
Application Note AC436

May 2020 1
© 2020 Microsemi, a Microchip company

Using Device Certificate System Service in
SmartFusion2 - Libero SoC v11.7

Table of Contents

Purpose
This application note describes how to read and export device certificate using system services and
analyze the content of the device certificate in SmartFusion®2 system-on-chip (SoC) field programmable
gate array (FPGA) devices.

Introduction
The device certificate includes a digital signature, an electronic analogue of a written signature. The
digital signature assures that the claimed signatory signed the information. In addition, a digital signature
detects whether or not the information was modified after it was signed.
Microsemi SmartFusion2 device certificate is an X.509 complaint digital certificate that is digitally signed
with a Microsemi private key. The X.509 is an ITU-T standard for a public key infrastructure (PKI) and
privilege management infrastructure (PMI). It specifies standard formats for public key certificates,
certificate revocation lists, attribute certificates, and a certification path validation algorithm.
The device certificate in the SmartFusion2 devices cryptographically binds the device serial number, date
code, its model or part number, the device’s secret factory key, and a digital signature from Microsemi
that is validated internally by the device and externally by the user.
The digital certificate is stored in the device’s embedded non-volatile memory (eNVM). The bigger
devices (M2S150 and M2S090) support elliptic curve cryptography (ECC). Therefore, the factory ECC
public keys are also certified and included in the device certificates.

Purpose . 1
Introduction . 1

Device Certificate Application .2
SmartFusion2 Device Certificate . 2
References . 3
SmartFusion2 Device Certificate Service . 3
Using Device Certificate Service . 5
Design Requirements . 7
Design Description . 7
Hardware Implementation . 8
Software Implementation . 9
Setting Up the Design . 9
Running the Design . 11

Viewing Fields in Device Certificate . 12
Conclusion . 16
Appendix A: Design and Programming Files . 17
Appendix B: Decoding Device Certificate Using ASN.1 JavaScript Decoder Open Source Tool 18
List of Changes . 21

Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7

2 Rev ision 4

Device Certificate Application
The primary advantage of the device certificate application is to prevent counterfeiting and fraud.
Counterfeiting in electronic parts can take various forms, such as:

• Cloning designs at the transistor level
• Black-topping and re-marking devices to misrepresent used devices as new
• Changing the date codes
• Improving the speed grade or the temperature grade, and increasing the alleged screening level

As a result, any mismatch between how the device is represented by its shipping paperwork or the label
printed on its surface and the digital certificate indicates the possibility of counterfeiting fraud.
One application for a SmartFusion2 device certificate is that if a counterfeiter remarks a device with a
faster speed grade, the model number authenticated in the device certificate still reflects the true speed
grade. When the user attempts to program such a device with a design that was compiled for the faster
speed grade device, the programmer observes that the speed grade reflected in the certificate is
incorrect for the design.

SmartFusion2 Device Certificate
The SmartFusion2 device certificate is encoded in the abstract syntax notation one format: ASN.1. It is a
standard and notation that describes rules and structures for representing, encoding, transmitting, and
decoding data in telecommunications and computer networking. The formal rules enable representation
of objects that are independent of machine-specific encoding techniques. Formal notation makes it
possible to automate the task of validating whether a specific instance of data representation abides by
the specifications.

Table 1 • SmartFusion2 Device Certificate Fields and Descriptions

Field Name Description

Version Contains the version information

Serial Number Contains the serial number information

Signature Algorithm Provides information about the algorithm that is used to generate the signature

Issuer Provides information about certificate issuers information like: Country Name,
Organization Unit Name, Organization Name, and Common Name information

Validity Provides information about validity of the certificate
• Not Before (start time specified for the certificate validity)
• Not After (end time specified for the certificate validity)
Note: The certificate is only valid between these specified time fields.

Subject Provides information about generation qualifier, surname, and given name

Subject Public Key Info Provides the information about the public key generation algorithm and public
key information
• Public Key Algorithm
• Subject Public Key

Issuer Unique Identifier It contains issuer unique identification string of 9 bytes size

Subject Unique Identifier It contains 0 x 00 + factory serial number (FSN) + serial number modifier
(SNM). For more information about FSN and SNM descriptions, refer to the
UG0443: SmartFusion2 and IGLOO2 FPGA Security and Reliability User
Guide.

Extensions Reserved

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037

References

Revision 4 3

References
The following list of references is used in this document:

• UG0331: SmartFusion2 Microcontroller Subsystem User Guide
• UG0450: SmartFusion2 SoC and IGLOO2 FPGA System Controller User Guide
• UG0443: SmartFusion2 and IGLOO2 FPGA Security and Reliability User Guide

SmartFusion2 Device Certificate Service
SmartFusion2 device certificate service is a part of device and design information services of the system
services. These system services are performed by the system controller block.
The device certificate service provides access to the system controller’s device and design information
services. This service is accessed through the communication block (COMM_BLK).
There are two COMM_BLK instances:

• Located in the microcontroller sub system (MSS)
• Located in the system controller

The COMM_BLK consists of an APB interface, eight byte transmit FIFO, and eight byte receive FIFO.
The COMM_BLK provides a bi-directional message passing facility between the MSS and the system
controller.
The device certificate service is initiated using the COMM_BLK in the MSS, which can be read or written
by any master on the AMBA high performance bus (AHB) matrix; typically either the ARM® Cortex®-M3
processor or a design in the FPGA fabric (also known as a fabric master).
The system controller receives the command through the COMM_BLK in the system controller. On
completion of the requested service, the system controller returns a status message through the
COMM_BLK. The responses generated are based on the selected command.

Certificate Signature Algorithm Provides information about the algorithm that is being used.

Certificate Signature Provides the certificate signature information. The signature of the
SmartFusion2 device certificate can be verified using Microsemi public key.

Table 1 • SmartFusion2 Device Certificate Fields and Descriptions (continued)

Field Name Description

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037

Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7

4 Rev ision 4

Figure 1 shows the system controller block in SmartFusion2.

Figure 1 • System Controller Interface with MSS and FPGA Fabric

Using Device Certificate Service

Revision 4 5

Using Device Certificate Service
The device certificate service is initiated using the COMM_BLK. The COMM_BLK base address resides
at 0x40016000 and extends to address 0x40016FFF in the Cortex-M3 processor memory map. Table 2
summarizes the control and status registers for the COMM_BLK.
For more information about COMM_BLK registers description, refer to the "Communication Block"
chapter in the UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

The following are the basic steps to use the device certificate system service in the SmartFusion2
devices:

1. Disable the COMM BLOCK loop back mode by writing "1" to LOOPBACK bit (bit-5) of the
CONTROL register (0x40016000).

2. Enable the COMM block by writing "1" to ENABLE bit (bit-4) of the CONTROL register.
3. Enable the receive interrupt by writing "1" to RCVOKAY bit (bit-1) of the INT_ENABLE register

(0x40016008).
4. Enable the COMM_BLK_INTR (INTISR[19]) in Cortex-M3 Processor interrupts.
5. Set up the COMM_BLK register in byte mode by writing "0" to SIZETX bit (bit-2) of the CONTROL

register.
6. Wait for the TXTOKAY bit (bit-0) of STATUS register(0X40016004) to become 1.
7. Send the device certificate command by writing the register FRAME_START8 with the command

value. The command value of the device certificate service is 0x00.
8. Set up the COMM_BLK in 4 bytes mode by writing "1" to SIZETX bit (bit-2) of the CONTROL

register.
9. Wait for the TXTOKAY status bit to become 1.
10. Send the DEVICECERTPTR address, by writing the register DATA32 with the DEVICECERTPTR

value. For more information about the device certificate service request details, refer to Table 3 on
page 6.

11. After completion of the device certificate service, system controller returns a response through
the COMM_BLK instance.

12. The service response includes the 1 byte command, 1 byte STATUS, and 4 bytes
DEVICECERTPTR value. The 768 Bytes device certificate is stored in the location pointed by the
DEVICECERTPTR pointer. For more information about device certificate service response
details, refer to Table 4 on page 6.

Note: Microsemi recommends using system services driver provided in the firmware core configurator for
detailed implementation of the device certificate service.

Table 2 • COMM_BLK Register Map

Register Name Address Offset R/W Reset Value Description

CONTROL 0 x 00 R/W 0 x 00 Control Register

STATUS 0 x 04 R/W 0 x 00 Status Register

INT_ENABLE 0 x 08 R/W 0 x 00 Interrupt Enable

DATA8 0 x 10 R/W 0 x 00 Byte Data Register

DATA32 0 x 14 R/W 0 x 00000000 Word Data Register

FRAME_START8 0 x 18 R/W 0 x 00 Frame/Command Byte Register

FRAME_START32 0 x 1c R/W 0 x 00000000 Frame/Command Word Register

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7

6 Rev ision 4

Table 3 shows the device certificate service request details.

Table 4 shows the device certificate service response details.

For more information about System Controller, refer to the UG0450: SmartFusion2 SoC and IGLOO2
FPGA System Controller User Guide.
For more information about COMM_BLK, refer to the Communication Block chapter in the
UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

Table 3 • Device Certificate Service Request

Offset Length (bytes) Field Description

0 1 CMD = 0 Command

1 4 DEVICECERTPTR Pointer to 768-byte buffer to
receive the device certificate.

Table 4 • Device Certificate Service Response

Offset Length (bytes) Field Description

0 1 CMD = 0 Command

1 1 STATUS Command status

2 4 DEVICECERTPTR Pointer to original buffer from
request

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

Design Requirements

Revision 4 7

Design Requirements
Table 5 shows the design requirements.

Design Description
The design is implemented on the SmartFusion2 Security Evaluation Kit board using the
M2S090TS-1FGG484 device.
The design example consists of:

• RC oscillator
• Fabric CCC
• CORERESET
• MSS (DeviceCertificate_MSS_0)

The fabric PLL is used to provide the base clock for the MSS. The system services are run using various
C routines in the MSS, as shown in the following sections. In addition, a universal asynchronous
receiver/transmitter (UART1) in the MSS is used to display the device certificate information.

Table 5 • Design Requirements

Design Requirements Description

Hardware Requirements

SmartFusion2 Security Evaluation Kit:
• 12 V adapter
• FlashPro4 programmer
• USB A to Mini-B cable

Rev D or later

Host PC or Laptop Any 64-bit Windows Operating System

Software Requirements

Libero® SoC v11.7

SoftConsole v3.4 SP1*

FlashPro programming software v11.7

USB to UART drivers –

One of the following serial terminal emulation programs:
• HyperTerminal
• TeraTerm
• PuTTY

–

Note: *For this application note, SoftConsole v3.4 SP1 is used. For using SoftConsole v4.0, see TU0546:
SoftConsole v4.0 and Libero SoC v11.7 Tutorial.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133700
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133700
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133700

Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7

8 Rev ision 4

Hardware Implementation
Figure 2 shows a block diagram of the design example. The RC oscillator generates a 50 MHz input
clock and the fabric PLL generates a 100 MHz clock from the RC oscillator. This 100 MHz clock is used
as the base clock for the MSS (DeviceCertificate_MSS_0).
The MMUART_1 signals are used for communicating with the host PC serial terminal program.

Figure 2 • Block Diagram of SmartFusion2 Device Certificate Design Example

Software Implementation

Revision 4 9

Software Implementation
The software design example is used to display the device certificate information.

Firmware Drivers
The following firmware drivers are used in this application:

• MSS MMUART driver: To communicate with serial terminal program on the host PC.
• MSS system services driver: Provides access to SmartFusion2 system services.

API to Access the Device Certificate Service
The MSS_SYS_get_device_certificate() API is used in software design to access the device certificate
service.

Setting Up the Design
Ensure that power supply switch SW7 is switched OFF before setting up the SmartFusion2 Security
Evaluation Kit, then proceed with the following steps:

1. Plug the FlashPro4 ribbon cable into the connector J5 (JTAG Programming Header) of the
SmartFusion2 Security Evaluation Kit board.

2. Connect FlashPro4 and the USB port of the PC using the mini USB cable.
3. Connect the power supply to the J6 connector.
4. Connect the J18 connector provided on the SmartFusion2 Security Evaluation Kit to the host PC

using the USB mini cable.
5. Ensure that the USB to UART bridge drivers are automatically detected by verifying the Device

Manager.
Figure 3 shows an example device manager window. If USB to UART bridge drivers are not
installed, download and install the drivers from the following location:
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

Figure 3 • Device Manager Window

www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7

10 Rev ision 4

6. Connect the jumpers on the SmartFusion2 Security Evaluation Kit, as shown in Table 6.
Note: Ensure that power supply switch, SW7 is switched OFF while connecting the jumpers on the
SmartFusion2 Security Evaluation Kit.

Figure 4 shows the board setup for running the ECC services design on the SmartFusion2 Security
Evaluation Kit.

Table 6 • SmartFusion2 SoC FPGA Security Evaluation Kit Jumper Settings

Jumper Pin (From) Pin (To) Comments

J22 1 2 Default

J23 1 2 Default

J24 1 2 Default

J8 1 2 Default

J3 1 2 Default

Figure 4 • SmartFusion2 Security Evaluation Kit

Running the Design

Revision 4 11

Running the Design
The following steps describes how to run the design on the SmartFusion2 Security Evaluation Kit board
using the M2S090TS-1FGG484 device:

1. Switch ON the power supply switch, SW7.
2. Start a PuTTY session with 115200 baud rate, 8 data bits, 1 stop bit, no parity, and no flow control.

Use any free serial terminal emulation program such as: HyperTerminal or TeraTerm, if the
computer does not have the PuTTY program. For more information about configuring
HyperTerminal, TeraTerm, or PuTTY, refer to the Configuring Serial Terminal Emulation Programs
Tutorial.

3. Program the SmartFusion2 Security Evaluation Kit board with the provided STAPL file using
FlashPro4. Refer to "Appendix A: Design and Programming Files" on page 17 for more
information.

4. After programming, press the reset switch, SW6 (DEVRST), then HyperTerminal displays a
message and the device certificate information, as shown in Figure 5.

Figure 5 • Device Certificate in Hexadecimal Format (also known as base 16 or hex)

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7

12 Rev ision 4

Viewing Fields in Device Certificate
The SmartFusion2 device certificates are encoded in the ASN.1 format. To view the content, the
certificates need to be decoded to a user readable format. The content of a device certificate can be
decoded in many ways, such as:

• Use windows utility certutil.exe
• Use open source or other third-party online tools

For more information about how to decode device certificate using ASN.1 JavaScript decoder online tool,
refer to "Appendix B: Decoding Device Certificate Using ASN.1 JavaScript Decoder Open Source Tool"
on page 18.
This application note uses the certutil.exe windows command tool utility to decode the device
certificate. The following steps describe how to decode the device certificate:

1. Copy the device certificate HEX values (768 bytes) from the serial terminal program
(PuTTY/HyperTerminal) to a text file. For example, copy the device certificate HEX values to the
DC_HEX.txt file and save the file in the C\D\E: drive.

2. Remove the Padded tailing zeros inserted at the end of the device certificate.
Note: The actual device certificate length can be found from 3rd and 4th bytes of the certificate, for

example in this case the total certificate length is 0x02e9 (3rd and 4th bytes value) + 0x4 i.e. 745+4
= 749 bytes. so remove the last 15 bytes (768-749) of padded zeros from the certificate.

3. Open the command prompt window and type the command
E:\>certutil.exe -asn E:\DC_HEX.txt and click Enter key.

4. The command prompt displays the decoded device certificate in a user readable format.
The device certificate fields are highlighted in Figure 6 on page 13, Figure 7 on page 14, Figure 8 on
page 15, and Figure 9 on page 16.

Running the Design

Revision 4 13

Figure 6 shows the device certificate - screen 1.

The following is the description of labels in Figure 6:
Version Information

1. Version Number: 02
Serial Number Information

2. Certificate Serial Number: 40 c9 39 5e 32 b1 01 33 63 15 3c a4 ae 08 55 c3 da 01
Algorithm ID Information

3. Algorithm ID: SHA512ECDSA
Issuer Information

4. Country / Region: US
5. Organizational Unit: SoC
6. Organization: MSCC
7. Common Name: 6967463646c47674f27e used to point to the public key for signature check.

Validity information
Not Before

8. 12/1/2012 5:30 AM
Not After

9. 12/31/2199 5:30 AM

Figure 6 • Device Certificate - Screen 1

Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7

14 Rev ision 4

Figure 7 shows the device certificate - screen 2.

The following is the description of labels in Figure 7:
Subject Information

10. Rev (Generation Qualifier) 4 bytes fixed length: “1 ”
11. Family (Surname): “ SmartFusion2”
12. Product ID 33 characters (Given name): “ M2S090 ”

Subject Public Key
Public Key Algorithm Information

13. ECC
14. ECDSA_P384

Subject Public Key information
15. 96 Byte ECC public key

Issuer Unique Identifier
16. 9 byte bit string: 00 c1 93 d0 b2 cf 6b 40 00

Subject Unique Identifier
17. (0x00+Factory Serial Number + Serial Number Modifier): 00 a5 54 aa 38 fd fc 34 b3 7a ae 36 33

07 cc 10 38

Figure 7 • Device Certificate - Screen 2

Running the Design

Revision 4 15

Figure 8 shows the device certificate - screen 3.

The following is the description of labels in Figure 8:
Extension Information

18. Object ID 1.3.6.1.4.1.40676.1.0: padding
19. 91 bytes zero padding
20. Object ID 1.3.6.1.4.1.40676.1.1: Date code
21. Date code value: 36 32 34 31
22. Object ID 1.3.6.1.4.1.40676.1.2: Temp, Speed, and Voltage Grade
23. Temp, Speed, and Voltage Grade <Generic Field Value>: ff ff ff ff ff ff ff ff ff ff ff ff ff ff 00 00
24. Object ID 1.3.6.1.4.1.40676.1.3: Reserved
25. Reserved
26. Object ID 1.3.6.1.4.1.40676.1.4: Reserved
27. Reserved
28. Object ID 1.3.6.1.4.1.40676.1.10: Certificate Validator. This field is used by the Libero

SoC/Flashpro software to validate the Device certificate
29. Certificate Validator Value (256 bit validator): “00 31 f0 ab f6 6c 0a 63 c5 27 ef 1f 12 8e 5a 20 8a

a8 6c c0 b8 3e 12 ec 19 d0 87 51 1f e0 7c 45”

Figure 8 • Device Certificate - Screen 3

Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7

16 Rev ision 4

Figure 9 shows the device certificate - screen 4.

The following is the description of labels in Figure 9:
Certificate Signature Algorithm Information

30. Algorithm: sha512ECDSA (Object ID 1.2.840.10045.4.3.4)
Certificate Signature Information: As shown in Figure 9, the highlighted circles 31 and 32 display the
certificate signature that is stored in the bit string format.

Conclusion
This application note describes how to implement the device certificate using the system services in the
SmartFusion2 SoC FPGAs and view the content of the device certificate.

Figure 9 • Device Certificate - Screen 4

Appendix A: Design and Programming Files

Revision 4 17

Appendix A: Design and Programming Files
Download the design files from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=m2s_ac436_liberov11p7_df
The design file consists of Libero SoC Verilog project, SoftConsole software project, and programming
files (*.stp) for the SmartFusion2 Security Evaluation Kit board. Refer to the Readme.txt file included in
the design file for the directory structure and description.
Download the programming files from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=m2s_ac436_liberov11p7_pf
The programming file consists of STAPL programming fle (*.stp) for the SmartFusion2 Security
Evaluation Kit board.

https://www.microchip.com/en-us/application-notes/ac436
https://www.microchip.com/en-us/application-notes/ac436

Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7

18 Rev ision 4

Appendix B: Decoding Device Certificate Using ASN.1
JavaScript Decoder Open Source Tool

ASN.1 JavaScript decoder is a web tool capable of parsing and showing any valid ASN.1 DER or BER
data structure as both a tree and a cross-linked hex-dump.

1. Open any standard web browser (for example, Internet Explorer) and enter the following URL in
the address bar: http://lapo.it/asn1js/#
ASN.1 online decoder page is displayed, as shown in Figure 10.

2. Click clear.

3. Copy the 768 Bytes HEX format device certificate from any serial terminal program and paste it in
the online decoder, as shown in the Figure 11.

4. Click decode.

Figure 10 • Online Decoder

http://lapo.it/asn1js/#

Appendix B: Decoding Device Certificate Using ASN.1 JavaScript Decoder Open Source Tool

Revision 4 19

Figure 11 • Online Decoder with Decode Option

Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7

20 Rev ision 4

The following window is displayed.

The decoded certificate field values in a tree format are on the left and the HEX dump values are on the
right.
For more information about the decoded field values, refer to "Viewing Fields in Device Certificate" on
page 12.

Figure 12 • Decoded Device Certificate

List of Changes

Revision 4 21

List of Changes
The following table shows the important changes made in this document for each revision.

Revision* Changes Page

Revision 4
(May 2020)

Information about device certificate description was updated. N/A

Revision 3
(April 2016)

Updated the document for Libero SoC v11.7 software release (SAR 78039). N/A

Revision 2
(October 2015)

Updated the document for Libero SoC v11.6 software release (SAR 71682). N/A

Revision 1
(February 2015)

Initial release. N/A

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.

51900304-4/05.20

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2020 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

	Using Device Certificate System Service in SmartFusion2 - Libero SoC v11.7
	Purpose
	Introduction
	Device Certificate Application

	SmartFusion2 Device Certificate
	References
	SmartFusion2 Device Certificate Service
	Using Device Certificate Service
	Design Requirements
	Design Description
	Hardware Implementation
	Software Implementation
	Setting Up the Design
	Running the Design
	Viewing Fields in Device Certificate

	Conclusion
	Appendix A: Design and Programming Files
	Appendix B: Decoding Device Certificate Using ASN.1 JavaScript Decoder Open Source Tool
	List of Changes

