
44Automotive Compilation Vol. 10

Designers can program a microcontroller with an external
chip or they can have the microcontroller program itself
using a bootloader program contained in its own memory.
External programming adds cost, requires long programming
times, and must have the proper interconnections to the
target MCU. The chip's programming ports may not be
available when it has been integrated into a system module.
Alternatively, a bootloader program can update the module's
firmware by loading the new code via a standard serial port.

The designer first loads the bootloader program via
conventional means, perhaps before the MCU chip is

soldered into the module. Then the chip can reprogram its
remaining Flash program memory over its LIN, CAN, UART,
or TWI interface. The chip can do this even after the system
is deployed to the end user. Bootloaders implement “in-
system programming” (ISP). This means that the user can
program or re-program the microcontroller on-chip Flash
memory without removing the device from the system and
without the need of an external programmer chip or system.
The scope of this article is the implementation of a LIN-based
bootloader.

LIN-Based Bootloader Implementation
on ATA6616/17
Tiantian, Shi, and George Gong

© 2013 / www.atmel.com45

LIN Bus

LIN SIP ATA6616/17

8-bit AVR
ATtiny87/167

Motor
Driver or
Sensor

LIN
Node 1

LIN
Node 3

LIN SBC ATA6624

LIN Transceiver
Voltage Regulator

Watchdog

Figure 1. The ATA6616/17 LIN System-in-Package

LIN Bus

Connection
Device

Host

LIN Slave

Generic
Bootloader

LIN

CAN
UART

SPI

Not Implemented

Figure 2. LIN Bootloading Physical Environment

The Automotive LIN Bus

Electronic modules have improved the comfort, safety,
and fuel economy of today’s vehicles. Manufacturers have
developed different bus network standards to guarantee that
these modules can communicate at the required speed and
safety levels. Buses such as CAN (Controller Area Network),
and LIN (Local Interconnect Network) minimize cost while
maximizing the performance. LIN was developed as the
low-cost and low-speed complement to CAN. Engineers
use LIN primarily in comfort applications. This allows them to
interconnect an increasing number of comfort functions. More
and more companies provide LIN-related product since the
LIN bus is now accepted on all new development platforms.

Atmel® is one of the most successful LIN-related product
providers. We offer a modular LIN2.0/2.1 family with products
at all integration levels. The products range from simple
transceiver ICs to complex system basis chips (SBC). At
higher integration levels, Atmel provides complete System-
in-Package (SIP) solutions. A single package includes an
Atmel AVR® MCU, a LIN transceiver, a voltage regulator, and
a watchdog timer (figure 1). The ATA6616/17 is a complete
LIN bus node application. The part integrates an ATA6624
LIN SBC die with an AVR ATtiny87/167 MCU into a 5mm x
7mm QFN package.

Once you integrate a LIN SIP into a module to make a LIN
node, it becomes problematic to upgrade the firmware.
Unless you unsolder the SIP IC, there is no possibility of
accessing the conventional programming ports with a
hardware programmer. Since the module is part of a LIN
network, it is natural to think of operating a bootloader
through the LIN bus.

Bootloader Implementation

The MCU integrated into the ATA6616/17 lacks a separate
bootloader section in program memory. To bootload an
ATA6616/17, you use the LIN interface of the LIN SBC die
with its associated protocol to download the program code.
The self-programming mechanism of the MCU writes the
updated code into the program memory.

Designers initially connect to the LIN module with a PC and
converter device (see figure 2). The PC has AVR MCU
programmer software installed. The AVR Open Source
Programmer (AVROSP) is a good option. The hardware
converter changes the UART signals coming out the USB
interface to the LIN standard. The converter device does
communication with the SIP as a LIN slave, and delivers the
bootloading commands as boot master. It can also deliver
real-time operation commands as a LIN master.

46Automotive Compilation Vol. 10

MSBs LSBs

Page

0x0000
Reset Address

Z Pointer

Reset Vector

Application
Page 1

Instruction Word

Instruction Word

Instruction Word
Page 2

Page 3

Page n

Bootloader

....

....

Figure 4. Flash Organization and Z Pointer Addressing

7Bit

Read/Write

Initial Value

6 5 4 3 2 1 0

R

0 0 0 0 0 0 0 0

R R R/W R/W R/W R/W R/W

RWWSB SIGRD CTPB RFLB PGWRT PGERS SPMEN SPMCSR-

Figure 3. The Store Program Memory Control and Status Register

LIN
Driver

Entry Point

Application

LIN

Boot Process

LIN Initialization

LIN Protocol

SPM
Page by Page

Boot

Not Implemented

Application

Protocol ID

SPI
UART

CAN

Start Application

SPM Command

LIN
Library

LIN
Library

SPM
Library

Flash
Library

Flash
Driver

Figure 5. Bootloader Flow Chart

You use the ISP programming interface to load the
bootloader code into Flash memory. Then the bootloader can
be used to update the application Flash section in the future
without using ISP. The bootloader has the ability to read,
erase, and write the flash memory. Additionally, it supports a
command jump from the bootloader to the application code.

The bootloader uses the SPM (Store Program Memory)
instruction of the ATA6616/17. The bootloader updates
the program memory in a page-by-page fashion. The Store
Program Memory Control and Status Register (SPMCSR)
manages the SPM operations (figure 3).

Only the combinations “10 0001
b
”, “01 0001

b
”,

“00 1001
b
”, “00 0101

b
”, “00 0011

b
”, or

“00 0001
b
” in the lower six bits will have an effect.

You employ the Z register to address the operation targets
of the SPM commands, such as page erase, page write,
or instruction write (figure 4). Here the MSBs (the Most
Significant Bits) are used for addressing the pages. The LSBs
(the Least Significant Bits) address the words within the
page. A more detailed description of the SPM instructions
and applications is available in Atmel application notes.

The bootloader works with the help of SPM (figure 5). There
is only one entry point to the bootloader. Unlike some MCUs,
this integrated MCU has no special boot Flash section. It is
not possible to enter the bootloader by setting the fuses. For
this reason the initial programming should load and organize
the program memory according to the scheme in figure 4.
You define the reset vector to always initiate the bootloader
program. Figure 5 shows this as the “boot process”, which
occurs after a reset event. The boot process checks and
decides whether the configured boot section starts executing
or the program in the application section starts executing.
The bootloader has separate commands to write to the
application section and to execute a jump into the section.
If the jump to the application section is not performed,
the application will never execute, even if the application
section is programmed. The “protocol identification” of
the bootloader selects what protocol to use. This could be
LIN, CAN, a UART, or other protocols. The first confirmed
communication on the network starts the initialization of the
corresponding peripheral.
 

© 2013 / www.atmel.com47

Start

Erase Page

Fill Page Buffers

Write Page

Yes

No

Get New Page
Content, e.g., from

LIN

More Pages ?

End

Figure 6. Typical Update Flowchart

The LIN bootloader application performs an initialization
process after each device reset. The LIN protocol is a
high-level protocol, which is described in the LIN standard
documents. The host initiates the communication by sending
0x55 as a synchronization character to help the slave LIN
SIP to find the baud rate. At the end of this character the
bootloader should have its LIN initialization done. The LIN
protocol decodes the incoming commands. If the command
received is to update the Flash, the received data is
written into the program memory as if it was written by
a programmer device. The bootloader performs the SPM
instructions to update the Flash on a page-by-page fashion.

Once the entire incoming data stream has been written
into program memory you send a command to execute the
application code. The output from the bootloader jumps to
the first instruction of the application program. The bootloader
erases a page and then writes the incoming data into the
page (figure 6). There is also a Read – Modify – Write
operation. This is suitable for updating small parts of the
Flash, such as a constant string.
 

Conclusion

This article highlights the bootloader implementation on an
Atmel ATA6616/17 LIN chip. The bootloader application lets
you update firmware in the field through the LIN bus. This is
done without using the traditional programming ports. More
detailed information is available at the Atmel website and
corresponding AVR application notes.

