AC410

Application Note

Using AES System Services in SmartFusion2 and
IGLOQO2 Devices - Libero SoC v11.8

& Microsemi

Power Matters.*

& Microsemi

Power Matters.”

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
WWW.microsemi.com

© 2017 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

51900278. 6.0 4/17

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

& Microsemi

Power Matters.

Contents

1 ReVISION HIStOry 1
1.1 REVISION 6.0 1
1.2 REVISION 5.0 . . 1
1.3 REVISION 4.0 . . . 1
1.4 ReVISION 3.0 . . .o 1
15 REVISION 2.0 . . .o 1
1.6 ReVISION 1.0 . ..o e 1

2 Using AES System Services in SmartFusion2 and IGLOO2 Devices 2
21 DesigN ReqUITEMENTS . . . ot 2
2.2 AES ENQING . .o 3

221 AES Mode of Operationot 4
23 SmartFusion2 and IGLOO2 Cryptographic Block 4
231 System Controller Block in SmartFusion2 DeVICESttt 4
2.3.2 System Controller Block in IGLOO2 5
2.4 Using AES Services in SmartFusion2 and IGLOO2 DeVICeSo vt e 6
25 DesigN DeSCIIPtON . . . o 9
2.6 Design Example - Using AES Services in SmartFusion2 DeviCest i 9
26.1 Hardware Implementation e 9
2.6.2 Software Implementation 10
2.6.3 RUNNing the Designo 11
2.7 Design Example - Using AES Services in IGLOO2 DEeVICESot ii it 15
271 Hardware Implementation 16
2.7.2 RUNNINg the DesigNo e 16
2.8 CBC-MAC EXamPIeot e e e e 17
2.9 Design Example - CBC-MAC e e e e e 18
291 Design Example - Using CBC-MAC in SmartFusion2 Devices 18
29.2 Design Example - Using CBC-MAC in IGLOO2 DeViCesS, 20
2.10 Design and Programming Files e 21
2.11 CONCIUSION . e 21

AC410 Application Note Revision 6.0 iii

Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

& Microsemi

Power Matters.

AES Encryption Algorithm (128-bit Cipher Key) e e 3
System Controller Block in SmartFusSion2 DeVICESottt e e 5
System Controller Block in IGLOO2 DEVICES ottt it 6
AES Service Flow Diagram for IGLOO2 DEVICESt v ettt e e 8
AES Service Flow Diagram for SmartFusion2 Devices 9
SmartFusion2 AES System Service Design Example i 10
FlashPro Programmer Number 11
SmartFusion2 Security Evaluation Kit (M2S-EVAL-KIT) Board 12
AES System Service Design Example in ECB Mode Using HyperTerminal 13
AES System Service Design Example in CBC Mode Using HyperTerminal 14
AES System Service Design Example in OFB Mode Using HyperTerminal 15
IGLOO2 AES System Service Design Example 16
IGLOO2 Evaluation Kit Board 17
HyperTerminal Showing CoreSysService Design Qutput i, 17
CBC-MAC Computation Diagramot 18
HyperTerminal showing CBC-MAC Design in a SmartFusion2 Device 19
IGLOO2 CBC-MAC Design Example 20
CBC-MAC Of @ MBSSA0E . . . ittt et e e e 20

AC410 Application Note Revision 6.0 iv

& Microsemi

Power Matters.

Tables

Table 1 Design Requirements for SmartFusion2 DEVICESottt e e 2
Table 2 Design Requirements for IGLOO2 DEVICESottt e e e 2
Table 3 AES128DATAPTR SIrUCIUIE . . . oot e 7
Table 4 AES Command ValUueo 7
Table 5 128-bit AES Service Response Parameters e 8
Table 6 Service Response Status COUBSttt e 8

AC410 Application Note Revision 6.0 v

Revision History @ M. .
~ IVIICrOSeImi.

1

1.1

1.2
1.3
1.4

1.5

1.6

Power Matters.

Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

Revision 6.0

The following changes were made in revision 6.0 of this document.

* Afootnote about SoftConsole was removed from the SmartFusion2 design requirements. For more
information, see Design Requirements, page 2.

« The procedure to run the design was updated. For more information, see Running the Design,
page 11.

Revision 5.0

The document was updated for Libero v11.7 software release (SAR 76152).

Revision 4.0

The document was updated for Libero v11.6 software release (SAR 71462).

Revision 3.0
The document was updated for Libero v11.5 software release (SAR 64229).

Revision 2.0

The following changes were made in revision 2.0 of this document.

¢ The document was updated for Libero version 11.4 (SAR 61019).
« Updates were made to maintain the style and consistency of the document.

Revision 1.0

Revision 1.0 was the first publication of this document.

AC410 Application Note Revision 6.0 1

Using AES System Services in SmartFusion2 and IGLOO2 Devices . .
& Microsemi

Power Matters.

2 Using AES System Services in SmartFusion2
and IGLOO2 Devices

AES is an encryption solution developed to achieve several rapidly-evolving security concerns that have
arisen within the computer and embedded semiconductor industries. Selected devices of the
SmartFusion®2 SoC FPGA and IGLOO®2 FPGA families allow the user to access the built-in AES
engines and use AES encryption and decryption operation. These devices are marked as S (Data and
Design Security) in the device part number. The AES engine in the SmartFusion2 and IGLOO2 devices is
part of the Cryptographic Services block and resides in the system controller. The AES engine in the
SmartFusion2 and IGLOO?2 devices can accept 128-bit plain text input word and generates the
corresponding 128-hit ciphertext output word using a supplied 128-/256-bit AES key. It also provides a
reverse function by generating plaintext from the supplied ciphertext using the same AES key as used for
encryption. The AES engine is accessible through the system services. The system services are system
controller actions initiated by asynchronous events from the ARM Cortex-M3 processor in the
SmartFusion2 device or a fabric master in the SmartFusion2 and IGLOO?2 devices. The AES
cryptographic services can be used for data security applications and can be disabled through factory or
user security settings.

2.1 Design Requirements

The following tables list the design requirements of SmartFusion2 and IGLOO2 devices, respectively.

Table 1« Design Requirements for SmartFusion2 Devices

Design Requirements Description

Hardware Requirements

SmartFusion2 Security Evaluation Kit Rev D or later
(M2S-EVAL-KIT):

— 12 V adapter (provided along with the kit)

— FlashPro4 programmer (provided along with the kit)

— M2S090TS-1FGG484

Host PC or Laptop Any 64-bit Windows operating system
Software Requirements

Libero® System-on-Chip (SoC) v11.8

SoftConsole 4.0

Table 2 « Design Requirements for IGLOO2 Devices

Design Requirements Description

Hardware Requirements

IGLOO2 Evaluation Kit: Rev D or later
— 12 V wall-mounted power supply (provided along

with the kit)

— FlashPro4 programmer (provided along with the kit)

— M2GL090TS-1FGG484

Host PC or Laptop Any 64-bit Windows Operating System

Software Requirements
Libero SoC v11.8

AC410 Application Note Revision 6.0 2

Using AES System Services in SmartFusion2 and IGLOO2 Devices Q . .
> Microsemi

Power Matters.

Note: The IGLOO2 design uses the M2GL0O90TS-1FGG484 device in the IGLOO2 Evaluation Kit. However, the

2.2

Figure 1 «

official IGLOO2 Evaluation Kit uses M2GL010T-1FGG484 device. To run the application note design on
an M2GL010T-1FGG484 device, refer to the KB5659 for migrating from M2GL090TS-1FGG484 to
M2GL010T-1FGG484.

AES Engine

The AES engine uses the Rijndael algorithm with national institute of standards and technology (NIST)
approved parameters as described in federal information processing standards (FIPS) publication (PUB)
197. The AES encryption algorithm receives 128-bit of plaintext data and 128-/192-/256-bit of a cipher
key as input. After several rounds of computation, it produces 128-bit enciphered version of the original
plaintext data as output. The key size used for an AES cipher determines the number of transformation
rounds to convert the input into the final output, ciphertext. During the rounds of the algorithm, the data
bits are subjected to byte substitution, data shift operations, data mixing operations, and additional
operations (XOR) with an expanded version of the original 128-/192-/256-bit cipher key. The reverse
happens during the decryption operation.

The SmartFusion2 and IGLOO2 AES engine can be operated in 128-bit key mode or 256-bit key mode
and supports both encryption and decryption services.

The following figure shows the AES encryption algorithm with 128-bit key.

Data Input

Add Round Key

AES Encryption Algorithm (128-bit Cipher Key)

Expand Key into
Key Schedules for
Round Keys

Cipher Key

Byte Substitution

Py
2

Shift

Repeat

9 time;

n Mix

Add Round Key

HEUNGE

Byte Substitution

ToRininann:

Row Shift

W)

Add Round Key

Data Output

The SmartFusion2 and IGLOO2 AES engine assumes that the input data is in complete 128-bit blocks
and provides the complete 128-bit output blocks. Add any padding bits to the incomplete plaintext blocks
before calling the AES encryption service and remove any padding bits after receiving the results of the

AC410 Application Note Revision 6.0 3

Using AES System Services in SmartFusion2 and IGLOO2 Devices Q . .
> Microsemi

Power Matters.

AES decryption service. The input and output data format of the AES services is little-endian type. The
first byte of the first block is at the lowest address and there are no word alignment requirements. In other
words, consecutive bytes of the plaintext, ciphertext, and keys from the first to last are stored in order in
memory from the lowest to the highest bit address.

2.2.1 AES Mode of Operation

The mode of operation describes how to apply the ciphers single-block operation repeatedly to securely
transform the data that is larger than a block. The built-in system services are designed to support the
following cipher operating modes as recommended in NIST Special Publication 800-38A,
recommendation for Block Cipher Modes of Operation:

2211 Electronic Codebook

The electronic codebook (ECB) mode is a confidentiality mode that features, for a given key, the
assignment of a fixed ciphertext block to each plaintext block, analogous to the assignment of code
words in a codebook. It is the simplest encryption mode. The message is divided into blocks and each
block is encrypted separately. Identical plaintext blocks are encrypted into identical ciphertext blocks;
thus, it does not hide data patterns well.

2.2.1.2 Cipher-Block Chaining

The cipher block chaining (CBC) mode features the combination (chaining) of the plaintext blocks with
the previous ciphertext blocks. To make each message unique, an initialization vector (V) must be used
in the first block. The IV need not to be secret, but it must be unpredictable.

2.2.1.3 Output Feedback

The output feedback (OFB) features the iteration of the forward cipher on an IV to generate a sequence
of output blocks that are XORed with the plaintext to produce the ciphertext and vice-versa. The OFB
mode requires a nonce |V, that is, the IV must be unique for each execution of the mode under the given
key.

2214 Counter

The counter (CTR) mode features the application of the forward cipher to a set of input blocks, called
counters, to produce a sequence of output blocks that are XORed with the plaintext to produce the
ciphertext and vice-versa. The sequence of counters must have the property that each block in the
sequence is different from every other block, thus the 1V should be a nonce and must be unique for each
execution of the mode under the given key.

In the SmartFusion2 and IGLOO2 devices, the OPMODE parameter specifies the cipher operating
mode, refer to Table 3, page 7. The IV parameter used during the AES system service specifies the IV.

Refer to Using AES Services in SmartFusion2 and IGLOO2 Devices, page 6 for more information.

2.3 SmartFusion2 and IGLOO2 Cryptographic Block

In the SmartFusion2 and IGLOO?2 devices, the AES engine is part of this Cryptographic Services block
that resides in System Controller.

2.3.1 System Controller Block in SmartFusion2 Devices

The Cryptographic Services block can be accessed through the communication block (COMM_BLK).
There are two COMM_BLK instances: one in the microcontroller subsystem (MSS) that the user
interfaces with and the other that communicates with the first block that is located in the system
controller. The COMM_BLK consists an APB interface, eight byte transmit FIFO, and eight byte receive
FIFO. The COMM_BLK provides a bi-directional message passing facility between the MSS and the
system controller. The AES system services are initiated using the COMM_BLK in the MSS, which can
be read or write by any master on the AMBA high performance bus (AHB) matrix; typically either the
Cortex-M3 processor or a design in the FPGA fabric (also known as a fabric master). The system
controller receives the command through the COMM_BLK in the system controller. The system controller
uses the Sl master, an MSS bus master controlled by the system controller, to get the additional details
and options of the AES command at an address provided in the original COMM_BLK command, pointing
where this structured data has been stored in the memory before invoking the command. The AES

AC410 Application Note Revision 6.0 4

Using AES System Services in SmartFusion2 and IGLOO2 Devices

output bytes returned by the system controller are written to a memory address specified in this data
structure. On completion of the requested service, the system controller returns a status message

through the COM

M_BLK.

& Microsemi

Power Matters.

The following figure shows the system controller block in the SmartFusion2 device, where the
Cryptographic Services block resides.

Figure 2« System Controller Block in SmartFusion2 Devices
System Controller PCR| | Reset MSS ARV
- | Controller
Random Number Oscillator Cortex-M3
Generator Control
< JTAG
< SWD > S D |
Crypt hi COMM_BLK COMM_BLK rrr
ryptograpnic | |
DEVRST N Services A\ A 4
RXFIFO |« TXFIFo <—>| APB_1 | Cache Controller
SPI Signals for TX FIFO » RXFIFO 1
Programming SPI S D IC
A y A
\ 4 A 4
1 M 1. Ll AHB
JTAG Signals X' > JTAG s < > Simaser [¢—b] AHB Bus Matrix

2.3.2

'y
Oscillators usi

A 4

FPGA Fabric

System Controller Block in IGLOO2

The architecture and uses of the AES engine are similar to the IGLOO2 device except the COMM_BLK
in the system controller communicated with COMM_BLK in high performance memory subsystem
(HPMS). It is required to use a fabric master to initiate the AES system services. Microsemi® provides
the CoreSysService DirectCore IP that acts as fabric master to use the AES system services. The

CoreSysServices soft IP communicates with the COMM_BLK through one of the fabric interface

controllers (FICs), sends the AES system service request, retrieves the ciphertext output, and sends to

use the interface.

AC410 Application Note Revision 6.0

Using AES System Services in SmartFusion2 and IGLOO2 Devices . .
& Microsemi

Figure 3 «

Programming

JTAG Signals

2.4

System Controller PCR| | Reset HPMS
. Controller
Random Number Oscillator
Generator Control
Cryptographic COMM_BLK COMM_BLK
DEVRST_N Services
RXFIFO [« TXFIFO APB_1
SPI Signals for - TX FIFO » RXFIFO 1

Power Matters.

The following figure shows the system controller block in the IGLOO2 device.

System Controller Block in IGLOO2 Devices

M 1, »l AHB 1
JTAG Sl < SII Master <—>| AHB Bus Matrix |

A A
FIC

v v
FPGA Fabric Fabric Master

A 4

Refer to the UG0450: SmartFusion2 SoC and IGLOO2 FPGA System Controller User Guide for more
details on System Controller.

Also, refer to the Communication Block chapter in the UG0331: SmartFusion2 Microcontroller
Subsystem User Guide, UG0448: IGLOO2 FPGA High Performance Memory Subsystem User Guide for
more information on System Controller.

Using AES Services in SmartFusion2 and IGLOO2
Devices

In the SmartFusion2 device, the AES services can be accessed using the mss_sys_services driver in
the firmware core configurator. In the IGLOO2 device, use a master in fabric to initiate the AES system
services in the system controller through the COMM_BLK. You can create any fabric master block
following the steps explained below or use CoreSysServices soft IP for the AES services.
CoreSysServices provides a simple user interface in one side and an AHB-Lite master interface on the
FIC side to use the system services through the COMM_BLK. You can use the IGLOO2 approach in the
SmartFusion2 device also.

Following are the two options to use the AES engine in the SmartFusion2 device:

e Using firmware core through the MSS
e Using CoreSysService or own state logic as fabric master

AC410 Application Note Revision 6.0 6

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009

Using AES System Services in SmartFusion2 and IGLOO2 Devices Q . .
> Microsemi

Power Matters.

The following steps describe how to use the 128-bit AES encryption system service in the IGLOO2
device:

1. Setupthe AES128DATAPTR descriptor in the user memory space, which contains the following 44
bytes as indicated in the following table.

Table 3 « AES128DATAPTR Structure

Offset Length (Bytes) Field Description

0 16 KEY Encryption key to be used

16 16 IV IV (Ignored for ECB mode)

32 2 NBLOCKS Number of 128-bit blocks to process (maximum 65535)
34 1 MODE Cipher operating mode.

— Bit 7: DECRYPT

— Bit 6: RESERVED

— Bit 1: OPMODE

— Bit 0: OPMODE

DECRYPT: If DECRYPT is 0 then the data at SRCADDRPTR field is
treated as plaintext for encryption. If DECRYPT is 1 then the data at
SRCADDRPTR field is treated as cipher text for decryption.
OPMODE: Defines operating mode.

— 00: ECB mode

— 01: CBC mode

—10: OFB mode

—11: CTR mode

35 1 RESERVED Reserved
36 4 DSTADDRPTR Pointer to return data buffer
40 4 SRCADDRPTR Pointer to data to encrypt/decrypt

2. Enable the COMBLK_INTR interrupt from the COMM_BLK block to fabric by enabling
COMBLK_INTR_ENBL bit (29-bit) in INTERRUPT_ENABLEQ register at address 0x40006000.

3. Setup the registers in the COMM_BLK and send the command for 128-bit AES (0x03). The following
table describes the AES command values.

Table 4 « AES Command Value

System Service Name Command Value
128-bit AES Cryptographic Service 3
256-bit AES Cryptographic Service 6

The system controller receives the command through the COMM_BLK in the system controller. The
system controller reads the key and data from the address pointer and generates the AES ciphertext
test. On completion, the service system controller returns a status message through the COM-
M_BLK.

Wait for RCVOKAY bit to be set in the COMM_BLK STATUS register.

AC410 Application Note Revision 6.0 7

Using AES System Services in SmartFusion2 and IGLOO2 Devices . .
& Microsemi

Power Matters.

4. Read the Word Data register in the COMM_BLK and check the command, status code, and
AES128DATAPTR descriptor pointer, as indicated in the following table.
Table 5« 128-bit AES Service Response Parameters
Offset Length (Bytes) Field Description
0 1 CMD =3 Command
1 1 STATUS Command status
1 4 AES128DATAPTR Pointer to AES128DATA descriptor
The following table lists the service response status codes.
Table 6 « Service Response Status Codes
Status Description
0 Success
127 HRESP error occurred during the MSS transfer
253 Not licensed
254 Service disabled by factory security
255 Service disabled by user security
5. Read the AES data from user memory space (at the return, data buffer address is specified in 1).

The following figure shows the AES system service data flow diagram in the IGLOO2 device.

Figure 4« AES Service Flow Diagram for IGLOO2 Devices

HPMS

System
Controller
» ST T “-smr-7"~” AEs
Master - - - | |- -Master-|- - -4 Engine
COMM |, .| comm
: "1y BLK [| _BLK
. l
A |
| |
y ! I
T |
AHB fo !
APB3 [
A ittt Descriptor Setup
_______ Send Service Request and

Read Service Response

Fabric Master

——————— Fetch Descriptor Data
FPGA Fabric

——————— Service Result

AC410 Application Note Revision 6.0 8

Using AES System Services in SmartFusion2 and IGLOO2 Devices . .
& Microsemi

Figure 5«

Power Matters.

The steps for using the AES service in 256-bit key mode are similar to SmartFusion2. The following
figure shows the system service data flow diagram while initiating the AES service from the Cortex-M3
processor.

AES Service Flow Diagram for SmartFusion2 Devices

——————— Descriptor Setup

Send Service Request and

ARM (| T Read Service Response
CotexcMs | e Fetch Descriptor Data
Processor

——————— Send Service Result
S : D : |
A A 4 APB 1

| } —

¥ : ' : 1 System
C%acheu Controller
Cantrollgr

D '] eSRAMO | | eSRAM1
f Sy Y 7'y 'y f____;__Sﬂ__l___':_"s'”__'__’ AES

! ! o iy ----4 {4--FMaste L__|_{_| Master }___] Engine
v.v ., A Attt p—----

| | |

\ Lmmm e |

}

! AHB Bus Matrix « COMM 1 ,| COMM

| _BLK _BLK

—————————————————— 1 r P

| }
T A |
} }
v |
} }
AHB to
} }
' APB3 [!

————— -y

Note: You can use CoreSysServices IP in the SmartFusion2 or IGLOO2 devices and initiate the AES system

2.5

2.6

26.1

service using its simple user interface. Send the AES service request with the required data/parameter to
CoreSysServices IP. CoreSysServices IP performs the required steps to setup the descriptor, sends the
command through the COM_BLK to the AES service, and reads the data back from the eSRAM. Refer to
the CoreSysServices Handbook for more information.

Design Description

This application note includes two design examples for using the AES system service:

e AES_Services_SF2 design example: Demonstrates 128-bit and 256-bit AES encryption and
decryption in the SmartFusion2 device using the Microsemi system driver firmware code.

e AES_Services_IGL2 design example: Demonstrates 128-bit AES encryption and decryption in the
IGLOO2 device using the Microsemi CoreSysServices IP core.

The SmartFusion2 device design is implemented on the SmartFusion2 Security Evaluation Kit
(M2S-EVAL-KIT) using the M2S090TS-1FGG484 device. The IGLOO2 device design is implemented on
the IGLOO2 Evaluation Kit board using the M2GL090TS-1FGG484 device.

Design Example - Using AES Services in SmartFusion?2
Devices

The design example consists the RC oscillator, a fabric CCC, and MSS. The fabric PLL is used to
provide the base clock for the MSS. The system services are run using various C routine in the MSS, as
shown in the sub-sections. In addition, a universal asynchronous receiver/transmitter (UART1) in the
MSS is used to display the operation of the AES system service.

Hardware Implementation

The RC oscillator is used to generate a 50 MHz input clock and the fabric PLL is used to generate a
100 MHz clock from the RC oscillator. The 100 MHz clock is used as the base clock for the MSS. The
MMUART_1 signals are routed through the FPGA fabric for communicating with the serial terminal
program. The counter block is used to show that the device is up and running.

AC410 Application Note Revision 6.0 9

https://ww1.microchip.com/downloads/aemdocuments/documents/fpga/ProductDocuments/SupportingCollateral/CoreSysServices_HB.pdf

Using AES System Services in SmartFusion2 and IGLOO2 Devices O M. .
Iicrosemi

Power Matters.”

The following figure shows a block diagram of the design example.

Figure 6« SmartFusion2 AES System Service Design Example

my_mss_sb_top_0
DEVRSTN 1S READY b—
i !
WNLART 1 T% Al 1 T
WMUART 1R T

D heF
U:E;d |

SYSRESET_POR
(EETE————P=vrsT N POWELON RESELN

|_ CORERESETP_0
BG 2 l\a,w FESET_N ESET N P
gfﬁ:: o E:r_u ';un_isfr 3
[oin ey W B 7Y N Sl €EnTED

ax nig"
COMPG_DOMNE

(RS e

imy_mas_sb_ MSS 0
m_cu_a.\§ i o WES_ RESET N ACP|
MOCC CLK BASE AL L 2 APE)¢ SRESET M|
VESRESET P - ~HC AR 11 RIK
ST W AT X

:
c
£
g
5 Z
%

2.6.2 Software Implementation
The software design example performs the following operations:

1. Initialize the System Controller Enable

2. Initialize MMUART_1

3. Perform various cryptography services:
e Encrypt with 128-bit AES cryptography service
¢ Decrypt with 128-bit AES cryptography service
¢ Encrypt with 256-bit AES cryptography service
« Decrypt with 256-bit AES cryptography service

AC410 Application Note Revision 6.0 10

Using AES System Services in SmartFusion2 and IGLOO2 Devices O M. Semi

Power Matters.

2.6.2.1 aesl128 encryption ();
The aes128_encryption() function provides access to the SmartFusion2 AES-128 encryption
cryptography service. It allows you to perform AES encryption and choose the mode of operation: ECB,
CBC, OFB, or CTR mode. It allows you to specify the number of 128-bit blocks of plaintext to be
processed by the AES-128 system service. It also adds the padding bits to the incomplete blocks before
calling the AES system service.
2.6.2.2 aesl128 decryption ();
The aes128_decryption() function provides access to the SmartFusion2 AES-128 decryption
cryptography service. It allows you to perform AES decryption and choose the mode of operation: ECB,
CBC, OFB, or CTR mode. It allows you to specify the number of 128-bit blocks of ciphertext to be
processed by the AES-128 system service. It also adds the padding bits to the incomplete blocks before
calling the AES system service.
2.6.2.3 aes256_encryption ();
This function is similar to aes128_encryption() and provides access to the SmartFusion2 AES-256
encryption cryptography service function using the 256-bit key.
2.6.2.4 aes256_decryption ();
This function is similar to aes128_decryption() and provides access to the SmartFusion2 AES-256
decryption cryptography service function using the 256-bit key.
2.6.3 Running the Design
The following steps describe how to run the design example on the SmartFusion2 Security Evaluation Kit
(M2S-EVAL-KIT) using the M2S090TS-1FGG484 device:
1. Connect the power supply to the SmartFusion2 Security Evaluation Kit (M2S-EVAL-KIT) board.
2. Plug the FlashPro4 ribbon cable into JTAG Programming Header on the SmartFusion2 Security
Evaluation Kit (M2S-EVAL-KIT) board.
3. Program the SmartFusion2 Security Evaluation Kit (M2S-EVAL-KIT) board with the provided STAPL
file (refer to Design and Programming Files, page 21) using FlashPro4.
4. Make a note of the five-digit FlashPro 4 programmer number. To find the programmer number, open
the FlashPro software while the FlashPro 4 programmer is plugged into your PC.
Figure 7« FlashPro Programmer Number
File Edit View Tools Programmers Configuration Customize Help
DEHd| 2 [F% EE e [s s
New Project ;Iﬁ Configure Device
:/ _‘> RUN S
‘ Open Project = ! c
7 Programmer Programmer Port C C
{ MName Type Status Enabled
| IESEIN | FlashProd ush36191 (USB 2.0) |3

Programimer List Window

Refresh/Rescan for Programmers

AC410 Application Note Revision 6.0 11

Using AES System Services in SmartFusion2 and IGLOO2 Devices O M. .
icrosemi

Power Matters.”

5. Connect the host PC to the J24 connector using the USB min-B cable.
Figure 8« SmartFusion2 Security Evaluation Kit (M2S-EVAL-KIT) Board

50 Mhz LPDDAR GPID SWws LEDs JTAG Programming Resat ETM Trace
Connect to Gscitator Haader Header Switch a-:g
FP4 Header 0
OO
Switch
AVIAR
Dabug
Connect to % Header
PRy g
Power cord
101001000 |
e o
Connactor | =2 i EE o = | - gﬂDEE
= - 1 ks [' e
2= . | " — : Pairs
Connect to LISE-LIART C ; T 0 e - — =
PC USB AT = T | .I b 'I 1 = : p o) o L - " i e
F -. it 1k 28 et e ! Header
Microl58 B)
aTag
SERDES
Aefarance
Cleck i
| I
W1 - SF Currant
T SmantFusion2 S Flash | Measurement
x1 PCle Edge On Boand LP Current
Connactar 125 Mhz Crystals Measurament SW3 sz

6. Invoke the SoftConsole project, click Debug Configurations from the Run menu, and then click the
Debugger tab.

7. Change the usb number in the following config option to match the number of your FlashPro 4
programmer (recorded during step 3):
--command microsemi_flashpro_port usb96191

Click Apply and launch the debugger.

9. Start a HyperTerminal session with 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. Use other serial terminal emulation programs such as PuTTY or Tera Term if HyperTerminal
is not available. Refer to the Configuring Serial Terminal Emulation Programs Tutorial for configuring
HyperTerminal, Tera Term, or PuTTY.

10. Run the debugger in the SoftConsole tool. The HyperTerminal window shows various options to run

the AES encryption and decryption. Follow the instruction on the screen to run the example.

®

AC410 Application Note Revision 6.0 12

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

Using AES System Services in SmartFusion2 and IGLOO2 Devices A= . .
.~ Microsemi

Power Matters.

The following figures show the HyperTerminal.
Figure 9« AES System Service Design Example in ECB Mode Using HyperTerminal
File Edit Setup Control Window Help

SmartFusion2 Cryptography System Services Example

Thiz example project demonstrates the use of the SmartFusion2 cryptography
System Services. The following system service are demonstrated:
— AES-128 encryption and decryption.
— AES-256 encryption and decryption.
[Please refer to the README.txt for input and output data format.

Zelect the Cryptographic operation to perform:
Press K *1’ to perform AES-128 encryption
Press to perform AES-128 decryption
Press to perform AES-256 encryption
Press to perform AES-256 decryption

Enter the 128 bit key to bhe used for AES {as hex Bytes. LS Byte firs
AxB1 BxP2 BxB3 BxB4 BxA5 BxB6 BxA7 Bx@8
BxB? BxP1l BxB2 BxB3 BxB4 BxB5 BxB6 Bx@7

Enter the 128 bit initialization vector(IV> to be used for AES
{as hex Bytes, LS Byte first):

AxBA3 BxPB3 BxB3 BxA3 BxA3 BxA3 Bx@3 Bx@3

BxB3 BxB3 BxB3 BxB3 Bx03 BxA3 Bx@3 Bx83

Select AES modes

— ECB: Electronic CodeBook Mode. Press key

— GCBC: Cipher Block Chaining Mode. Press key 'B’
— QFB: Qutput Feedback Mode. Press key 'C’
— GIR: Counter Mode. Press key 'D’
Selected Encryption Mode : Electronic CodeBook Mode

Enter the 16 bytes of input data to encrypt ¢as hex Bytes, L% Byte firs
AxB2 BxPB2 BxB2 BxB2 BxA2 BxA2 Bx@2 Bx@2

BxB2 BxB2 BxB2 BxB2 Bx02 BxB2 BxB2 Bx82

Encrypted

Bxch Bx93 Bx37 Bx8e Bxll Bxf8 BxBd Bx7d
Bxcd Bx83 Bx42 Bx87 Bxaa BxBe Bx15 Bxeb

Zelect the Cryptographic operation to perform:
Press Key ‘1’ to perform AES—128 encryption
*2' to perform AES-128 decryption

3 to perform AES-256 encryption

*4' to perform AES-256 decryption

Enter the 128 bit key to bhe used for AES {as hex Bytes. LS
AxB1 BxP2 BxB3 BxB4 BxA5 BxB6 BxA7 Bx@8
BxB? BxP1l BxB2 BxB3 BxB4 BxB5 BxB6 Bx@7

Enter the 128 bit initialization vector(IV> to be used for AES
{as hex Bytes, LS Byte first):

AxBA3 BxPB3 BxB3 BxA3 BxA3 BxA3 Bx@3 Bx@3

BxB3 BxB3 BxB3 BxB3 Bx03 BxA3 Bx@3 Bx83

Select AES modes

— ECB: Electronic CodeBook Mode. Press key 'R’
— GCBC: Cipher Block Chaining Mode. Press key 'B’
— QFB: Qutput Feedback Mode. Press key 'C’
— GIR: Counter Mode. Press key 'D’
Selected Decryption Mode Cipher Block Chaining Mode

Enter the 16 bytes of input data to decrypt ¢as hex Bytes, LS Byte first):
AxB2 BxPB2 BxB2 BxB2 BxA2 BxA2 Bx@2 Bx@2

BxB2 BxB2 BxB2 BxB2 Bx02 BxB2 BxB2 Bx82

Decrypted

Bxch Bxch Bx?7 Bx52 Bx62 BxBc Bx6d Bx5H8
Bxe2 BxeBd Bx34 Bx2c Bxal Bx78 Bx5e Bx29

Press any key to continue.

AC410 Application Note Revision 6.0 13

Using AES System Services in SmartFusion2 and IGLOO2 Devices P~ . .
> Microsemi

Power Matters.

Figure 10« AES System Service Design Example in CBC Mode Using HyperTerminal

Select the Cryptographlc operation to perform
Press Key ‘1’ to perform AES—128 encryption
Press to perform AES-128 decryption
Press perform AES-256 encryption
Press perform AES-256 decryption

Enter the 128 bit key to bhe used for AES <(as hex Bytes, LS Byte first
AxB1 BxP2 BxB3 BxB4 BxA5 BxB6 BxA7 Bx@8
BxB? BxP1l BxB2 BxB3 BxB4 BxB5 BxB6 Bx@7

Enter the 128 bit initialization vector(IV> to be used for AES
{as hex Bytes, LS Byte first):

AxBA3 BxPB3 BxB3 BxA3 BxA3 BxA3 Bx@3 Bx@3

BxB3 BxB3 BxB3 BxB3 Bx03 BxA3 Bx@3 Bx83

Select AES modes

— ECB: Electronic CodeBook Mode. Press key

— GCBC: Cipher Block Chaining Mode. Press key 'B’
— QFB: Qutput Feedback Mode. Press key 'C’
— GIR: Counter Mode. Press key 'D’
Selected Decryption Mode : Cipher Block Chaining Mode

Enter the 16 bytes of input data to decrypt <as hex Bytes,
AxB2 BxPB2 BxB2 BxB2 BxA2 BxA2 Bx@2 Bx@2
BxB2 BxB2 BxB2 BxB2 Bx02 BxB2 BxB2 Bx82

Decrypted

Bxch Bxch Bx?7 Bx52 Bx62 BxBc Bx6d Bx5H8
Bxe2 BxeBd Bx34 Bx2c Bxal Bx78 Bx5e Bx29

Select the Cryptographlc operatlon to perform:
Press Key ‘1’ t £ AE: 28 encryption
Press decryption
Press encryption
Press = decryption

Enter the 256 bit key to bhe used for AES <(as hex Bytes, LS Byte first
Bxl2 Bx12 Bxl2 Bx12 Bx23 Bx23 Bx23 Bx23
Bx34 Bx34 Bx34 Bx34 Bx45 Bx45 Bx45 Bx45
Bx56 Bx56 Bx56 Bx56 Bx67 Bx67 Bx67 Bx67
Bx78 Bx78 Bx78 Bx78 Bx89 Bx89 Bx8? Bx98

Enter the 128 bit initialization vector(IV> to be used for AES
{as hex Bytes, LS Byte first):

AxBA BxPl BxB2 BxB3 Bx@4 BxA5 BxB6 Bx@7

BxB? BxB? Bx18 Bxll Bx12 Bx12 Bx12 Bx12

Select AES modes:
— ECB: Electronic CodeBook Mode. Press key
— GCBC: Cipher Block Chaining Mode. Press key
— QFB: Qutput Feedback Mode. Press key
— GCIR: Counter Hode. Press key
d E Mode : O Feedback Mod
Enter the 16 bytes of input data to encrypt ¢as hex Bytes, LS Byte first
Bx12 Bx23 Bx34 Bx45 Bx67 Bx78 Bx89 BxHa
BxBh BxBc BxBd BxBe BxBf Bx18 Bx82 B:83

Encrypted

Bxf5 Bxl4 Bxae Bx69 Bx27 Bx21 Bx72 Bxbha
Bxe? Bx87 Bxab Bx27 Bx86 Bxfc Bxd3 Bxe?

Press any key to continue.

AC410 Application Note Revision 6.0 14

Using AES System Services in SmartFusion2 and IGLOO2 Devices

Figure 11 «

Note:

2.7

_ Microsemi

Power Matters.

AES System Service Design Example in OFB Mode Using HyperTerminal

Enter the 256 bit key to bhe used for AES <(as hex Bytes, LS Byte f
Bxl2 Bx12 Bxl2 Bx12 Bx23 Bx23 Bx23 Bx23
Bx34 Bx34 Bx34 Bx34 Bx45 Bx45 Bx45 Bx45
Bx56 Bx56 Bx56 Bx56 Bx67 Bx67 Bx67 Bx67
Bx78 Bx78 Bx78 Bx78 Bx89 Bx89 Bx8? Bx98

Enter the 128 bit initial

{as hex Bytes. LS Byte firs

BxB0 Bx@1 BxB2 BxB3 OxB4 BxB5 Bx@6 BxB7
BxB? BxB? Bx18 Bxll Bx12 Bx12 Bx12 Bx12

Select AES mode
ECB: Electronic CodeBook Mode.
: Cipher Block Chaining Mode.
: Qutput Feedback Mode.
Counter Mode.

es npuw v
Bx12 Bx23 Bx34 Bx45 Bxﬁ? Bx78 Bx89 BxBa
BxBh BxBc BxBd BxBe BxBf Bx18 Bx82 B:83

Encrypted

Bxf5 Bxi4 Bx69 Bx27 Bx21 Bx72 Bxbha
Bxe? Bx87 Bx27 Bx86 Bxfc Bxd3 Bxe?

Key ‘1‘ to pexfolm HES 128 encxyptlon
Key *2' to perform AES-128 decryption
Key *3' to perform AES-256 encryption
Key *4* to perform AES-256 decryption

Enter the 256 bit key to bhe used for AES <(as hex Bytes, LS Byte fim
Bxll Bxll Bxll Bxll Bxdl Bxil Bxil Bxdd
Bxll Bxll Bxll Bxll Bxdll Bxil Bxil Bxdd
gxii Bxll Bxll Bxil Bxll Bxil Bxil Bxid

(ag hex Byteg y i b
Bx12 Bx12 Bxl2 Bx12 Bx12 Bx12 Bx12 Bx12
Bx12 Bx12 Bx12 Bx12 Bx12 Bx12 Bx12 Bx12

Select AES mode

— ECB: Electronic CodeBook Mode.

— GCBC: Cipher Block Chaining Mode.

— QFB: Qutput Feedback Mode.

— CTR: Counter Mode.

Selected Decryption Mode : Counter Mode

Enter the 16 bytes of input data to decrypt <a
Bxll Bxll Bxll Bxll Bx22 Bx22 Bx22 Bx22

Bx33 Bx33 Bx33 Bx33 Bxd4 Bx44 Bx44 Bx44
Decrypted

Bx29 Bxdl Bxald Bx3de BxcH Bx54 Bxbl
Bx2e Bxd6 Bxla Bx4f Bx27 Bx43 Bx18 Bx3b

key to continue.

The ASCII-Hex notation is used for input by the program so the data is more easily readable.

The data goes from the first byte to the last byte of the multi-byte message, IV, key, and so on entered or
displayed from left to right (and then top to bottom, if multi-line) as shown by the terminal emulator. Each
byte is represented by two ASCII characters selected by value from the ordered sixteen character set
0-9 and a-f with the leftmost ASCII character representing the first four bits of the byte (that is, bits 7:4)
encoded into a hexadecimal digit having its first binary bit (bit 7) interpreted as the most significant bit,
and then the resulting hexadecimal digit encoded into an 8-bit ASCII character; the rightmost ASCII
character representing the following four bits (bits 3:0) are encoded with the last binary bit of the byte (bit
0) being interpreted as the least significant of the second hexadecimal digit. The AES output is the Hex
data displayed in endian order.

Design Example - Using AES Services in IGLOO2
Devices

The design consists the IGLOO2 HPMS, the on-chip 50 MHz RC oscillator, a Fabric CCC, the
CoreSysServices IP block, the CoreRESET IP block, a CoreABC IP block, a CoreUART _apb IP block, a
fabric state machine to control the CoreSysServices bock, and an APB data block to reformat the AES
output so it can be displayed by a terminal emulator.

AC410 Application Note Revision 6.0 15

Using AES System Services in SmartFusion2 and IGLOO2 Devices Q . .
> Microsemi

2.7.1

Figure 12 «

2.7.2

Power Matters.

Hardware Implementation

The 50 MHz RC oscillator is used as the main clock. It is used with a CCC to provide the 100 MHz
reference clock to the HPMS. The 100 MHz clock is also used as a main clock for the fabric blocks. The
HPMS is configured to use the CoreResetP block to generate reset signals for all the blocks. The
CoreSysServices IP is configured to use the AES system services. It sends a command to the system
controller through COMM block in the HPMS. The fabric Sysservice state control logic initiates the AES
system service and captures the AES data from CoreSysService. The fabric Sysservice state block
sends the plaintext AES data that (in the example design) is basically a big-endian binary counter that
increments the AES plaintext after every AES encryption operation. The incremented value is used as
the input for the next encryption operation. The fabric Sysservice state block uses the most recent
ciphertext AES data that is calculated as input for the decryption operation. The UART controller block is
mainly used to display the AES output to HyperTerminal; it is not required for the AES operation. The
APB data block captures the AES data values and converts the binary data to ASCII Hexa data to display
in human readable format on the HyperTerminal.

The CoreABC program controls initiating fabric state machine and displaying the data through the
CoreUARTapb interface.

The following figure shows the block diagram of the design example.

IGLOO2 AES System Service Design Example

SysService Controller Block UART Controller Block

SysService | o APB Data P
State Control Logic | i Block CoreUARTapb [«

A 4
\4

CoreSysServices |«

e

System Builder Block

< | |

CoreABC

FAB_OSC FAB_CCC HPMS

CORERESTP 4‘

Running the Design

The following steps describes how to run the design example on the IGLOO2 Evaluation Kit board using
the M2GL090TS-1FGG484 device:

1. Connect the power supply to the IGLOO2 Evaluation Kit board.

2. Plug the FlashPro4 ribbon cable into connector J5 (JTAG Programming Header) on the IGLOO2
Evaluation Kit board.

3. Connect the mini USB cable between the FlashPro4 and the USB port of the PC.

4. Connectthe host PC to the J18 connector using the USB min-B cable. Ensure that the USB to UART
bridge drivers are automatically detected (can be verified in the Device Manager).

5. If USB to UART bridge drivers are not installed, download and install the drivers from
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip.

6. Start a HyperTerminal session with 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. Use other serial terminal emulation programs such as PuUTTY or Tera Term if HyperTerminal
is not available. Refer to Configuring Serial Terminal Emulation Programs Tutorial for configuring
HyperTerminal, Tera Term, or PuTTY.

AC410 Application Note Revision 6.0 16

http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

Using AES System Services in SmartFusion2 and IGLOO2 Devices O M. Semi

Power Matters.

7. Program the IGLOO2 Evaluation Kit board with the provided STAPL file (refer to Design and
Programming Files, page 21) using FlashPro4.

Figure 13+ IGLOO?2 Evaluation Kit Board

50 Mhz LPDDR GPID LEDs JTAG Programming Feset SW3 SWd
Osciltator Header Header Switch

OOt

Switch
RVINAR
Connect e Debug
awer heade
to Power pply Input
cord
10/100/1000 i
Etharmat Header
RJ45
i
Connector SP1
Flash
Connect —ysg-uam Senbes
to PCUSB SMA
Pairs
MicralISE
o1G
SP
Programming
SERDES
Referance “
Clock

SWe UL OnBoard LP Curemt SW7 SWS
125 Mhz Crystals Measurement

%1 FCle Edge Connector IGLOG2

After programming, HyperTerminal displays a message to run the AES system services, as shown
in the following figure.

Note: Depending on the terminal program used, the board may need to be power cycled after programming.

Figure 14« HyperTerminal Showing CoreSysService Design Output

File Edit Setup Control Window Help

[Enter wour choice

your choice

rt aes encryption
rt aes decryption

acs value

tart & encryption

rt aes decryption

2.8 CBC-MAC Example

In cryptography, CBC-MAC is a technique for constructing a message authentication code from a block
cipher. It uses the AES encryption in CBC mode. The IV used in first block is zero. Then a chain of blocks
is created as each block depends on the proper encryption of the previous block.

AC410 Application Note Revision 6.0 17

Using AES System Services in SmartFusion2 and IGLOO2 Devices

Figure 15«

Note:

2.9

291

29.1.1

29111

2.9.1.2

& Microsemi

Power Matters.

The following figure shows the computation technique for CBC-MAC of a message.
CBC-MAC Computation Diagram

m2 mx

4 &

[

This application note shows the design example to generate CBC-MAC in the SmartFusion2 and
IGLOO2 devices.

result

The CBC-MAC design example uses message size that is exact multiple of 128 bits, and it must not be
used in a production environment without careful review by a qualified cryptographer.

Design Example - CBC-MAC

This section describes the CBC-MAC application design example. The CBC-MAC design is implemented
in both the SmartFusion2 and IGLOO2 devices.

¢ CBC_MAC_SF2 design example: Demonstrates using CBC-MAC in the SmartFusion2 device. It
uses firmware code to generate CBC-MAC.

¢ CBC_MAC_IGL2 design example: Demonstrates using CBC-MAC in the IGLOO2 device. It uses
CoreSysServices IP to generate CBC-MAC.

Design Example - Using CBC-MAC in SmartFusion2 Devices
This design example is similar to AES_Services_SF2 design example. It uses same hardware
implementation and uses UART1 in the MSS to display the CBC-MAC operation.

Software Implementation

The software design example performs the following operations:
1. Initializes the system controller enable

2. Initializes MMUART_1
3. Performs CBC-MAC

cbc_mac ();

The cbc_mac () function allows to run CBC-MAC in the SmartFusion2 AES-128 device. It allows you to
enter messages with variable length, perform CBC-MAC operation, and display the result.

Running the Design

This section describes how to run the CBC-MAC design example in the SmartFusion2 Security
Evaluation Kit (M2S-EVAL-KIT) using the M2S090TS-1FGG484 device. Use AES_Services_SF2 design
example steps to program the device and open HyperTerminal. Then, invoke the CBC-MAC SoftConsole
project, and follow the same steps in the AES_Services_SF2 design example, including modifying the
debugger settings to run the debugger.

AC410 Application Note Revision 6.0 18

Using AES System Services in SmartFusion2 and IGLOO2 Devices A< . .
.~ Microsemi

Power Matters.

The following figure shows how to run the demo design.
Figure 16 « HyperTerminal showing CBC-MAC Design in a SmartFusion2 Device

Enter the 128 hit key to be used for AES (asz hex Bytes. L8
Bx@1l BxP2 BxPB3 BxP4 BxB5 BxB6 OxA7 BxA8

@x@2? Bx01 AxB2 BxA3 BxB4 Bx@5 OxB6 AxA7

Enter the number of messages for CBC-MAC

Enter Messages

Enter the 16 hytes of input data to encrypt] first
@1l Bx11 Bxll Bxdll Bxll @xll Bx11 Bxll
Bx1l Bx11 Bxll Bxdll Bxll @xll Bx1l Bx12

Enter the 16 hytes of input data to encrypt
Bx12 Bx12 Bxl2 Bxl2 Bx12 @x12 Bx12 Bx12
Bx12 Bx12 Bx12 Bxl2 Bx12 Bx12 Bx12 Bx13

Enter the 16 hytes of input data to encrypt
Bx13 Bx13 Bx13 Bxl3 Bx13 @x13 Bx13 Bx13
Bx13 Bx13 @x13 Bx13 Bx13 Bx13 Bx13 Bxl4

Enter the 16 hytes of input data to encrypt
Bx14 Bx14 BAxld Bxid Bxld Bxld Bx14 Bxld
Bx14 Bx11 Bxl14 Bxi4 Bx14 Bxl4 Bx14 Bx15

Enter the 16 hytes of input data to encrypt] first
@15 Bx15 Bxl5 Bxl5 Bx15 @x15 Bx15 B@x15
Bx15 Bx15 Bx15 Bxl5 Bx15 @x15 Bx15 Bxl6

Encrypted data output:

Bx7d Bxfa Bx8d Bxdb
Bx35 Bx4f @ Bx6h Bx58 @

Encrypted output =

Bx72 Bxal Bxb6h Bxaa
Bxd2 Bxc? Bx2h BxB1

Encrypted

Bxa3 Bxbha Bxfe Bxba
Bx33 Bxhe Bx52 Bxh8

Encrypted output =

Bx37 Bxf0 Bxhe Bxk35
Bxh? Bxcc Bx53 Bxha

Encrypted output =
BxBa BxEQ Bx25 Bxfe
Bxel Bx91 Bx1d Bx43
CBC-MAC data:

BxBa BxBA Axdl Bx25 Bxfe Bxdec Bx52 Bxba
Bxel Bx9?1 Bx55 Bxld Bx43 Bxbc BxB1 BxBa

AC410 Application Note Revision 6.0 19

Using AES System Services in SmartFusion2 and IGLOO2 Devices AN . .
.~ Microsemi

Power Matters.

2.9.2 Design Example - Using CBC-MAC in IGLOO2 Devices

This design example is similar to the AES_Services_IGL2 design example. The fabric system service
state control logic configures CoreSysService to generate AES CBC mode. It also sends the appropriate
IV during each AES services. The design example uses a message block that sends the messages for
AES operation. The message block uses four messages in the current implementation. One of the
messages is tied to DIP switch in the IGLOO2 Evaluation Kit. You can change the DIP switch and
change the message.

Note: You can modify the message block, content, and size. However, you need to change the counter in
Sysservice state control logic to match the message length. The other blocks are similar to the
AES_Services_IGL2 design example.

The following figure shows the block diagram of CBC-MAC design.
Figure 17« IGLOO2 CBC-MAC Design Example

SysService Controller | Message_block

Block UART Controller Block
Sysservice CoreUARTaph
R il i
Logic
System Builder Block & 4} I 5 ¢ H][5

CoreABC

A
A4

FAB_OSC FAB_CCC HPMS

CORERESETP Q

2.9.2.1 Running the Design

This section describes running the CBC-MAC design example in the IGLOO2 Evaluation Kit using the
M2GL090TS-1FGG484 device. Use AES_Services_IGL2 design example steps to program the device
and open HyperTerminal.

The following figure shows running the demo design.
Figure 18« CBC-MAC of a Message

| COM42:57600b rm V == x|

File Edit Setup Control Window Help

Enter your choice

n \|

1.8tart ch—mac encryption
il

chc—mac value
(B41835D5
21757DEF
CB2A4CAD
?CF70FEB

Enter your choice

1.8tart ch—mac encryption

AC410 Application Note Revision 6.0 20

Using AES System Services in SmartFusion2 and IGLOO2 Devices . .
& Microsemi

2.10

2.11

Power Matters.

Design and Programming Files

Download the SmartFusion2 and IGLOO2 AES design files from the Microsemi Corporation website:
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac410_aes_services_liberov11p8_df

Download the SmartFusion2 and IGLOO2 CBC-MAC design files from the Microsemi Corporation
website:
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac410_cbc_mac_liberov11p8_df

The SmartFusion2 design file consists a Libero Verilog project, SoftConsole software project, and
programming files (.stp) for the SmartFusion2 Security Evaluation Kit (M2S-EVAL-KIT). The IGLOO2
design file consists a Libero Verilog project and programming files (.stp) for the IGLOO2 Evaluation Kit.
Refer to the Readme . txt file included in the design file folder for the directory structure and description.

Conclusion

The SmartFusion2 and IGLOO2 family of FPGAs are the most secure programmable logic devices ever
made. In selected SmartFusion2 and IGLOO2 devices, the AES engine can perform encryption or
decryption on 128-bit blocks of user data using either 128-bit or 256-bit keys as defined in NIST FIPS
197. Several common modes are provided to encrypt or decrypt arbitrarily sized blocks of data, including
ECB, CBC, OFB, and CTR modes as defined in NIST SP800-38a. The AES system services, along with
the other cryptographic services offered, allow you to use the SmartFusion2 and IGLOO2 devices in
various secure applications.

AC410 Application Note Revision 6.0 21

https://www.microchip.com/en-us/application-notes/ac410
https://www.microchip.com/en-us/application-notes/ac410

	1 Revision History
	1.1 Revision 6.0
	1.2 Revision 5.0
	1.3 Revision 4.0
	1.4 Revision 3.0
	1.5 Revision 2.0
	1.6 Revision 1.0

	2 Using AES System Services in SmartFusion2 and IGLOO2 Devices
	2.1 Design Requirements
	2.2 AES Engine
	2.2.1 AES Mode of Operation

	2.3 SmartFusion2 and IGLOO2 Cryptographic Block
	2.3.1 System Controller Block in SmartFusion2 Devices
	2.3.2 System Controller Block in IGLOO2

	2.4 Using AES Services in SmartFusion2 and IGLOO2 Devices
	2.5 Design Description
	2.6 Design Example - Using AES Services in SmartFusion2 Devices
	2.6.1 Hardware Implementation
	2.6.2 Software Implementation
	2.6.3 Running the Design

	2.7 Design Example - Using AES Services in IGLOO2 Devices
	2.7.1 Hardware Implementation
	2.7.2 Running the Design

	2.8 CBC-MAC Example
	2.9 Design Example - CBC-MAC
	2.9.1 Design Example - Using CBC-MAC in SmartFusion2 Devices
	2.9.2 Design Example - Using CBC-MAC in IGLOO2 Devices

	2.10 Design and Programming Files
	2.11 Conclusion

