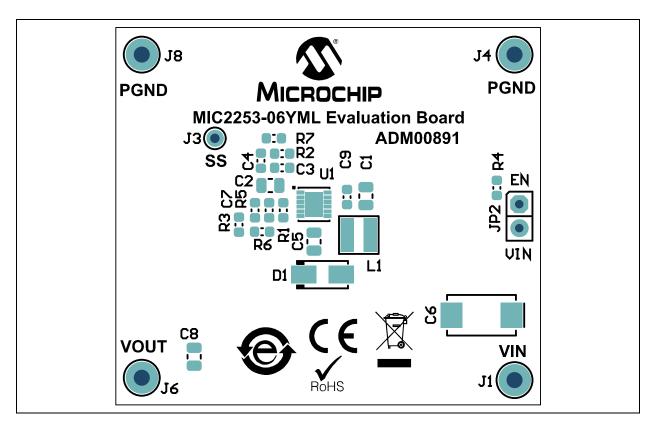


FIGURE 2-3: MIC2253 Evaluation Board - Test Points Description.

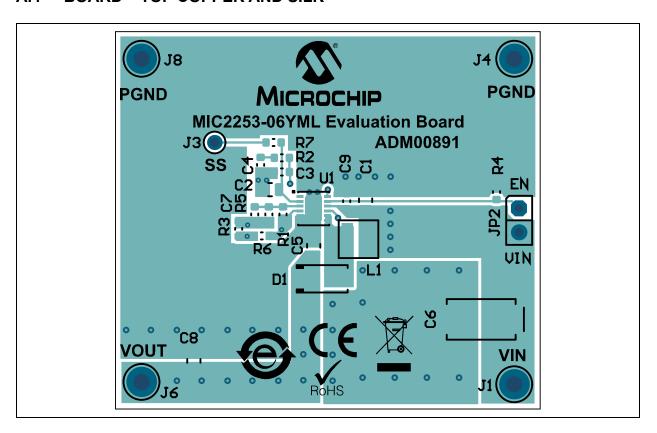
Appendix A. Schematic and Layouts

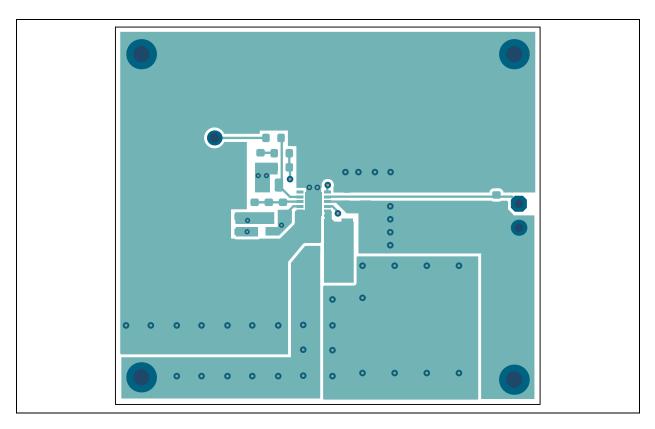

A.1 INTRODUCTION

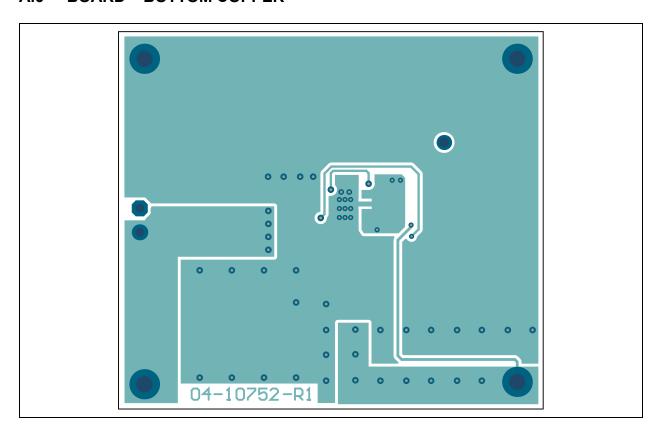
This appendix contains the following schematics and layouts for the MIC2253 Evaluation Board.

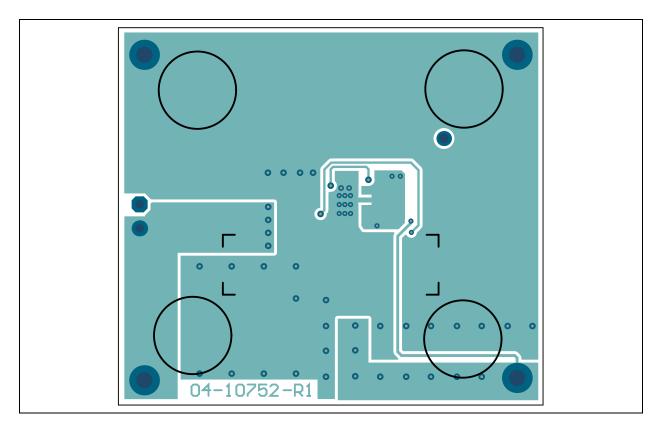

- Board Schematic
- Board Top Silk
- Board Top Copper and Silk
- Board Top Copper
- Board Bottom Copper
- Board Bottom Copper and Silk
- Board Bottom Silk

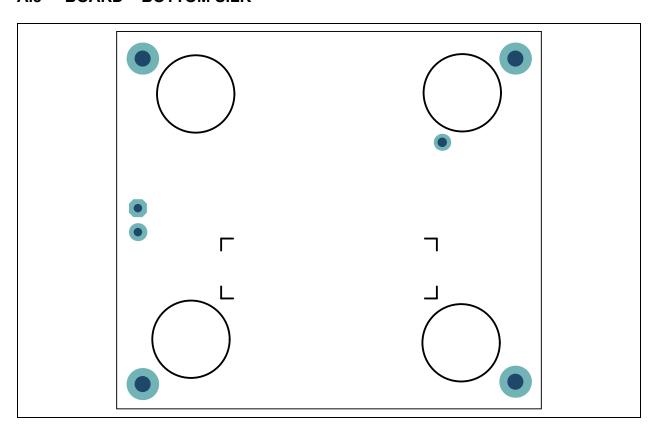
DS50002784A-page 16


A.2 BOARD - SCHEMATIC


A.3 BOARD - TOP SILK


A.4 BOARD - TOP COPPER AND SILK


A.5 BOARD - TOP COPPER


A.6 BOARD - BOTTOM COPPER

A.7 BOARD - BOTTOM COPPER AND SILK

A.8 BOARD - BOTTOM SILK

NOTES:			

Appendix B. Bill of Materials (BOM)

B.1 INTRODUCTION

This appendix provides the Bill of Materials (BOM) for the MIC2253 Evaluation Board.

TABLE B-1: MIC2253 EVALUATION BOARD BILL OF MATERIALS (BOM)

Qty.	Reference	Description	Manufacturer	Part Number
2	C4, C9	Capacitor, Ceramic, 0.01 μF, 100V, 10%, X7R, SMD, 0603	TDK Corporation	C1608X7R2A103K080AA
1	C2	Capacitor, Ceramic, 0.1 μF, 25V, 10%, X7R, SMD, 0805	Murata Electronics North America, Inc.	GRM21BR71E104KA01L
1	C7	Capacitor, Ceramic, 100 pF, 50V, 5%, NP0, SMD, 0603	Cal-Chip Electronics Inc.	GMC10CG101J50NTLF
1	C1	Capacitor, Ceramic, 2.2 μF, 25V, 10%, X5R, SMD, 0805	Murata Electronics North America, Inc.	GRM21BR61E225KA12L
1	C5	Capacitor, Ceramic, 22 μF, 10V, 20%, X5R, SMD, 0805	Taiyo Yuden Co., Ltd.	LMK212BJ226MG-T
1	C6	Capacitor, Tantalum, 100 μ F, 16V, 20%, 0.07 Ω , SMD, E	KEMET	T491X107M016AS
1	JP2	Conductor, HDR-2.54 Male, 1x2, Tin, 6.10 MH, TH, VERT	Molex [®]	0022284020
4	J1, J4, J6, J8	Conductor, TP, Pin, Tin, TH	Harwin Plc.	H2121-01
1	D1	Diode, Schottky, 40V, 2A, DO214AC	Vishay Intertechnology, Inc.	SSA24-E3/61T
1	L1	Inductor, 2.2 µH, 5.5A, 20%, SMD, L4W4H2.1	Coilcraft	XAL4020-222MEC
1	U1	MCHP Analog Switcher, Boost 2.5V to 10V, 3.5A, 1 MHz, MIC2253, MLF-12	Microchip Technology Inc.	MIC2253-06YML-TR
1	PCB1	MIC2253 Evaluation Board – Printed Circuit Board	Microchip Technology Inc.	04-10752-R1
1	R3	Resistor, TKF, 0R, 1/10W, SMD, 0603	Panasonic [®] - ECG	ERJ-3GSY0R00V
1	R4	Resistor, TKF, 100 kΩ, 1%, 1/10W, SMD, 0603	Panasonic - ECG	ERJ-3EKF1003V
1	R1	Resistor, TKF, 10 k Ω , 1%, 1/10W, SMD, 0603	Panasonic - ECG	ERJ-3EKF1002V
1	R5	Resistor, TKF, 30.9 kΩ, 1%, 1/10W, SMD, 0603	Panasonic - ECG	ERJ-3EKF3092V
1	R7	Resistor, TKF, 49.9R, 1%, 1/10W, SMD 0603	Panasonic - ECG	ERJ-3EKF49R9V
1	R2	Resistor, TKF, 620R, 1%, 1/10W, SMD, 0603	Panasonic - ECG	ERJ-3EKF6200V

TABLE B-2: BILL OF MATERIALS - MECHANICAL PARTS

Qty.	Reference	Description	Manufacturer	Part Number
1	JP1	Mechanical HW Jumper, 2.54 mm, 1x2, Phosphor Bronze, with Handle	Jameco [®] Electronics	2012JH-R
1	LABEL1	Label, Assy W/Rev Level (Small Modules) Per MTS-0002	_	_
4	PAD1, PAD2, PAD3, PAD4	Mechanical HW Rubber Pad, Cylindrical, D7.9, H5.3, Black	3M	SJ61A11

TABLE B-3: BILL OF MATERIALS - DO NOT POPULATE PARTS

Qty.	Reference	Description	Manufacturer	Part Number
1	C3	Capacitor, Ceramic, 100 pF, 50V, 5%, NP0, SMD, 0603	Cal-Chip Electronics Inc.	GMC10CG101J50NTLF
0	C8	Capacitor, Ceramic, 0.1 µF, 50V, 10%, X7R, SMD, 0805	Cal-Chip Electronics Inc.	GMC21X7R104K50NTLF
0	R6	Resistor, TF, 30.1 k Ω , 0.5%, 1/10W, SMD, 0603	Yageo Corporation	RT0603DRD0730K1L

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX

Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820