

8390D−WIRELESS−03/2015

APPLICATION NOTE

Atmel AVR2054: Serial Bootloader User Guide

Features

• Firmware programming over USART/SPI/TWI and other serial interfaces

• BitCloud® and RF4CE Over-the-Air Upgrade (OTAU) functionality support

• Atmel® Bootloader PC tool for loading firmware from PC

Introduction

The serial bootloader is a stand-alone package consisting of two parts: embedded
bootloader that should be loaded to the flash memory of a supported MCU and the PC
based application that sends data to the embedded bootloader over serial link.

The package contains all necessary sources for modifying and compiling the
embedded bootloader, including projects files for various development tool chains.

Chapter 1 Overview provides an overview of serial bootloader and package’s contents.
Chapter 2 gives brief starting instructions including including serial ports and fuse
settings. Following chapters cover more specific topics. Chapter 3 describes
embedded bootloader application. Finally, Chapter 4 gives instructions on how to
create an SREC image and program a device with it, using the Atmel Bootloader PC
tool.

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

2

Table of Contents

1. Overview .. 3
1.2 Supported platforms and interfaces .. 3
1.3 Package content and structure ... 4

1.3.2 Precompiled bootloader firmware ... 5

2. Installation and getting started .. 7
2.1 Serial interface connections .. 7

2.1.1 USART interface ... 7
2.1.2 USB-FIFO interface .. 8
2.1.3 TWI interface .. 8

2.2 Fuse bits settings .. 8

3. Embedded bootloader .. 11
3.2 Configuration options .. 11
3.3 Compiling embedded bootloader application .. 12

3.3.2 Compilation from the command line ... 12
3.4 Programming embedded bootstrap... 12
3.5 Bootloader UART/SPI/TWI programming sequence 13
3.6 Bootloader USB DFU specifics ... 15

3.6.1 Changing the reset vector... 15
3.6.2 DFU impact ... 15

3.6.2.1 Adding DFU support to an application 15
3.6.2.2 Not-responding application or absent DFU 16
3.6.2.3 Additional remarks .. 16

3.7 BitCloud OTAU bootloader features.. 16
3.8 Bootloader configuration for Atmel RF4CE ... 17

4. Bootloader PC tool ... 18
4.1 Using the Bootloader PC tool .. 18

4.1.1 Generating SREC images .. 18
4.1.1.1 Using GCC tools ... 18
4.1.1.2 Using IAR tools ... 18

4.1.2 Loading application firmware to an MCU .. 19
4.1.3 Using the command line ... 20

4.1.3.2 Command line options .. 20

5. Reference ... 21

6. Document revision history .. 22

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

3

1. Overview
The serial bootloader allows loading of firmware images to an MCU over the serial connection. It is intended for use
with Atmel® wireless stacks, such as IEEE® 802.15.4 MAC [1] , RF4CE [2], BitCloud® [3] and LwMesh [5], but can also
be used with non-wireless applications. The package content is given in Section 1.3 while Chapter 2 gives brief starting
instructions on how to use the serial bootloader tool.

The concept of firmware programming with the serial bootloader is shown on Figure 1-1. The embedded bootloader
preprogrammed to the MCU receives an application image over serial interfrace and writes it to the internal MCU flash.
An application firmware image should be loaded in the Motorola S-record hexadecimal format (SREC) and is expected
to be transferred by a host device. The host may be a PC or another MCU/MPU. It should be connected to the target
MCU via supported serial interface and deliver the application image following the specific protocol.

Figure 1-1. General approach for using serial bootloader for MCU programming.

Host (PC/MCU)

Serial
connection

Bootloader host
application

.srec
image

Embedded
bootloader

Application
Image

MCU

Embedded bootloader also supports some stack-specific functionality required to perform firmware Over-The-Air
Upgrade (OTAU) procedure in ZigBee or RF4CE networks. Sections 3.7 and 3.8 provide more information on this topic.

Chapter 3 describes in details how the embedded bootloader works on different serial interfaces as well as how to
configure and compile its source code.

For convenience the Serial Bootloader package includes pre-compiled images of the embedded bootloader images in
different configurations. It also contains Atmel implementation of a PC host application - Bootloader PC tool that can be
operated as a GUI application or as a command line tool (see Chapter 4 for instructions how to use it).

The Bootloader PC tool may also be used to initiate an Over-the-Air Upgrade (OTAU) of a ZigBee® network by
transferring a firmware image to the OTAU server device connected to the PC via a serial interface. See Section 3.7 as
well as [8] for more details.

1.2 Supported platforms and interfaces
Embedded bootloader is supported on a set of Atmel microcontrollers shown in Table 1-1. It is implemented to be board-
independent and works on Atmel development boards as well as custom boards. The PC tool however requires
COM/USB enumerated ports and might not support board-specific functionalities.

Embedded bootloader can work with several different serial interfaces simultaneously as listed in the table Table 1-1
(except of TWI that needs to be used alone only). More details on the interface configurations are given in Section 2.1).

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

4

Table 1-1. Atmel MCUs and corresponding interfaces, boards and modules supported by Serial Bootloader tool.

Atmel MCU Supported serial
interfaces Atmel modules Wireless development

boards/kits

ATSAMR21E18
ATSAMR21G18

USART0,
Configurable
pins

N/A ATSAMR21-XPRO(1)

ATmega256RFR2
ATmega2564RFR2
ATmega128RFA1

USART0

USART1

TWID

USB_FIFO

ATZB-S1-256-3-0-C [10]

AT256RFR-XPRO(1)

AT256RFR2-EK
ATRF4CE-EK
ATAVR128RFA1-EK1

ATxmega256A3

USARTF0

USARTD0

SPIE

TWIC

TWIE

N/A
REB2xxED-EK
STK600 + RZ600

ATxmega256D3
USARTD0

TWIC
N/A STK600 + RZ600

ATmega1281

USART0

USART1

USB_FIFO

TWID

N/A RCB230 / 231 / 212(2)

AT91SAM3S4C USB_DFU N/A deRFusb-23E00 (2)

(1) Requires connection Flow Control to be set to “Hardware” on the host side.
(2) Non-Atmel products; see http://www.dresden-elektronik.de for details and purchase.

1.3 Package content and structure
The Serial Bootloader package contains:

• Embedded bootloader sources, including
• Source code and header files
• IAR projects
• Atmel Studio projects
• Makefiles for various configurations

• Pre-compiled firmware images of embedded bootloader

• Installation files for the Bootloader PC tool

• Documentation

• Drivers and utility firmware images

Table 1-2 describes the serial bootloader file structure with paths given relative to the package’s root directory.

Table 1-2. Serial bootloader files and directories.

Path Description

\Documentation\ Documentation folder

\Embedded_Bootloader_images\ Pre-compiled firmware images of embedded bootloader

http://www.dresden-elektronik.de/

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

5

Path Description

\Embedded_Bootloader_src\ Embedded bootloader sources

\Embedded_Bootloader_src\application\ Embedded bootloader source code

\Embedded_Bootloader_src\iar_projects\ IAR Embedded Workbench project files for embedded
bootloader. Project files for RF4CE version are not provided.

\Embedded_Bootloader_src\as6_projects\ Atmel Studio 6 project and solution files for the embedded
bootloader

\Embedded_Bootloader_src\makefiles\ Makefiles for compiling the embedded bootloader with IAR or
GCC compiler from the command line

\PC_Bootloader_Setup\ Installation files for the Bootloader PC tool

\ThirdPartySoftware\ Drivers and firmware for external tools

\ThirdPartySoftware\XMEGA_A1_Xplained_Fir
mware\

Pre-compiled firmware image of USART-to-TWI interface and
driver for Xmega-A1-Xplained board

\ThirdPartySoftware\USB_FIFO_FTDI_Driver\ Driver for USB-FIFO of Sensor Terminal (STB) board [9]

\ThirdPartySoftware\Bitcloud_DFU_bootload
er.inf

Driver for deRFusb-23E00

1.3.2 Precompiled bootloader firmware

Table 1-3 lists serial interfaces used in precompiled bootloader images available in \Embedded_Bootloader_images\.

Note: There are three configurations of embedded bootloader firmware distinguished by their functionality: common serial
bootloader, serial bootloader with OTAU support for Atmel BitCloud applications and serial bootloader for RF4CE-
based applications. The latter two provide extra functionality in addition to common serial bootloader features. For
details see Sections 3.7 and 3.8.

More details on the interface configurations are given in Section 2.1.

Table 1-3. Default serial port settings for embedded bootloader images.

MCU Precompiled image(s) Used MCU
port Comment

ATSAMR21G18 Bootloader_Atsamr21g18a_BitCloud_OTAU.elf USART0
via PA27-
PA28 pins

Expects ext. flash
M25P40VMN6PB on PA8-PA9,
PA14-PA15 SPI pins

ATSAMR21E18 Bootloader_Atsamr21e18a_BitCloud_OTAU.elf USART0
via PA16-
PA17 pins

Expects ext. flash W25X20CV
on PA24-PA27 SPI pins

ATmega256RFR2
ATmega128RFA1

Bootloader_<MCU>.hex

Bootloader_<MCU>_RF4CE.hex

USART1 No board-specific behavior

Bootloader_<MCU>_BitCloud_OTAU.hex USART1 Expects ext. flash AT25DF041A
on SPI port

Bootloader_<MCU>_KEY_REMOTE.hex USART0 Can be used with RCB mount
on Red Key Remote board and
custom boards

Bootloader_<MCU>_STB.hex USB_FIFO Only for use with RCBs
mounted on Sensor Terminal
Board (STB) [9].

Bootloader_<MCU>_TWI.hex

Bootloader_<MCU>_RF4CE_TWI.hex

TWID No board-specific behavior.

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

6

MCU Precompiled image(s) Used MCU
port Comment

ATmega2564RFR2

Bootloader_<MCU>.hex

Bootloader_<MCU>_BitCloud_OTAU.hex

USART1 Expects ext. flash AT25DF041A
on SPI port

ATXmega256A3 Bootloader_<MCU>.hex

USARTD0 No board-specific behavior.
Can be used on STK600, REB-
CBB and custom boards

Bootloader_<MCU>_TWI.hex

TWIE
(SDA-PE0
SCL-PE1)

No board-specific behavior

ATXmega256D3 Bootloader_<MCU>.hex

USARTD0 No board-specific behavior

Bootloader_<MCU>_TWI.hex

TWIC
(SDA-PC0
 SCL-PC1)

No board-specific behavior

ATmega1281 Bootloader_<MCU>.hex

Bootloader_<MCU>_RF4CE.hex
USART1 No board-specific behavior

Bootloader_<MCU>_TWI.hex

Bootloader_<MCU>_RF4CE_TWI.hex
TWID No board-specific behavior

AT91SAM3S4C Bootloader_Atsam3s4c_Rf231UsbRd.bin

Bootloader_Atsam3s4c.bin
USB DFU For USB sticks, attach the

device to the USB port on a PC

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

7

2. Installation and getting started
Serial bootloader is typically used in the following way:

1. Unpack the package to a folder on the PC hard drive.

2. If embedded bootloader is not present on the target MCU device:
a. Connect JTAG/ISP adapter to the target MCU device.
b. If needed, configure on the MCU device the fuse bits for the corresponding bootloader feature support (see

Section 2.2).

c. Select or build a .hex image of the embedded bootloader with support of required serial interfaces and
feature set. See Section 1.3.2 Precompiled bootloader firmware describing pre-compiled firmware images
and Sections 3.2-3.3 describing how to configure and compile embedded bootloader source code.

d. Program the target MCU with the .hex embedded bootloader image via JTAG/ISP insterface (see Section
3.4). Now the MCU has the embedded bootstrap on it.

3. Connect the MCU with the embedded bootstrap to the host device (for example a PC) via the serial interface
supported in the MCU’s embedded bootstrap (see Section 2.1 Serial interface connections).

4. If a PC is used as the host:
a. If needed install the board- and connection-specific drivers (example VCP, USB, etc.) to get the serial

connection to the connected MCU enumerated properly on the PC (see Section 2.1).
b. Install the Bootloader PC tool from \PC_Bootloader_Setup\. To launch the Bootloader PC tool you will

need to install Java® [14], if it is not installed on your PC.
c. Launch the Bootloader PC tool, specify the connection settings to the target device, the application image in

SREC format, and upload the image to the target MCU (see Section 4.1 for the detailed instructions).

5. If the host is not Atmel PC Bootloader tool:
a. Implement own host application that will be able to upload the .srec images following the serial protocol

supported by the embedded bootloader. See Section 3.5 and 3.6 for protocols description.
b. Perfrorm firmware upload according to own host program algorithm and requirements.

2.1 Serial interface connections
Embedded bootloader can work with USART, SPI, TWI and USB interfaces. The exact set of supported interfaces
depends on a platform and is provided in Section 1.2 while interfaces used by default in precompiled images are given in
Section 1.3.2. MCU pins shall be connected to the host according to the pin assignement of the supported serial
interface described in target MCU’s datasheet.

Several different interfaces and ports can be enabled for bootloader use at the same time. As described in Section 3.5
embedded bootloader will scan them for required handshake packages one after another. Note however that TWI
interfase can be operated only alone.

2.1.1 USART interface

Embedded bootloader supports different USART ports available on the target MCU as listed in Table 1-1. For USART
connection between the MCU and the host is is required to connect only TXD, RXD and GND pins of the corresponding
port. It is the responsibility of the user to ensure proper connection to the host device.

Default port configuration used for UART and hence also in precompiled firmware images is given in Table 2-1.

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

8

Table 2-1. Default COM port settings for embedded bootloader host
Baud rate 38400
Data bits 8
Parity None
Stop bits 1
Flow control None

For Atmel PC Bootloader tool to operate correctly as a host over UART it shall get the connection enumerated as a COM
port and configured as described in Table 2-1.

2.1.2 USB-FIFO interface

USB-FIFO interface is a special connection to a PC via USB cable on the Sensor Terminal Board [9].

It requires installation of ThirdPartySoftware\USB_FIFO_FTDI_Driver\ driver on the PC to get the connection
enumerated as a COM port. Bootloader PC tool shall use COM port settings given in Table 2-1.

This interface is not recommended for reuse on custom boards.

2.1.3 TWI interface

When TWI interface is used the embedded bootstrap operates MCU in TWI slave mode with TWI slave bus address
equal 0x55.

Caution: TWI interface in the embedded bootloader must be used only alone and cannot be enabled together with any
other serial interface.

When using Bootloader PC tool it is recommended to have Xmega-A1 Xplained board [13] as a TWI-to-USB bridge that
provides connection to the PC and can get it enumerated as a COM port.

Atmel XMEGA-A1 Xplained kit contains ATxmega128A1 and AT32UC3B1256 devices. The preprogrammed
AT32UC3B1256 device acts as a USB-to-UART gateway. The ATxmega128A1 device on this board shall be
programmed with the firmware image ‘XplainedA1SerialToI2CBootLoaderBridge.hex’ from
\ThirdPartySoftware\XMEGA_A1_Xplained_Firmware\ to make it act as a USART-to-TWI bridge. TWI on PORTD
is used by ATxmega128A1 and thus GPIO0 (SDA) and GPIO1 (SCL) of PORTD of XMEGA PORTD header of Xplained
board shall be used to connect to the target MCU via TWI. The programming of firmware image to ATxmega128A1
device is explained in “Connecting the board” Section of AVR1927: XMEGA-A1 Xplained Getting Started Guide [12].

When connecting the XMEGA-A1 Xplained to PC, the operating system will request a driver file for installing the serial
communication driver. This driver file ‘XPLAINED_Virtual_Com_Port.inf’ is available in
\ThirdPartySoftware\XMEGA_A1_Xplained_Firmware\ folder.

After VCP has enumerated PC Bootloader tool should be used with COM port settings given in Table 2-1.

2.2 Fuse bits settings
This section does not consider SAM3S and SAMR21 because they do not have fuse bits.

An MCU must be aware of the size of the memory occupied by the bootloader if it resides in the flash and must start from
the bootloader section rather than from the application section.

Recommended fuse bits for supported AVR® microcontrollers are given in Table 2-2 and fuse bits for supported XMEGA®
microcontrollers are given in Table 2-3. The tables list all fuse bits and show the resulting fuse bytes as well.

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

9

Table 2-2. Fuse bits on ATmega1281, ATmega128RFA1 and ATmega256(4)RFR2 .

Option Common bootloader Bootloader for RF4CE
applications

BODLEVEL Disabled Brown-out detection at
VCC = 1.8V

OCDEN Disabled Disabled

JTAGEN Enabled Enabled

SPIEN Enabled Enabled

WDTON Disabled Disabled

EESAVE Disabled Enabled

BOOTSZ Boot Flash size=1024
words start
address=$FC00

Boot Flash size=2048
words start
address=$F800

BOOTRST Enabled Enabled

CKDIV8 Enabled Enabled

CKOUT Disabled Disabled

SUT_CKSEL Int. RC osc.; Start-
up time: 6 CK + 65ms

Int. RC osc.; Start-up
time: 6 CK + 0ms

Resulting
fuse bytes

0xFF 0x9C 0x62 0xFE 0x92 0x42

For fuse settings in BitCloud OTA configurations see Apendix of [4].

Fuse bits configuration informs the MCU to start execution from the bootloader section in memory instead of the
application’s. On Atmel AVR microcontrollers the bootloader is stored in the flash memory in the same address space as
the application. This reduces the amount of memory available for the application. The fuse bits are also used to specify
the amount of memory exclusively reserved for the bootloader. Bootloader size may also vary depending on the
bootloader type (for example, the OTAU bootloader requires larger memory allocation than a bootloader without OTAU
support).

On XMEGAs, the embedded bootloader is kept in a separate storage, and so it is not needed to specify the size of the
bootloader section (all 256kb of flash are available as the application memory).

Table 2-3. Fuse bits on Atmel ATxmega256A3 and Atmel ATxmega256D3.

Option Required value

JTAGUSERID 0xFF

WDWP 8 cycles (8ms @ 3.3V)

WDP 8 cycles (8ms @ 3.3V)

DVSDON OFF

BOOTRST BOOTLDR

BODACT Disabled

BODPD Disabled

SUT 0ms

WDLOCK OFF

JTAGEN ON

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

10

Option Required value

EESAVE OFF

BODLVL 1.6V

Resulting fuse bytes

FUSEBYTE0 0xFF

FUSEBYTE1 0x00

FUSEBYTE2 0xBF

FUSEBYTE4 0xFE

FUSEBYTE5 0xFF

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

11

3. Embedded bootloader
Embedded bootloader occupies a little amount of memory and serves the only purpose, to load an application image
from a serial interface and write it to the MCU’s internal flash and/or EEPROM. A simple communication protocol
described in Sections 3.5 and 3.6 is used to ensure proper programming. Figure 3-1 illustrates bootloader organization.

The embedded bootloader application is provided as a set of pre-compiled firmware images for various configurations
and the source code. The user can immediately start using boot loading by programming devices with the pre-compiled
images. It is also possible to modify the source code of the embedded bootstrap and compile it using the appropriate
toolchain as described in Sections 3.2-3.4 .

Figure 3-1. Embedded bootloader architecture.

Bootloader Application image

Load an image over
a serial interface

Program

In addition to the common bootloader that simply programs application firmware to the flash and EEPROM, embedded
bootloader application may be built to support additional features like Over-the-Air Upgrade (OTAU) applied by BitCloud
applications or RF4CE features. The OTAU bootloader is able to load an application image, which has been received by
the application over the air and saved in an external memory device, and program it into the internal flash memory (see
Section 3.7). RF4CE features are invoked by the application to enable a special type of the Over-the-Air upgrade when
the application image is replaced in memory simultaneously with reception of the new image. For detail refer to Section
3.8.

3.2 Configuration options
Build configuration options for the embedded bootloader such as target MCU and supported feature set (BitCloud OTA
or RF4CE) are defined in the embedded bootloader IDE projects. For compilation with command line such options can
be selected in the Makefile and will also be contained in makefiles present in the makefiles/ directory.

Application configuration options for embedded bootloader are collected in the configuration.h file. Using this file it is
possible to configure the following parameters:

• Serial port interfaces enabled for reception of new firmware image from the host. This are defined separately for
each MCU with the #ifdef sections. For example, enabling only the USART1 port for an Atmel
ATmega128RFA1 MCU is done like this:

#ifdef ATMEGA128RFA1
 // Use USART0
 #define USE_USART0 0
 //#define USE_USART0 1

 // Use USART1
 //#define USE_USART1 0
 #define USE_USART1 1

 // Use USB_FIFO

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

12

 #define USE_USB_FIFO 0
 //#define USE_USB_FIFO 1

 // Use TWI
 #define USE_TWIS 0
 //#define USE_TWIS 1

#ifdef USE_TWIS
 // Use TWID
 //#define USE_TWIS_D 0
 #define USE_TWIS_D 1
#endif

#endif //#ifdef ATMEGA128RFA1

• External flash device used to store the application image during an over-the-air upgrade procedure. This is done
via TYPE_EXTERNAL_MEMORY parameter and is applicable only to configurations with BitCloud OTA feature
enabled. For an overview of BitCloud OTA bootloader and more references see Section 3.7.

3.3 Compiling embedded bootloader application
The bootloader application can be compiled with Atmel Studio [6] or IAR [7] toolchains of versions given in Table 3-1.

For convenience the bootloader package includes precompiled .hex images of the embedded bootloader in most
common configurations as described in Section 1.3.2.

Table 3-1. Supported toolchains and their versions

Toolchain Comments

Atmel Studio v6.2 (with GCC compiler) For AVR and Xmega devices only

IAR for AVR v6.40 For AVR and Xmega devices

IAR for ARM® v6.20.3.52642 For SAM devices

To compile the bootloader application in Atmel Studio, open witht the Atmel Studio the .atsln project file that
corresponds to the target platform and feature set from the \Embedded_Bootloader_src\as6_projects directory.
Then choose a particular build configuration from the list on the toolbar, and select Build form the Build menu.

To compile the bootloader application in IAR IDE, open with corresponding IAR toolchain the .eww project file from the
\Embedded_Bootloader_src\iar_projects directory. Then choose a particular build configuration that corresponds
to the target platform and feature set and select Rebuild All form the Project menu.

3.3.2 Compilation from the command line

When the embedded application is compiled using the command line, compilation employs Makefile placed in the
\Embedded_Bootloader_src\ folder to determine what makefile from the makefiles directory shall be used. In
Makefile, specify PROJECT_NAME to choose among supported MCUs and CONFIG_NAME to select a particular
configuration.

3.4 Programming embedded bootstrap
If not already present on the MCU the firmware part of embedded bootloader (.hex file) shall be uploaded to the device
to enable programming over serial interface. Atmel Studio [6] is recommended for loading an embedded bootloader
image. Note that to work correctly embedded bootloader requires specific fuse bit settings that depend on the target
platform and bootloader functionality (see Section 2.2 Fuse bits settings).

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

13

Caution: Setting fuse bits incorrectly may cause improper device functionality.

3.5 Bootloader UART/SPI/TWI programming sequence
The embedded bootloader handles data received over UART/SPI/TWI interfaces using algorithm illustrated on Figure 3-2
and described in steps below.

1. After the device is reset, the embedded bootloader waits 200ms on each enabled interface for a
HANDSHAKE_REQ data sequence to arrive. If no HANDSHAKE_REQ is received on none of the interfaces, the
embedded bootloader jumps to the application’s entry point in the flash memory.

2. If a HANDSHAKE_REQ sequence is received, bootstrap code sends a HANDSHAKE_CONF sequence over the
same serial interface and expects reception of SREC records one by one.

3. After every valid reception of a SREC record the embedded bootloader responds with an ACK data sequence
over the serial interface.

4. In case of any error during loading process, the embedded bootloader sends a NACK data sequence and then
proceeds to step 1.

As the host side, Atmel Bootloader PC tool performs following actions to conform to the embedded bootloader behavior:

1. The Bootloader PC tool sends a HANDSHAKE_REQ data sequence on specified serial port for 30 seconds with
200ms interval, waiting for a HANDSHAKE_CONF data sequence between transmissions. Any reply except
HANDSHAKE_CONF is ignored.

2. If HANDSHAKE_CONF is received, the PC bootloader starts sending data from the SREC file via the serial link.
Each record of the SREC file is converted to binary representation before sending.

3. For every record sent the host expects an ACK over the serial link as a response. If a NACK sequence is received
or a timeout occurs, the PC bootloader aborts.

Serial data sequences used between the device and the host while boot loading:

• HANDSHAKE_REQ: 0xB2 0xA5 0x65 0x4B

• HANDSHAKE_CONF: 0x69 0xD3 0x0D 0x26

• ACK: 0x4D 0x5A 0x9A 0xB4

• NACK: 0x2D 0x59 0x5A 0xB2

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

14

Figure 3-2. Embedded serial bootloader programming algorithm.

Reset

Is HANDSHAKE_REQ
received?

Send HANDSHAKE_CONF

Is received record
valid?

Write record
data to flash and
send ACK data

sequence

Send NACK
data sequence

Yes

No

Yes

Read next
record from

UART

Is this the last record
(S8)?

No

Jump to
program entry

point

Yes

No

Waiting for
HANDSHAKE_REQ

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

15

3.6 Bootloader USB DFU specifics
The embedded bootloader for Atmel SAM3S microcontrollers operates in a different way than shown on Figure 3-2 to
conform to certain features of the SAM3S microcontroller and development boards, on which it is hosted.

Embedded bootloader for SAM3S uses Device Firmware Upgrade (DFU) standard. A DFU component should be
included in the application (see Section 3.6.2.1). The procedure of uploading a new firmware image does not change for
the user (see Section 4.1.2). The remaining part of this section describes implementation details of SAM3S embedded
bootloader and is intended for users who will possibly modify the embedded bootloader code.

3.6.1 Changing the reset vector

The Atmel SAM3S MCU does not contain a special bootloader section in the flash memory1. The fuse settings do not
indicate whether to start execution from the application section or from the bootloader section and where this section
starts. So if the bootloader code is first programmed at the end of the flash memory and then the application code is
loaded into the remaining part of the flash memory, the MCU will start code execution from the last loaded code after
reset (that is, the application code).

In order for the embedded bootloader to work correctly it must receive control first after reset to be able to communicate
with the host software and upload a new device image before the application code is executed.

To achieve this, the embedded bootloader for SAM3S, during uploading, reassigns the reset vector value (the MCU
component that stores the address to start from reset), setting it to its own starting address. Thus the MCU will always
start execution from the embedded bootloader, which, in turn, will pass control to the application section upon
completion.

3.6.2 DFU impact

Another feature involves notifying embedded bootloader that the PC tool is ready to transfer a new firmware image to the
device. For the Atmel AVR and XMEGA MCUs the device must be reset before the new software upload can take place.
Upon reset the COM port assigned to the device on the PC is still enabled. The bootloader receives control and waits for
the uploading requests from the PC tool. However, to reset a USB stick with SAM3S it should be removed and re-
attached to the PC. This may cause the PC to assign a different COM port to the device and stop the serial
communication with the device.

To prevent serial port reassignment when using SAM3S, the USB Device Firmware Upgrade components based on [11]
should be used. DFU components should be included in both the embedded bootloader and the application code (see
Section 3.6.1). The DFU component inserted in the application code should always be enabled along with other
application components. Upon receiving a command indicating that a new firmware image is ready, it writes a special
byte into the program memory and initiates a device reset. After reset, the DFU component included in the embedded
bootloader checks this status byte and enters the new firmware upload mode.

If the embedded bootloader is the only image loaded in the program memory, it will constantly be ready to receive and
upload a new firmware image from the host.

To program a device that contains the embedded bootloader with DFU support (such as the embedded bootloader for
Atmel SAM3S) you may also use the third-party software, since DFU components provided with this software package
closely adhere to the DFU standard.

3.6.2.1 Adding DFU support to an application

The DFU class for the application is implemented on top of the USB driver. Set the DFU_SUPPORT parameter to 1 in
configuration.h file to enable DFU support:

1 A dedicated bootloader ROM section is included by individual manufactures for their individual use.

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

16

#define DFU_SUPPORT 1

3.6.2.2 Not-responding application or absent DFU

The application loaded to the flash by embedded bootloader may not include a DFU component as well as any special
code to deal with PC tool’s requests. In other cases when the DFU component is installed, it may stop responding due to
application failure. In these cases the device will not be able to process commands from the PC tool and thus initiate
reset and perform the firmware upgrade.

To load an image using bootloader into such device, connect JTAG’s PB7 pin to ground and reset the device. On an
Atmel SAM3S USB stick, these are the first two pins of the JTAG port and so can be connected with a jumper wire.

3.6.2.3 Additional remarks

Below are some more features:

• If one loads a firmware image to a device via the embedded bootloader for SAM3S and then reads the image
using JTAG it will not equal the initial binary image. The difference will be in the first four bytes where the
bootloader replaced the reset vector.

• Both the embedded bootloader and an application cannot be loaded via JTAG. If the device is first programmed
with the embedded bootloader and then with the application, by default the execution will start with the
application code. And if the application is programmed first, the embedded bootloader once programmed will
not be aware of the presence of the application.

3.7 BitCloud OTAU bootloader features
The BitCloud OTAU bootloader is a version of embedded bootloader that shall be used by BitCloud applications [3], [4]
that require firmware Over-the-Air upgrade (OTAU) feature. Unlike the common bootloader, the OTAU bootloader
contains a driver, which is able to transfer an image from an external flash device to the MCU’s flash memory as
illustrated in Figure 3-3.

Figure 3-3. OTAU embedded bootloader architecture.

The OTAU bootloader can also be configured to program an application image received via a serial interface to the flash
as a common serial embedded bootloader. But it has more functions required for OTAU support, such as driver to an
external flash device, image decryption, etc.

Atmel BitCloud PC Tool (described in Chapter 4) has a BitCloud OTAU tab that can be used to OTAU programming of a
remote node.

For further details on the topic of OTAU in BitCloud ZigBee PRO refer to [4] and [8].

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

17

3.8 Bootloader configuration for Atmel RF4CE
The embedded bootloader configuration to support Atmel RF4CE [2] applications is primarily the same as for the
common embedded bootloader, but it also provides additional APIs to support Over-the-Air upgrade and the persistent
data storage feature that can be used by RF4CE applications. The APIs provided by the serial bootloader and the
additional APIs for RF4CE, both make use of self-programming functions. These extra APIs to support Over-the-Air
upgrade and persistent data storage are written into the RWW section (the bootloader section). These APIs can also be
used by other applications for the purposes as listed below:

• Storing the persistent data (for example, NIB) in the flash memory

• Clearing the persistent data (for example, clear NIB)

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

18

4. Bootloader PC tool
The Bootloader PC tool is a PC application that is used to load a firmware image to a device programmed with the
embedded bootloader code. Connection to the MCU shall be enumerated as a COM or USB port depending on the
interface used. Source firmware images shall be in the Motorola S-record (SREC) format. Such images are created
during compilation further to .hex and .elf images. A device must be pre-programmed with an image of the embedded
bootloader application, which will receive data sent by the Bootloader PC tool and write it to the device’s flash.

Another use of the Bootloader PC tool is initiating Over-the-Air Upgrade. This document does not cover this usage of the
tool for this purpose. A complete guide to Over-the-Air Upgrade of ZigBee networks is given in [8].

4.1 Using the Bootloader PC tool
To install the Bootloader PC tool, launch the installation file from the \PC_Bootloader_Setup\ and proceed with
instructions. After setup is completed both GUI and console versions of the bootloader are extracted to the provided
installation path. The Bootloader PC tool is a Java application, and to launch it Java [14] must be installed on the host
PC.

As a firmware image the Bootloader PC tool requires a file in the Motorola S-record hexadecimal format, also known as
SREC or S19 format. Such file names have the .srec extension and can contain both flash memory and EEPROM
images.

4.1.1 Generating SREC images

4.1.1.1 Using GCC tools

An SREC image can be generated from initial binary image with the help of a special tool supplied with a tool chain.

• For Atmel AVR use avr-objcopy.exe tool provided in AVR toolchain for Atmel Studio 6

• For ARM use arm-elf-objcopy.exe tool, which is a part of the Yagarto GCC toolchain

For example, to generate an SREC image from a .hex image for AVR run a command in the following format from the
command line:

avr-objcopy.exe -O srec --srec-len 128 <srcFile> <destFile>

For ARM just replace the name of the AVR tool with arm-elf-objcopy.exe. Note that this tool takes an image in the
.elf format as input.

4.1.1.2 Using IAR tools

If you use IAR toolchain to compile applications you may also specify a directive for the linker to create an SREC image:

• For command line compilation add -Omotorola-s28=<path>/<fileName>.srec to the linker flags

• For IAR Embedded Workbench
• Open configuration’s options and go to Linker
• On the Extra Output tab check the Generate extra output file box, specify the image name and

select motorola-s28 as Output format

An image generated by the IAR compiler may be also converted to SREC format with the avr-objcopy.exe or arm-
elf-objcopy.exe.

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

19

4.1.2 Loading application firmware to an MCU

To program an MCU using serial bootloader the following steps shall be done:
1. Connect an MCU with the embedded bootloader firmware on it to a PC via serial connection. For detail refer to

Section 2.1 as well as documentation of the development kit or the software provided with it.
2. For the GUI version of serial bootloader run the application by double-clicking the bootloadergui.exe file and

the control dialog as shown on Figure 4-1 will appear. For the console version just start command line from the
Bootloader PC tool installation directory (see Section 4.1.3 for more detail).

3. Specify uploading parameters:
a. Select the connection type. For all devices except Atmel SAM3S select Serial, while for SAM3S select

USB.
b. Select the port from the drop-down list.

There is a restriction on the size of firmware downloadable by serial booting process. Serial bootloader cannot rewrite
the area where the bootstrap code resides.

4. Press the Upload button if Bootloader PC GUI tool is used. For the console bootloader press Enter on the
keyboard to start uploading.

5. Press the HW reset button on the device if requested. The Bootloader PC tool will be waiting for approximately
30 seconds for the button to be released. If this does not happen, programming will be aborted.

6. The Bootloader PC tool will indicate the programming progress. Once loading is finished successfully, the
device will be restarted automatically. If loading fails, the Bootloader PC tool will indicate the reason. In case
the new image upload fails (for example, because of random communication errors) the device should be re-
programmed. It the reprogramming does not resolve the issue then the previously programmed code image in
the device may be corrupted. The device should be erased and reprogrammed via JTAG.

Figure 4-1. The Bootloader PC tool main GUI window.

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

20

4.1.3 Using the command line

MCU programming with PC Bootloader tool can be also done via command line interface as follows:

bootloader –f <file_name> –p <com_port> [-e <eeprom size>]

For example following line:

bootloader –f C:\work\SerialNet_ZigBit_Rf230B.srec –p COM4

can be used to load C:\work\SerialNet_ZigBit_Rf230B.srec image via port enumerated as COM4. Figure 4-2
shows a screenshot with an example of successful firmware upload using command line control.

Note: With the command line COM-port settings will be automatically used as given in Table 2-1 and cannot be changed.

Besides, when the -e <eeprom_size> option is specified the EEPROM section is cleared.

To see help information run:

bootloader -h

Figure 4-2. Loading application firmware using command line control of PC Bootloader tool.

4.1.3.2 Command line options

Table 4-1 describes set of command line options supported by the PC bootloader tool and corresponding GUI control
elements (the GUI window is shown on Figure 4-1). Options can be entered in any order.

Table 4-1. Command-line options and corresponding GUI controls.

Command line option GUI control Description

-h N/A Print help information

-f Select SREC file Path to the firmware image of SREC
format to be loaded to the MCU

-p Select Serial port COM port number

-e EEPROM Erase Clean up EEPROM section. EEPROM size
shall be specified

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

21

5. Reference
[1] Atmel IEEE 802.15.4 wireless stack

[2] Atmel RF4CE wireless stack

[3] Atmel BitCloud ZigBee wireless stack

[4] Atmel BitCloud Quick Start Guide

[5] Atmel LightWeightMesh wireless stack

[6] Atmel Studio Software

[7] IAR Embedded Workbench

[8] AVR2058; BitCloud OTAU User Guide

[9] Atmel AVR2063: Sensor Terminal Board - Hardware User's Manual

[10] ATZB-S1-256-3-0-C Wirelss Module

[11] Universal Serial Bus Device Class Specification for Device Firmware Upgrade

[12] AVR1927: XMEGA-A1 Xplained Getting Started Guide

[13] Atmel AVR1924: XMEGA-A1 Xplained Hardware User's Guide

[14] Java® Runtime Environment

http://www.atmel.com/tools/IEEE802_15_4MAC.aspx
http://www.atmel.com/rf4ce
http://www.atmel.com/bitcloud
http://www.atmel.com/dyn/resources/prod_documents/doc8200.pdf
http://www.atmel.com/tools/LIGHTWEIGHT_MESH.aspx
http://www.atmel.com/studio
http://www.iar.com/
http://atmel.com/dyn/resources/prod_documents/doc8426.pdf
http://www.atmel.com/Images/doc8359.pdf
http://www.atmel.com/tools/ATZB-X0-256-3-0-C.aspx
http://www.usb.org/developers/devclass_docs/usbdfu10.pdf
http://www.atmel.in/Images/doc8372.pdf
http://www.atmel.com/Images/doc8370.pdf
http://java.com/en/download/

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

22

6. Document revision history

Doc. Rev. Date Comment

8390A 02/2011 First release.
8390B 11/2011 Document for separate package with OTA , RF4CE and DFU support.
8390C 06/2013 Updated with 256RFR2 and TWI support.
8390D 03.2015 Updated with SAMR21 support and minor clean-up on BitCloud OTA support.

Updated address page (last page).

Atmel AVR2054: Serial Bootloader User Guide [APPLICATION NOTE]
8390D−WIRELESS−03/2015

23

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2015 Atmel Corporation. / Rev.:8390D−WIRELESS−03/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, XMEGA® and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. ARM® is a registered trademark of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property
right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON
THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS
PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN
NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN
IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products
are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications
where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific
written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons
systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel
products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	1. Overview
	1.2 Supported platforms and interfaces
	1.3 Package content and structure
	1.3.2 Precompiled bootloader firmware

	2. Installation and getting started
	2.1 Serial interface connections
	2.1.1 USART interface
	2.1.2 USB-FIFO interface
	2.1.3 TWI interface

	2.2 Fuse bits settings

	3. Embedded bootloader
	3.2 Configuration options
	3.3 Compiling embedded bootloader application
	3.3.2 Compilation from the command line

	3.4 Programming embedded bootstrap
	3.5 Bootloader UART/SPI/TWI programming sequence
	3.6 Bootloader USB DFU specifics
	3.6.1 Changing the reset vector
	3.6.2 DFU impact
	3.6.2.1 Adding DFU support to an application
	3.6.2.2 Not-responding application or absent DFU
	3.6.2.3 Additional remarks

	3.7 BitCloud OTAU bootloader features
	3.8 Bootloader configuration for Atmel RF4CE

	4. Bootloader PC tool
	4.1 Using the Bootloader PC tool
	4.1.1 Generating SREC images
	4.1.1.1 Using GCC tools
	4.1.1.2 Using IAR tools

	4.1.2 Loading application firmware to an MCU
	4.1.3 Using the command line
	4.1.3.2 Command line options

	5. Reference
	6. Document revision history

