
Enhanced Controller Area Network (CAN)
HIGHLIGHTS
This section of the manual contains the following major topics:

1.0 Introduction ... 2
2.0 CAN Message Formats... 5
3.0 Register Maps... 9
4.0 CAN Registers .. 12
5.0 CAN Message Buffers .. 31
6.0 CAN Operating Modes.. 35
7.0 Transmitting CAN Messages .. 36
8.0 Receiving CAN Messages .. 46
9.0 DMA Controller Configuration ... 61
10.0 Bit Timing .. 63
11.0 CAN Error Management ... 67
12.0 CAN Interrupts .. 70
13.0 CAN Low-Power Modes.. 73
14.0 CAN Time Stamping Using Input Capture .. 73
15.0 Related Application Notes... 74
16.0 Revision History .. 75
 2008-2020 Microchip Technology Inc. DS70000353D-page 1

dsPIC33E/PIC24E Family Reference Manual
1.0 INTRODUCTION
The dsPIC33E/PIC24E Enhanced Controller Area Network (CAN) module implements the CAN
Specification 2.0B, which is used primarily in industrial and automotive applications. This
asynchronous serial data communication protocol provides reliable communications in an
electrically noisy environment. Figure 1-1 illustrates a typical CAN bus topology.

Figure 1-1: Typical CAN Bus Network

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all dsPIC33E/PIC24E devices.
Please consult the note at the beginning of the “Enhanced Controller Area
Network (CAN)” chapter in the current device data sheet to check whether this
document supports the device you are using.
Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Website at: http://www.microchip.com.

CAN
Bus

CANx

PIC® MCU
with Integrated

CAN

CAN
Transceiver

dsPIC33F/PIC24H
with Integrated

CAN

dsPIC30F
with Integrated

CAN

Transceiver
CAN

Transceiver
CAN

Transceiver
CAN

dsPIC33E/PIC24E
DS70000353D-page 2  2008-2020 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Enhanced CAN Module
The CAN module supports the following key features:
• Standards Compliance:

- Full CAN 2.0B compliance
- Programmable bit rate up to 1 Mbps

• Message Reception:
- 32 message buffers – all of which can be used for reception
- 16 acceptance filters for message filtering
- Three acceptance filter mask registers for message filtering
- Automatic response to Remote Frame
- Up to 32-message deep First-In First-Out (FIFO) buffer
- DeviceNet™ addressing support
- Direct Memory Access (DMA) interface for message reception

• Message Transmission:
- Eight message buffers configurable for message transmission
- User-defined priority levels for message buffers used for transmission
- DMA interface for message transmission

• Other Features:
- Loopback, Listen All Messages and Listen-Only modes for self-test, system

diagnostics and bus monitoring
- Low-power operating modes

Figure 1-2 illustrates the general structure of the CAN module and its interaction with the DMA
Controller and device RAM.

Figure 1-2: CAN Interaction with DMA

CxTX

CxRX

Message Buffer 0

Message Buffer 7
Message Buffer 8

Message Buffer 31

CAN
Protocol
Engine

CAN
Transmit
Register
(CxTXD)

Acceptance
Filters 0-15

CAN
Receive
Register
(CxRXD)

TX DMA
Interface

RX DMA
Interface

DMA
Channel

DMA
Channel

Message Buffer 1

CAN Module
Message Buffer
(Device RAM)

RX
Request

TX
Request
 2008-2020 Microchip Technology Inc. DS70000353D-page 3

dsPIC33E/PIC24E Family Reference Manual
1.1 CAN Module
The CAN module consists of a protocol engine, message acceptance filters, and separate
transmit and receive DMA interfaces. The protocol engine transmits and receives messages to
and from the CAN bus (as per the CAN Specification 2.0B protocol). The user-configurable
acceptance filters are used by the CAN module to examine the received message and determine
if it should be stored in the DMA message buffer or discarded.
For received messages, the receive DMA interface generates a receive data interrupt to initiate
a DMA cycle. The receive DMA channel reads data from the CxRXD register and writes them
into the message buffer.
For transmit messages, the transmit DMA interface generates a transmit data interrupt to start a
DMA cycle. The transmit DMA channel reads from the message buffer and writes to the CxTXD
register for message transmission.

1.2 Message Buffers
The CAN module supports up to 32 message buffers for storing data transmitted or received on
the CAN bus. These buffers can be located anywhere in device RAM (start address of the buffer
may be needed to be aligned on an address boundary). Message Buffers 0-7 can be configured
for either transmit or receive operation. Message Buffers 8-31 are receive-only buffers and
cannot be used for message transmission.

1.3 DMA Controller
The DMA Controller acts as an interface between the message buffers and CAN to transfer data
back and forth without CPU intervention. The DMA Controller supports up to 15 channels for
transferring data between the device RAM and the dsPIC33E/PIC24E device peripherals. Two
separate DMA channels are required to support the CAN message transmission and the CAN
message reception.
Each DMA channel has a DMA Request register (DMAxREQ), which is used by the user
application to assign an interrupt event to trigger a DMA-based message transfer.
DS70000353D-page 4  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
2.0 CAN MESSAGE FORMATS
The CAN bus protocol uses asynchronous communication. Information is passed from the
transmitters to receivers in data frames, which are composed of byte fields that define the
contents of the data frame as illustrated in Figure 2-1.
Each frame begins with a Start-of-Frame (SOF) bit and terminates with an End-of-Frame (EOF)
bit field. The SOF is followed by the Arbitration and Control fields, which identify the message
type, format, length and priority. This information allows each node on the CAN bus to respond
appropriately to the message. The Data field conveys the message content and is of variable
length, ranging from 0 bytes to eight bytes. Error protection is provided by the Cyclic Redundancy
Check (CRC) and Acknowledgment (ACK) fields.

Figure 2-1: CAN Bus Message Frame

The CAN bus protocol supports four frame types:
• Data Frame – carries data from transmitter to the receivers
• Remote Frame – transmitted by a node on the bus, to request transmission of a data

frame with the same identifier from another node
• Error Frame – transmitted by any node when it detects an error
• Overload Frame – provides an extra delay between successive data or remote frames
Data frames and remote frames are separated from preceding frames by an Interframe Space.
The CAN Specification 2.0B defines two additional data formats:
• Standard Data Frame – intended for standard messages that use 11 identifier bits
• Extended Data Frame – intended for extended messages that use 29 identifier bits
There are three CAN Specification versions:
• 2.0A – considers 29-bit identifier as error
• 2.0B Passive – ignores 29-bit identifier messages
• 2.0B Active – handles both 11-bit and 29-bit identifiers
The dsPIC33E/PIC24E CAN module is compliant with the CAN Specification 2.0B, while
providing enhanced message filtering capabilities.

2.1 Standard Data Frame
The standard data frame message begins with a SOF bit followed by a 12-bit Arbitration field, as
shown in Figure 2-2. The Arbitration field contains an 11-bit identifier and RTR bit. The identifier
defines the type of information contained in the message and is used by each receiving node to
determine if the message is of interest to it. The RTR bit distinguishes a data frame from a remote
frame. For a standard data frame, the RTR bit is clear.
Following the Arbitration field is a 6-bit Control field, which provides more information about the
contents of the message. The first bit in the Control field is an Identifier Extension (IDE) bit, which
distinguishes the message as either a standard data frame or extended data frame. A standard
data frame is indicated by a Dominant state (logic level ‘0’) during transmission of the IDE bit.
The second bit in the Control field is a reserved (RB0) bit, which is in the Dominant state (logic
level ‘0’). The last four bits in the Control field represent the Data Length Code (DLC), which
specifies the number of data bytes present in the message.
The Data field follows the Control field. This field carries the message data – the actual payload
of the data frame. This field is of variable length, ranging from 0 byte to eight bytes. The number
of bytes is user-selectable.

Note: For detailed information on the CAN bus protocol, refer to the Bosch CAN
Specification.

S
O
F

ARBITRATION CONTROL DATA
E
O
F

ACKCRC
 2008-2020 Microchip Technology Inc. DS70000353D-page 5

dsPIC33E/PIC24E Family Reference Manual
The Data field is followed by the CRC field, which is a 16-bit CRC sequence with one delimiter bit.
The Acknowledgment (ACK) field is sent as a recessive bit (logic level ‘1’), and is overwritten as
a dominant bit by any receiver that has received the data correctly. The message is
Acknowledged by the receiver regardless of the result of the acceptance filter comparison.
The last field is the EOF field, which consists of seven recessive bits that indicate the end of
message.

Figure 2-2: Format of the Standard Data Frame

2.2 Extended Data Frame
The extended data frame begins with a SOF bit followed by a 31-bit Arbitration field, as illustrated
in Figure 2-3. The Arbitration field in an extended data frame contains a 29-bit identifier in two
fields separated by a Substitute Remote Request bit (SRR) and an IDE bit. The SRR bit
determines if the message is a remote frame (SRR = 1 for extended data frames). The IDE bit
indicates the data frame type. For the extended data frame, IDE = 1.
The extended data frame Control field consists of seven bits. The first bit is the RTR. For the
extended data frame, RTR = 0. The next two bits, RB1, and RB0, are reserved bits that are in
the Dominant state (logic level ‘0’). The last four bits in the Control field are the DLC, which
specifies the number of data bytes present in the message.
The remaining fields in an extended data frame are identical to a standard data frame.

Figure 2-3: Format of the Extended Data Frame

SID10 SID1

S
O
F

IDENTIFIER
11 Bits

R
T
R

I
D
E

RB0
DLC
4 Bits

DATA
8 Bytes

CRC
16 Bits

ACK
2 Bits

EOF
7 Bits

IFS
3 Bits

SID0

11-Bit Identifier

Interframe Space

Data
Frame Interframe Space

IDE is Dominant (Logical ‘0’)

RTR is Dominant (Logical ‘0’)

RB0 is Dominant (Logical ‘0’)

Arbitration
Field

Control
Field Field

CRC
Field

ACK
Field

End-of-

SID10 SID1

S
O
F

IDENTIFIER
11 Bits

S
R
R

I
D
E

R
T
R

DLC
4 Bits

CRC
16 Bits

ACK
2 Bits

EOF
7 Bits

IFS
3 Bits

SID0

Field

29-Bit Identifier

Control CRC

IDENTIFIER
18 Bits

EID17 EID1 EID0

R
B
1

R
B
0

IDE is Recessive (Logical ‘1’)

SRR is Dominant (Logical ‘1’)

RTR is Dominant (Logical ‘0’)

RB0 is Dominant (Logical ‘0’)

RB1 is Dominant (Logical ‘0’)

ACK End-of-
Frame

Data

DATA
8 Bytes

Arbitration
Field Field Field Field
DS70000353D-page 6  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
2.3 Remote Frame
A node expecting to receive data from another node can initiate transmission of the respective
data by the source node, by sending a remote frame. A remote frame can be in the standard
format (Figure 2-4) or the extended format (Figure 2-5).
A remote frame is similar to a data frame, with the following exceptions:
• The RTR bit is recessive (RTR = 1)
• There is no Data field
• The value of the DLC bits is 0 ≤ DLC ≤ 8

Figure 2-4: Format of the Standard Remote Frame

Figure 2-5: Format of the Extended Remote Frame

SID10 SID1

S
O
F

IDENTIFIER
11 Bits

R
T
R

I
D
E

DLC
4 Bits

CRC
16 Bits

ACK
2 Bits

EOF
7 Bits

IFS
3 Bits

SID0

11-Bit Identifier

RB0

IDE is Dominant (Logical ‘0’)
RTR is Recessive (Logical ‘1’)
RB0 is Dominant (Logical ‘0’)

Arbitration Field Control Field CRC Field ACK Field End-of-Frame (EOF)

SID10 SID0

S
O
F

IDENTIFIER
11 Bits

S
R
R

I
D
E

R
T
R

DLC
4 Bits

CRC
16 Bits

ACK
2 Bits

EOF
7 Bits

IFS
3 Bits

SID1

Arbitration Field

29-Bit Identifier

Control Field CRC Field

IDENTIFIER
18 Bits

EID17 EID1 EID0

R
B
1

R
B
0

IDE is Recessive (Logical ‘1’)
SRR is Recessive (Logical ‘1’)
RTR is Recessive (Logical ‘1’)
RB0 is Dominant (Logical ‘0’)
RB1 is Dominant (Logical ‘0’)

ACK Field End-of-Frame (EOF)
 2008-2020 Microchip Technology Inc. DS70000353D-page 7

dsPIC33E/PIC24E Family Reference Manual
2.4 Error Frame
An error frame is generated by any node that detects a bus error. An error frame consists of an
Error Flag field followed by an Error Delimiter field. The Error Delimiter consists of eight recessive
bits and allows the bus nodes to restart communication correctly after an error has occurred.
There are two types of Error Flag fields, depending on the error status of the node that detects
the error:
• Error Active Flag – contains six consecutive dominant bits, which forces all other nodes

on the network to generate error echo flags, thereby resulting in a series of 6-12 dominant
bits on the bus.

• Error Passive Flag – contains six consecutive recessive bits, with the result that unless
the bus error is detected by the transmitting node, the transmission of an Error Passive flag
will not affect the communications of any other node on the network.

2.5 Overload Frame
An overload frame can be generated by a node, either when a dominant bit is detected during
Interframe Space, or when a node is not ready to receive the next message (for example, if it is
still reading the previous received message). An overload frame has the same format as an error
frame with an active error flag, but can only be generated during Interframe Space. It consists of
an Overload Flag field with six dominant bits, followed by an Overload Delimiter field with eight
recessive bits. A node can generate a maximum of two sequential overload frames to delay the
start of the next message.

2.6 Interframe Space
The Interframe Space separates the successive frames being transmitted on the CAN bus. It
consists of at least three recessive bits, referred to as Intermission. The Interframe Space allows
nodes time to internally process the previously received message before the start of the next
frame. If the transmitting node is in the Error Passive state, an additional eight recessive bits will
be inserted in the Interframe Space before any other message is transmitted by the node. The
additional eight recessive bits (also referred to as the Suspend Transmit field) allow time for other
transmitting nodes to take control of the bus.
DS70000353D-page 8  2008-2020 Microchip Technology Inc.


 2008-2020 M

icrochip Technology Inc.
D

S70000353D
-page 9

Enhanced C
A

N
 M

odule

3.

Ta

Bit 3 Bit 2 Bit 1 Bit 0 All
Resets

Cx ANCAP — — WIN 0480
Cx DNCNT[4:0] 0000
Cx ODE[6:0] 0040
Cx FSA[4:0] 0000
Cx FNRB[5:0] 0000
Cx FIFOIF RBOVIF RBIF TBIF 0000
Cx FIFOIE RBOVIE RBIE TBIE 0000
Cx 7:0] 0000
Cx BRP[5:0] 0000
Cx PRSEG[2:0] 0000
Cx FFFF
Cx F1MSK[1:0] F0MSK[1:0] 0000
Cx F9MSK[1:0] F8MSK[1:0] 0000
Le
No r more details.

Ta

Bit 3 Bit 2 Bit 1 Bit 0 All
Resets

Cx 0000
Cx 0000
Cx 0000
Cx 0000
Cx XREQ0 RTREN0 TX0PRI[1:0] 0000
Cx XREQ2 RTREN2 TX2PRI[1:0] 0000
Cx XREQ4 RTREN4 TX4PRI[1:0] 0000
Cx XREQ6 RTREN6 TX6PRI[1:0] xxxx
Cx xxxx
Cx xxxx
Le
No more details.
0 REGISTER MAPS
Table 3-1 through Table 3-3 map the bit functions for the CAN Module registers.

ble 3-1: CAN Register Map When C1CTRL1.WIN = 0 or 1(1)

File Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

CTRL1 — — CSIDL ABAT CANCKS REQOP[2:0] OPMODE[2:0] — C

CTRL2 — — — — — — — — — — —

VEC — — — FILHIT[4:0] — IC

FCTRL DMABS[2:0] — — — — — — — —

FIFO — — FBP[5:0] — —

INTF — — TXBO TXBP RXBP TXWAR RXWAR EWARN IVRIF WAKIF ERRIF —

INTE — — — — — — — — IVRIE WAKIE ERRIE —

EC TERRCNT[7:0] RERRCNT[

CFG1 — — — — — — — — SJW[1:0]

CFG2 — WAKFIL — — — SEG2PH[2:0] SEG2PHTS SAM SEG1PH[2:0]

FEN1 FLTEN[15:0]

FMSKSEL1 F7MSK[1:0] F6MSK[1:0] F5MSK[1:0] F4MSK[1:0] F3MSK[1:0] F2MSK[1:0]

FMSKSEL2 F15MSK[1:0] F14MSK[1:0] F13MSK[1:0] F12MSK[1:0] F11MSK[1:0] F10MSK[1:0]

gend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
te 1: Not all bits are available for all devices. Please refer to the “Enhanced Controller Area Network (CAN)” chapter in the specific device data sheet fo

ble 3-2: CAN Register Map When C1CTRL1.WIN = 0(1)

File Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

See definition when WIN = x
RXFUL1 RXFUL[15:0]

RXFUL2 RXFUL[31:16]

RXOVF1 RXOVF[15:0]

RXOVF2 RXOVF[31:16]

TR01CON TXEN1 TXABT1 TXLARB1 TXERR1 TXREQ1 RTREN1 TX1PRI[1:0] TXEN0 TXABT0 TXLARB0 TXERR0 T

1TR23CON TXEN3 TXABT3 TXLARB3 TXERR3 TXREQ3 RTREN3 TX3PRI[1:0] TXEN2 TXABT2 TXLARB2 TXERR2 T

TR45CON TXEN5 TXABT5 TXLARB5 TXERR5 TXREQ5 RTREN5 TX5PRI[1:0] TXEN4 TXABT4 TXLARB4 TXERR4 T

TR67CON TXEN7 TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7 TX7PRI[1:0] TXEN6 TXABT6 TXLARB6 TXERR6 T

RXD Received Data Word

TXD Transmit Data Word

gend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
te 1: Not all bits are available for all devices. Please refer to the “Enhanced Controller Area Network (CAN)” chapter in the specific device data sheet for

dsPIC
33E/PIC

24E Fam
ily R

eference M
anual

D
S70000353D

-page 10


 2008-2020 M
icrochip Technology Inc.

Bit 3 Bit 2 Bit 1 Bit 0 All Resets

F0BP[3:0] 0000
F4BP[3:0] 0000
F8BP[3:0] 0000

F12BP[3:0] 0000
MIDE — EID[17:16] xxxx

] xxxx
MIDE — EID[17:16] xxxx

] xxxx
MIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

] xxxx
EXIDE — EID[17:16] xxxx

eet for more details.
Table 3-3: CAN Register Map When C1CTRL1.WIN = 1(1)

File Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

See definition when WIN = x
CxBUFPNT1 F3BP[3:0] F2BP[3:0] F1BP[3:0]

CxBUFPNT2 F7BP[3:0] F6BP[3:0] F5BP[3:0]

CxBUFPNT3 F11BP[3:0] F10BP[3:0] F9BP[3:0]

CxBUFPNT4 F15BP[3:0] F14BP[3:0] F13BP[3:0]

CxRXM0SID SID[10:3] SID[2:0] —

CxRXM0EID EID[15:8] EID[7:0

CxRXM1SID SID[10:3] SID[2:0] —

CxRXM1EID EID[15:8] EID[7:0

CxRXM2SID SID[10:3] SID[2:0] —

CxRXM2EID EID[15:8] EID[7:0

CxRXF0SID SID[10:3] SID[2:0] —

CxRXF0EID EID[15:8] EID[7:0

CxRXF1SID SID[10:3] SID[2:0] —

CxRXF1EID EID[15:8] EID[7:0

CxRXF2SID SID[10:3] SID[2:0] —

CxRXF2EID EID[15:8] EID[7:0

CxRXF3SID SID[10:3] SID[2:0] —

CxRXF3EID EID[15:8] EID[7:0

CxRXF4SID SID[10:3] SID[2:0] —

CxRXF4EID EID[15:8] EID[7:0

CxRXF5SID SID[10:3] SID[2:0] —

CxRXF5EID EID[15:8] EID[7:0

CxRXF6SID SID[10:3] SID[2:0] —

CxRXF6EID EID[15:8] EID[7:0

CxRXF7SID SID[10:3] SID[2:0] —

CxRXF7EID EID[15:8] EID[7:0

CxRXF8SID SID[10:3] SID[2:0] —

CxRXF8EID EID[15:8] EID[7:0

CxRXF9SID SID[10:3] SID[2:0] —

CxRXF9EID EID[15:8] EID[7:0

CxRXF10SID SID[10:3] SID[2:0] —

CxRXF10EID EID[15:8] EID[7:0

CxRXF11SID SID[10:3] SID[2:0] —

Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: Not all bits are available for all devices. Please refer to the “Enhanced Controller Area Network (CAN)” chapter in the specific device data sh


 2008-2020 M

icrochip Technology Inc.
D

S70000353D
-page 11

Enhanced C
A

N
 M

odule

Cx xxxx
Cx E — EID[17:16] xxxx
Cx xxxx
Cx E — EID[17:16] xxxx
Cx xxxx
Cx E — EID[17:16] xxxx
Cx xxxx
Cx E — EID[17:16] xxxx
Cx xxxx

Ta
 3 Bit 2 Bit 1 Bit 0 All Resets

Le
No r more details.
RXF11EID EID[15:8] EID[7:0]

RXF12SID SID[10:3] SID[2:0] — EXID

RXF12EID EID[15:8] EID[7:0]

RXF13SID SID[10:3] SID[2:0] — EXID

RXF13EID EID[15:8] EID[7:0]

RXF14SID SID[10:3] SID[2:0] — EXID

RXF14EID EID[15:8] EID[7:0]

RXF15SID SID[10:3] SID[2:0] — EXID

RXF15EID EID[15:8] EID[7:0]

ble 3-3: CAN Register Map When C1CTRL1.WIN = 1(1) (Continued)
File Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit

gend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
te 1: Not all bits are available for all devices. Please refer to the “Enhanced Controller Area Network (CAN)” chapter in the specific device data sheet fo

dsPIC33E/PIC24E Family Reference Manual
4.0 CAN REGISTERS
The CAN module has a large number of Special Function Registers (SFRs) that are used to
configure the message acceptance filters and the message buffers. To enable effective use of
data RAM space, multiple sets of SFRs are mapped onto the same set of memory addresses.
The SFR Map Window Select bit (WIN) in CAN Control Register 1 (CxCTRL1[0]) is used to
selectively access one of these sets of SFRs.
If CxCTRL1[0] = 1, the message acceptance filters, masks and Filter Buffer Pointer registers are
accessed by the user application.
If CxCTRL1[0] = 0, the buffer control and status registers, and the transmit and receive data
registers are accessed by the user application.

Register 4-1: CxCFG1: CAN Baud Rate Configuration Register 1
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SJW[1:0] BRP[5:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as ‘0’
bit 7-6 SJW[1:0]: Synchronization Jump Width bits

11 = Length is 4 x TQ
10 = Length is 3 x TQ
01 = Length is 2 x TQ
00 = Length is 1 x TQ

bit 5-0 BRP[5:0]: Baud Rate Prescaler bits
11 1111 = TQ = 2 x 64 x 1/FCAN(1)

•
•
•
00 0010 = TQ = 2 x 3 x 1/FCAN(1)

00 0001 = TQ = 2 x 2 x 1/FCAN(1)

00 0000 = TQ = 2 x 1 x 1/FCAN(1)

Note 1: FCAN is either FP or twice FP depending on the CANCKS bit (CxCTRL[11]) selection.
DS70000353D-page 12  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Register 4-2: CxCFG2: CAN Baud Rate Configuration Register 2
U-0 R/W-x U-0 U-0 U-0 R/W-x R/W-x R/W-x
— WAKFIL — — — SEG2PH[2:0]

bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
SEG2PHTS SAM SEG1PH[2:0] PRSEG[2:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as ‘0’
bit 14 WAKFIL: Select CAN Bus Line Filter for Wake-up bit

1 = Uses CAN bus line filter for wake-up
0 = CAN bus line filter is not used for wake-up

bit 13-11 Unimplemented: Read as ‘0’
bit 10-8 SEG2PH[2:0]: Phase Segment 2 bits

111 = Length is 8 x TQ
•
•
•
000 = Length is 1 x TQ

bit 7 SEG2PHTS: Phase Segment 2 Time Select bit
1 = Freely programmable
0 = Maximum of SEG1PHx bits or Information Processing Time (IPT), whichever is greater

bit 6 SAM: Sample CAN Bus Line bit
1 = Bus line is sampled three times at the sample point
0 = Bus line is sampled once at the sample point

bit 5-3 SEG1PH[2:0]: Phase Segment 1 bits
111 = Length is 8 x TQ
•
•
•
000 = Length is 1 x TQ

bit 2-0 PRSEG[2:0]: Propagation Time Segment bits
111 = Length is 8 x TQ
•
•
•
000 = Length is 1 x TQ
 2008-2020 Microchip Technology Inc. DS70000353D-page 13

dsPIC33E/PIC24E Family Reference Manual
Register 4-3: CxFEN1: CAN Acceptance Filter Enable Register
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

FLTEN[15:8]
bit 15 bit 8

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
FLTEN[7:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 FLTEN[15:0]: Enable Filter x bits (x = 0-15)
1 = Enables filter x to accept messages
0 = Disables filter x

Register 4-4: CxRXFnSID: CAN Acceptance Filter Standard Identifier Register n (n = 0-15)
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

SID[10:3]
bit 15 bit 8

R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x
SID[2:0] — EXIDE(1) — EID[17:16]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-5 SID[10:0]: Standard Identifier bits
1 = Message address bit, SIDx, must be ‘1’ to match filter
0 = Message address bit, SIDx, must be ‘0’ to match filter

bit 4 Unimplemented: Read as ‘0’
bit 3 EXIDE: Extended Identifier Enable bit(1)

If MIDE = 1:
1 = Matches only messages with Extended Identifier addresses
0 = Matches only messages with Standard Identifier addresses
If MIDE = 0:
Ignores EXIDE bit.

bit 2 Unimplemented: Read as ‘0’
bit 1-0 EID[17:16]: Extended Identifier bits

1 = Message address bit, EIDx, must be ‘1’ to match filter
0 = Message address bit, EIDx, must be ‘0’ to match filter

Note 1: If no mask is applied to a filter, the following occurs: The filter accepts only standard frames. The filter
does not accept extended frames even if the EXIDE bit is set to ‘1’.
DS70000353D-page 14  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Register 4-5: CxRXFnEID: CAN Acceptance Filter Extended Identifier Register n (n = 0-15)
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EID[15:8]
bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EID[7:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 EID[15:0]: Extended Identifier bits
1 = Message address bit, EIDx, must be ‘1’ to match filter
0 = Message address bit, EIDx, must be ‘0’ to match filter

Register 4-6: CxRXMnSID: CAN Acceptance Filter Mask Standard Identifier Register n (n = 0-2)
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

SID[10:3]
bit 15 bit 8

R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x
SID[2:0] — MIDE — EID[17:16]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-5 SID[10:0]: Standard Identifier bits
1 = Includes bit, SIDx, in filter comparison
0 = Bit, SIDx, is a “don’t care” in filter comparison

bit 4 Unimplemented: Read as ‘0’
bit 3 MIDE: Identifier Receive Mode bit

1 = Matches only message types (standard or extended address) that correspond to the EXIDE bit in filter
0 = Matches either standard or extended address message if filters match

(that is, if (Filter SID) = (Message SID), or if (Filter SID/EID) = (Message SID/EID))
bit 2 Unimplemented: Read as ‘0’
bit 1-0 EID[17:16]: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison
0 = Bit, EIDx, is a “don’t care” in filter comparison
 2008-2020 Microchip Technology Inc. DS70000353D-page 15

dsPIC33E/PIC24E Family Reference Manual
Register 4-7: CxRXMnEID: CAN Acceptance Filter Mask Extended Identifier Register n (n = 0-2)
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EID[15:8]
bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EID[7:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 EID[15:0]: Extended Identifier bits
1 = Includes bit, EIDx, in filter comparison
0 = Bit, EIDx, is a “don’t care” in filter comparison

Register 4-8: CxFMSKSEL1: CAN Filter 7-0 Mask Selection Register 1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

F7MSK[1:0] F6MSK[1:0] F5MSK[1:0] F4MSK[1:0]
bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
F3MSK[1:0] F2MSK[1:0] F1MSK[1:0] F0MSK[1:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 F7MSK[1:0]: Mask Source for Filter 7 bits
11 = Reserved; do not use
10 = Acceptance Mask 2 registers contain mask
01 = Acceptance Mask 1 registers contain mask
00 = Acceptance Mask 0 registers contain mask

bit 13-12 F6MSK[1:0]: Mask Source for Filter 6 bits (same values as bits 15-14)
bit 11-10 F5MSK[1:0]: Mask Source for Filter 5 bits (same values as bits 15-14)
bit 9-8 F4MSK[1:0]: Mask Source for Filter 4 bits (same values as bits 15-14)
bit 7-6 F3MSK[1:0]: Mask Source for Filter 3 bits (same values as bits 15-14)
bit 5-4 F2MSK[1:0]: Mask Source for Filter 2 bits (same values as bits 15-14)
bit 3-2 F1MSK[1:0]: Mask Source for Filter 1 bits (same values as bits 15-14)
bit 1-0 F0MSK[1:0]: Mask Source for Filter 0 bits (same values as bits 15-14)
DS70000353D-page 16  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Register 4-9: CxFMSKSEL2: CAN Filter 15-8 Mask Selection Register 2
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

F15MSK[1:0] F14MSK[1:0] F13MSK[1:0] F12MSK[1:0]
bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
F11MSK[1:0] F10MSK[1:0] F9MSK[1:0] F8MSK[1:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 F15MSK[1:0]: Mask Source for Filter 15 bits
11 = Reserved; do not use
10 = Acceptance Mask 2 registers contain mask
01 = Acceptance Mask 1 registers contain mask
00 = Acceptance Mask 0 registers contain mask

bit 13-12 F14MSK[1:0]: Mask Source for Filter 14 bits (same values as bits 15-14)
bit 11-10 F13MSK[1:0]: Mask Source for Filter 13 bits (same values as bits 15-14)
bit 9-8 F12MSK[1:0]: Mask Source for Filter 12 bits (same values as bits 15-14)
bit 7-6 F11MSK[1:0]: Mask Source for Filter 11 bits (same values as bits 15-14)
bit 5-4 F10MSK[1:0]: Mask Source for Filter 10 bits (same values as bits 15-14)
bit 3-2 F9MSK[1:0]: Mask Source for Filter 9 bits (same values as bits 15-14)
bit 1-0 F8MSK[1:0]: Mask Source for Filter 8 bits (same values as bits 15-14)
 2008-2020 Microchip Technology Inc. DS70000353D-page 17

dsPIC33E/PIC24E Family Reference Manual
Register 4-10: CxBUFPNT1: CAN Filter 0-3 Buffer Pointer Register 1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

F3BP[3:0] F2BP[3:0]
bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
F1BP[3:0] F0BP[3:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-12 F3BP[3:0]: RX Buffer Mask for Filter 3 bits
1111 = Filter hits received in RX FIFO buffer
1110 = Filter hits received in RX Buffer 14
•
•
•
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0

bit 11-8 F2BP[3:0]: RX Buffer mask for Filter 2 bits (same values as bits 15-12)
bit 7-4 F1BP[3:0]: RX Buffer mask for Filter 1 bits (same values as bits 15-12)
bit 3-0 F0BP[3:0]: RX Buffer mask for Filter 0 bits (same values as bits 15-12)

Register 4-11: CxBUFPNT2: CAN Filter 4-7 Buffer Pointer Register 2
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

F7BP[3:0] F6BP[3:0]
bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
F5BP[3:0] F4BP[3:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-12 F7BP[3:0]: RX Buffer Mask for Filter 7 bits
1111 = Filter hits received in RX FIFO buffer
1110 = Filter hits received in RX Buffer 14
•
•
•
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0

bit 11-8 F6BP[3:0]: RX Buffer mask for Filter 6 bits (same values as bits 15-12)
bit 7-4 F5BP[3:0]: RX Buffer mask for Filter 5 bits (same values as bits 15-12)
bit 3-0 F4BP[3:0]: RX Buffer mask for Filter 4 bits (same values as bits 15-12)
DS70000353D-page 18  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Register 4-12: CxBUFPNT3: CAN Filter 8-11 Buffer Pointer Register 3
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

F11BP[3:0] F10BP[3:0]
bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
F9BP[3:0] F8BP[3:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-12 F11BP[3:0]: RX Buffer Mask for Filter 11
1111 = Filter hits received in RX FIFO buffer
1110 = Filter hits received in RX Buffer 14
•
•
•
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0

bit 11-8 F10BP[3:0]: RX Buffer mask for Filter 10 (same values as bit 15-12)
bit 7-4 F9BP[3:0]: RX Buffer mask for Filter 9 (same values as bit 15-12)
bit 3-0 F8BP[3:0]: RX Buffer mask for Filter 8 (same values as bit 15-12)

Register 4-13: CxBUFPNT4: CAN Filter 12-15 Buffer Pointer Register 4
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

F15BP[3:0] F14BP[3:0]
bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
F13BP[3:0] F12BP[3:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-12 F15BP[3:0]: RX Buffer Mask for Filter 15 bits
1111 = Filter hits received in RX FIFO buffer
1110 = Filter hits received in RX Buffer 14
•
•
•
0001 = Filter hits received in RX Buffer 1
0000 = Filter hits received in RX Buffer 0

bit 11-8 F14BP[3:0]: RX Buffer mask for Filter 14 bits (same values as bits 15-12)
bit 7-4 F13BP[3:0]: RX Buffer mask for Filter 13 bits (same values as bits 15-12)
bit 3-0 F12BP[3:0]: RX Buffer mask for Filter 12 bits (same values as bits 15-12)
 2008-2020 Microchip Technology Inc. DS70000353D-page 19

dsPIC33E/PIC24E Family Reference Manual
Register 4-14: CxRXFUL1: CAN Receive Buffer Full Register 1
R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0

RXFUL[15:8]
bit 15 bit 8

R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0
RXFUL[7:0]

bit 7 bit 0

Legend:
R = Readable bit C = Writable bit, but only ‘0’ can be written to clear the bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 RXFUL[15:0]: Receive Buffer x Full bits
1 = Buffer is full (set by module)
0 = Buffer is empty (cleared by software)

Register 4-15: CxRXFUL2: CAN Receive Buffer Full Register 2
R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0

RXFUL[31:24]
bit 15 bit 8

R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0
RXFUL[23:16]

bit 7 bit 0

Legend:
R = Readable bit C = Writable bit, but only ‘0’ can be written to clear the bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 RXFUL[31:16]: Receive Buffer x Full bits
1 = Buffer is full (set by module)
0 = Buffer is empty (cleared by user software)
DS70000353D-page 20  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Register 4-16: CxRXOVF1: CAN Receive Buffer Overflow Register 1
R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0

RXOVF[15:8]
bit 15 bit 8

R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0
RXOVF[7:0]

bit 7 bit 0

Legend:
R = Readable bit C = Writable bit, but only ‘0’ can be written to clear the bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 RXOVF[15:0]: Receive Buffer n Overflow bits
1 = Module attempted to write to a full buffer (set by module)
0 = No overflow condition (cleared by user software)

Register 4-17: CxRXOVF2: CAN Receive Buffer Overflow Register 2
R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0

RXOVF[31:24]
bit 15 bit 8

R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0 R/C-0
RXOVF[23:16]

bit 7 bit 0

Legend:
R = Readable bit C = Writable bit, but only ‘0’ can be written to clear the bit
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 RXOVF[31:16]: Receive Buffer n Overflow bits
1 = Module attempted to write to a full buffer (set by module)
0 = No overflow condition (cleared by user software)
 2008-2020 Microchip Technology Inc. DS70000353D-page 21

dsPIC33E/PIC24E Family Reference Manual
Register 4-18: CxFCTRL: CAN FIFO Control Register
R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0

DMABS[2:0] — — — — —
bit 15 bit 8

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — FSA[4:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 DMABS[2:0]: Message Buffer Size bits
111 = Reserved; do not use
110 = 32 buffers in device RAM
101 = 24 buffers in device RAM
100 = 16 buffers in device RAM
011 = 12 buffers in device RAM
010 = 8 buffers in device RAM
001 = 6 buffers in device RAM
000 = 4 buffers in device RAM

bit 12-5 Unimplemented: Read as ‘0’
bit 4-0 FSA[4:0]: FIFO Start Area bits

11111 = Reads buffer RB31
11110 = Reads buffer RB30
•
•
•
00010 = TX/RX buffer, TRB2
00001 = TX/RX buffer, TRB1
00000 = TX/RX buffer, TRB0
DS70000353D-page 22  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Register 4-19: CxFIFO: CAN FIFO Status Register
U-0 U-0 R-0 R-0 R-0 R-0 R-0 R-0
— — FBP[5:0]

bit 15 bit 8

U-0 U-0 R-0 R-0 R-0 R-0 R-0 R-0
— — FNRB[5:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as ‘0’
bit 13-8 FBP[5:0]: FIFO Buffer Pointer bits

011111 = RB31 buffer
011110 = RB30 buffer
•
•
•
000001 = TRB1 buffer
000000 = TRB0 buffer

bit 7-6 Unimplemented: Read as ‘0’
bit 5-0 FNRB[5:0]: FIFO Next Read Buffer Pointer bits

011111 = RB31 buffer
011110 = RB30 buffer
•
•
•
000001 = TRB1 buffer
000000 = TRB0 buffer
 2008-2020 Microchip Technology Inc. DS70000353D-page 23

dsPIC33E/PIC24E Family Reference Manual
Register 4-20: CxINTF: CAN Interrupt Flag Register
U-0 U-0 R-0 R-0 R-0 R-0 R-0 R-0
— — TXBO TXBP RXBP TXWAR RXWAR EWARN

bit 15 bit 8

R/C-0 R/C-0 R/C-0 U-0 R/C-0 R/C-0 R/C-0 R/C-0
IVRIF WAKIF ERRIF — FIFOIF RBOVIF RBIF TBIF

bit 7 bit 0

Legend: C = Writable bit, but only ‘0’ can be written to clear the bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as ‘0’
bit 13 TXBO: Transmitter in Error State Bus Off bit

1 = Transmitter is in Bus Off state
0 = Transmitter is not in Bus Off state

bit 12 TXBP: Transmitter in Error State Bus Passive bit
1 = Transmitter is in Bus Passive state
0 = Transmitter is not in Bus Passive state

bit 11 RXBP: Receiver in Error State Bus Passive bit
1 = Receiver is in Bus Passive state
0 = Receiver is not in Bus Passive state

bit 10 TXWAR: Transmitter in Error State Warning bit
1 = Transmitter is in Error Warning state
0 = Transmitter is not in Error Warning state

bit 9 RXWAR: Receiver in Error State Warning bit
1 = Receiver is in Error Warning state
0 = Receiver is not in Error Warning state

bit 8 EWARN: Transmitter or Receiver in Error State Warning bit
1 = Transmitter or receiver is in Error State Warning state
0 = Transmitter or receiver is not in Error State Warning state

bit 7 IVRIF: Invalid Message Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred

bit 6 WAKIF: Bus Wake-up Activity Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred

bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF[13:8] bits)
1 = Interrupt request has occurred
0 = Interrupt request has not occurred

bit 4 Unimplemented: Read as ‘0’
bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit

1 = Interrupt request has occurred
0 = Interrupt request has not occurred

bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred

bit 1 RBIF: RX Buffer Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred

bit 0 TBIF: TX Buffer Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
DS70000353D-page 24  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Register 4-21: CxINTE: CAN Interrupt Enable Register(1)

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IVRIE WAKIE ERRIE — FIFOIE RBOVIE RBIE TBIE

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as ‘0’
bit 7 IVRIE: Invalid Message Interrupt Enable bit

1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 6 WAKIE: Bus Wake-up Activity Interrupt Flag bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 5 ERRIE: Error Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 4 Unimplemented: Read as ‘0’
bit 3 FIFOIE: FIFO Almost Full Interrupt Enable bit

1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 2 RBOVIE: RX Buffer Overflow Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 1 RBIE: RX Buffer Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 0 TBIE: TX Buffer Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

Note 1: Setting a bit in the CxINTE register only enables the corresponding interrupt source. To generate a
Cx interrupt, the CxIE bit must be set in the Interrupt module.
 2008-2020 Microchip Technology Inc. DS70000353D-page 25

dsPIC33E/PIC24E Family Reference Manual
Register 4-22: CxVEC: CAN Interrupt Code Register
U-0 U-0 U-0 R-0 R-0 R-0 R-0 R-0
— — — FILHIT[4:0]

bit 15 bit 8

U-0 R-1 R-0 R-0 R-0 R-0 R-0 R-0
— ICODE[6:0](1,2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’
bit 12-8 FILHIT[4:0]: Filter Hit Number bits

10000-11111 = Reserved; do not use
01111 = Filter 15
•
•
•
00001 = Filter 1
00000 = Filter 0

bit 7 Unimplemented: Read as ‘0’
bit 6-0 ICODE[6:0]: Interrupt Flag Code bits(1,2)

1000101-1111111 = Reserved; do not use
1000100 = FIFO almost full interrupt
1000011 = Receiver overflow interrupt
1000010 = Wake-up interrupt
1000001 = Error interrupt
1000000 = No interrupt
0100000-0111111 = Reserved; do not use
0011111 = RB31 buffer interrupt
0011110 = RB30 buffer interrupt
•
•
•
0001001 = RB9 buffer interrupt
0001000 = RB8 buffer interrupt
0000111 = TRB7 buffer interrupt
0000110 = TRB6 buffer interrupt
0000101 = TRB5 buffer interrupt
0000100 = TRB4 buffer interrupt
0000011 = TRB3 buffer interrupt
0000010 = TRB2 buffer interrupt
0000001 = TRB1 buffer interrupt
0000000 = TRB0 Buffer interrupt

Note 1: The ICODE[6:0] bits are cleared when the corresponding interrupts flag bits in the CxINTF register are
cleared.

2: The ICODE[6:0] bits only reflect the status of enabled interrupt sources. The corresponding bits in the
CxINTE register must be set.
DS70000353D-page 26  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Register 4-23: CxCTRL1: CAN Control Register 1
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0
— — CSIDL ABAT CANCKS REQOP[2:0]

bit 15 bit 8

R-1 R-0 R-0 U-0 R/W-0 U-0 U-0 R/W-0
OPMODE[2:0] — CANCAP — — WIN

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as ‘0’
bit 13 CSIDL: Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12 ABAT: Abort All Pending Transmissions bit
1 = Signals all transmit buffers to abort transmission
0 = Module will clear this bit when all transmissions are aborted

bit 11 CANCKS: CAN Module Clock (FCAN) Source Select bit
1 = FCAN is equal to 2 * FP
0 = FCAN is equal to FP

bit 10-8 REQOP[2:0]: Request Operation Mode bits
111 = Sets Listen All Messages mode
110 = Reserved; do not use
101 = Reserved; do not use
100 = Sets Configuration mode
011 = Sets Listen-Only mode
010 = Sets Loopback mode
001 = Sets Disable mode
000 = Sets Normal Operation mode

bit 7-5 OPMODE[2:0]: Operation Mode bits
111 = Module is in Listen All Messages mode
110 = Reserved; do not use
101 = Reserved; do not use
100 = Module is in Configuration mode
011 = Module is in Listen-Only mode
010 = Module is in Loopback mode
001 = Module is in Disable mode
000 = Module is in Normal Operation mode

bit 4 Unimplemented: Read as ‘0’
bit 3 CANCAP: CAN Message Receive Timer Capture Event Enable bit

1 = Enables input capture based on CAN message receive
0 = Disables CAN capture

bit 2-1 Unimplemented: Read as ‘0’
bit 0 WIN: SFR Map Window Select bit

1 = Uses filter window
0 = Uses buffer window
 2008-2020 Microchip Technology Inc. DS70000353D-page 27

dsPIC33E/PIC24E Family Reference Manual
Register 4-24: CxCTRL2: CAN Control Register 2
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — DNCNT[4:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-5 Unimplemented: Read as ‘0’
bit 4-0 DNCNT[4:0]: DeviceNet™ Filter Bit Number bits

10011-11111 = Invalid selection
10010 = Compare bits [7:0] of byte 0 and bits [7:0] of byte 1 and bits [7:6] of byte 2 with EID[17:0]
10001 = Compare bits [7:0] of byte 0 and bits [7:0] of byte 1 and bit 7 of byte 2 with EID[17:1]
10000 = Compare bits [7:0] of data byte 0 and bits [7:0] of data byte 1 with EID[17:2]
01111 = Compare bits [7:0] of data byte 0 and bits [7:1] of data byte 1 with EID[17:3]
01110 = Compare bits [7:0] of data byte 0 and bits [7:2] of data byte 1 with EID[17:4]
01101 = Compare bits [7:0] of data byte 0 and bits [7:3] of data byte 1 with EID[17:5]
01100 = Compare bits [7:0] of data byte 0 and bits [7:4] of data byte 1 with EID[17:6]
01011 = Compare bits [7:0] of data byte 0 and bits [7:5] of data byte 1 with EID[17:7]
01010 = Compare bits [7:0] of data byte 0 and bits [7:6] of data byte 1 with EID[17:8]
01001 = Compare bits [7:0] of data byte 0 and bit [7] of data byte 1 with EID[17:9]
01000 = Compare bits [7:0] of data byte 0 with EID[17:10]
00111 = Compare bits [7:1] of data byte 0 with EID[17:11]
00110 = Compare bits [7:2] of data byte 0 with EID[17:12]
00101 = Compare bits [7:3] of data byte 0 with EID[17:13]
00100 = Compare bits [7:4] of data byte 0 with EID[17:14]
00011 = Compare bits [7:5] of data byte 0 with EID[17:15]
00010 = Compare bits [7:6] of data byte 0 with EID[17:16]
00001 = Compare bit 7 of data byte 0 with EID[17]
00000 = Does not compare data bytes
DS70000353D-page 28  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Register 4-25: CxTRmnCON: CAN TX/RX Buffer m Control Register (m = 0,2,4,6; n = 1,3,5,7)
R/W-0 R-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
TXENn TXABTn TXLARBn TXERRn TXREQn RTRENn TXnPRI[1:0]

bit 15 bit 8

R/W-0 R-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
TXENm TXABTm(1) TXLARBm(1) TXERRm(1) TXREQm RTRENm TXmPRI[1:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 See definition for bits 7-0, Controls Buffer n
bit 7 TXENm: TX/RX Buffer Selection bit

1 = Buffer TRBn is a transmit buffer
0 = Buffer TRBn is a receive buffer

bit 6 TXABTm: Message Aborted bit(1)

1 = Message was aborted
0 = Message completed transmission successfully

bit 5 TXLARBm: Message Lost Arbitration bit(1)

1 = Message lost arbitration while being sent
0 = Message did not lose arbitration while being sent

bit 4 TXERRm: Error Detected During Transmission bit(1)

1 = A bus error occurred while the message was being sent
0 = A bus error did not occur while the message was being sent

bit 3 TXREQm: Message Send Request bit
1 = Requests that a message be sent; once the message is successfully sent, the bit is automatically

cleared
0 = Setting this bit to ‘0’ while a message is being sent aborts the message transmission

bit 2 RTRENm: Auto-Remote Transmit Enable bit
1 = When a remote frame is received, TXREQ bit will automatically set
0 = When a remote frame is received, TXREQ bit will be unaffected

bit 1-0 TXmPRI[1:0]: Message Transmission Priority bits
11 = Highest message priority
10 = High intermediate message priority
01 = Low intermediate message priority
00 = Lowest message priority

Note 1: This bit is cleared when the TXREQ bit is set.
 2008-2020 Microchip Technology Inc. DS70000353D-page 29

dsPIC33E/PIC24E Family Reference Manual
Register 4-26: CxEC: CAN Transmit/Receive Error Count Register
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

TERRCNT[7:0]
bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
RERRCNT[7:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 TERRCNT[7:0]: Transmit Error Count bits
bit 7-0 RERRCNT[7:0]: Receive Error Count bits

Register 4-27: CxRXD: CAN Receive Data Register
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA[15:8]
bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA[7:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA[15:0]: Receive Data bits

Register 4-28: CxTXD: CAN Transmit Data Register
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA[15:8]
bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA[7:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA[15:0]: Transmit Data bits
DS70000353D-page 30  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
5.0 CAN MESSAGE BUFFERS
CAN message buffers are located in device RAM. They are not CAN SFRs. The user application
must directly write into the device RAM area that is configured for CAN message buffers. The
location and size of the buffer area is defined by the user application.
This section provides information on how the message buffer words are organized for
transmission and reception. (See also Section 2.0 “CAN Message Formats” for message
buffer layout details and Section 9.0 “DMA Controller Configuration” for details on how to
configure CAN message buffers in device RAM.)

Buffer 5-1: CAN Message Buffer Word 0
U-x U-x U-x R/W-x R/W-x R/W-x R/W-x R/W-x
— — — SID[10:6]

bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
SID[5:0] SRR IDE

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’
bit 12-2 SID[10:0]: Standard Identifier bits
bit 1 SRR: Substitute Remote Request bit

When IDE = 0:
1 = In case of transmission, this will cause a remote frame to be transmitted; in case of a received

message, indicates a remote frame was received
0 = Normal message
When IDE = 1:
The SRR bit must be set to ‘1’

bit 0 IDE: Extended Identifier bit
1 = Message will transmit Extended Identifier or received message has an Extended Identifier
0 = Message will transmit Standard Identifier or received message has a Standard Identifier

Buffer 5-2: CAN Message Buffer Word 1
U-x U-x U-x U-x R/W-x R/W-x R/W-x R/W-x
— — — — EID[17:14]

bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EID[13:6]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as ‘0’
bit 11-0 EID[17:6]: Extended Identifier bits
 2008-2020 Microchip Technology Inc. DS70000353D-page 31

dsPIC33E/PIC24E Family Reference Manual

(

Buffer 5-3: CAN Message Buffer Word 2
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EID[5:0] RTR RB1
bit 15 bit 8

U-x U-x U-x R/W-x R/W-x R/W-x R/W-x R/W-x
— — — RB0 DLC[3:0]

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-10 EID[5:0]: Extended Identifier bits
bit 9 RTR: Remote Transmission Request bit

When IDE = 1:
1 = In case of transmission, this will cause a remote frame to be transmitted; in case of received

message, indicates a remote frame was received
0 = Normal message
When IDE = 0:
The RTR bit is ignored.

bit 8 RB1: Reserved Bit 1
User application must set this bit to ‘0’ per CAN Specification.

bit 7-5 Unimplemented: Read as ‘0’
bit 4 RB0: Reserved Bit 0

User application must set this bit to ‘0’ per CAN Specification.
bit 3-0 DLC[3:0]: Data Length Code bits

Buffer 5-4: CAN Message Buffer Word 3
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

Byte 1
bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
Byte 0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 CAN Message Byte 1
bit 7-0 CAN Message Byte 0
DS70000353D-page 32  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Buffer 5-5: CAN Message Buffer Word 4
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

Byte 3
bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
Byte 2

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 CAN Message Byte 3
bit 7-0 CAN Message Byte 2

Buffer 5-6: CAN Message Buffer Word 5
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

Byte 5
bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
Byte 4

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 CAN Message Byte 5
bit 7-0 CAN Message Byte 4

Buffer 5-7: CAN Message Buffer Word 6
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

Byte 7
bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
Byte 6

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 CAN Message Byte 7
bit 7-0 CAN Message Byte 6
 2008-2020 Microchip Technology Inc. DS70000353D-page 33

dsPIC33E/PIC24E Family Reference Manual
Buffer 5-8: CAN Message Buffer Word 7
U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x
— — — FILHIT[4:0]

bit 15 bit 8

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’
bit 12-8 FILHIT[4:0]: Filter Hit Code bits

Encodes the number of the filter that resulted in writing this buffer (only written by module for receive
buffers, unused for transmit buffers).

bit 7-0 Unimplemented: Read as ‘0’
DS70000353D-page 34  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
6.0 CAN OPERATING MODES
The CAN module can operate in one of the several modes selected by the user application.
These modes include:
• Configuration mode
• Normal Operation mode
• Listen-Only mode
• Listen All Messages mode
• Loopback mode
• Disable mode
The operating modes are requested by the user application that is writing to the Request
Operation Mode bits (REQOP[2:0]) in the CAN Control Register 1 (CxCTRL1[10:8]). The CAN
module Acknowledges entry into the requested mode by the OPMODE[2:0] bits (CxCTRL1[7:5]).
Mode transition is performed in synchronization with the CAN network. That is, the CAN module
waits until it detects a bus Idle sequence (11 recessive bits) before it changes mode.

6.1 Configuration Mode
After a hardware Reset, the CAN module is in Configuration mode (OPMODE[2:0] = 100). The
error counters are cleared and all registers contain the Reset values. In order to modify the CAN
Baud Rate Configuration registers (CxCFG1 and CxCFG2), the CAN module must be in the
Configuration mode.

6.2 Normal Operation Mode
In the Normal Operation mode, the CAN module can transmit and receive the CAN messages.
Normal Operation mode is requested after initialization by programming the REQOP[2:0]
bits (CxCTRL1[10:8]) to ‘000’. When OPMODE[2:0] = 000, the module proceeds with normal
operation.

6.3 Listen-Only Mode
The Listen-Only mode is used mainly for bus monitoring without participating in the transmission
process. The node in Listen-Only mode does not generate an Acknowledge or error frames –
one of the other nodes must do it. The Listen-Only mode can be used for detecting the baud rate
on the CAN bus.

6.4 Listen All Messages Mode
The Listen All Messages mode is used for system debugging. Basically, all messages are
received regardless of their identifier, even when there is an error. If the Listen All Messages
mode is activated, the transmission and reception operate the same as Normal Operation mode,
except that if a message is received with an error, it is still transferred to the message buffer.

6.5 Loopback Mode
The Loopback mode is used for self-test to allow the CAN module to receive its own message.
In this mode, the CAN transmit path is connected to the receive path internally. A “dummy”
Acknowledgment is provided, thereby eliminating the need for another node to provide the
Acknowledge bit.

6.6 Disable Mode
The Disable mode is used to ensure a safe shutdown before putting the device in Sleep or Idle
mode. That is, the CAN module waits until it detects a bus Idle sequence (11 recessive bits)
before it changes the mode. When the module is in Disable mode, it stops its own clocks, having
no effect on the CPU or other modules. The module wakes up when the bus activity occurs or
when the CPU sets the OPMODE[2:0] bits to ‘000’.
The CxTX pin stays in the Recessive state while the module is in Disable mode.
 2008-2020 Microchip Technology Inc. DS70000353D-page 35

dsPIC33E/PIC24E Family Reference Manual
7.0 TRANSMITTING CAN MESSAGES
A node originating a message is a transmitter of that message. The node remains a transmitter
until the bus becomes Idle or the unit loses arbitration. Figure 7-1 illustrates a typical CAN
transmission process.
Message Buffers 0-7 (located in device RAM) are configured to transmit or receive CAN
messages using the TX/RX Buffer Selection bit (TXENn) in the corresponding CAN TX/RX Buffer
m Control register (CxTRmnCON[7]). If the TXENn bit is set, the message buffer is configured
for transmission. For the layout of standard and extended frames in the message buffer, and the
states of the IDE, SRR, RTR, RB0 and RB1 bits for Standard Data, Extended Data, Standard
Remote, or Extended Remote frames as per the CAN Specification; refer to Section 2.0 “CAN
Message Formats”.

7.1 Message Transmission Flow
To transmit a message over the CAN bus, the user application must perform these tasks:
1. Configure a message buffer for transmission and assign a priority to the buffer.
2. Write the CAN message in the message buffer located in device RAM.
3. Set the transmit request bit for the buffer to initiate message transmission.
The message transmission is initiated by setting the Message Send Request bit (TXREQm) in
the CAN TX/RX Buffer m Control register (CxTRmnCON[3]). The TXREQm bit is cleared
automatically after the message is transmitted. Before the SOF is sent, all the buffers ready for
transmission are examined to determine which buffer has the highest priority. The transmit buffer
with the highest priority is sent first.

Each of the transmit message buffers can be assigned to any of the four user application-defined
priority levels using the TXnPRI[1:0] bits (CxTRmnCON[1:0]).
TXnPRI[1:0] message transmission priority selections are:
• 11 = The transmit message has the highest priority
• 10 = The transmit message has intermediate high priority
• 01 = The transmit message has intermediate low priority
• 00 = The transmit message has the lowest priority
There is a natural order of priority for message buffers that are assigned to the same user
application-defined priority level. Message Buffer 7 has the highest natural order of priority. The
user application-defined priority levels override the natural order of priority.
If the message fails to transmit, one of the other condition flags will be set and the TXREQ bit will
remain set, indicating that the message is still pending for transmission. If the message tries to
transmit but encounters an error condition, the TXERR bit will be set. If the message tries to
transmit but loses arbitration, the TXLARB bit will be set. If the retransmitted message gets
transmitted successfully, then TXREQ will be cleared, but TXLARB would still be set. TXLARB
gets cleared when TXREQ is set again.

Note: Setting the TXREQm bit when the TXENn bit is ‘0’ will result in unpredictable module
behavior.

TABLE 7-1: INTERPRETING THE MESSAGE TRANSMISSION WITH RESPECT
TO TXLARB AND TXREQ STATUS

TXLARB TXREQ Description

0 0 Message transmission is successful. No loss of arbitration.
0 1 Message transmission is pending.
1 0 Message retransmitted successfully after loss of arbitration.
1 1 The message was not retransmitted after loss of arbitration.
DS70000353D-page 36  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Figure 7-1: CAN Transmission

Word 0
01

SRR IDE

Word 1 0

Word 2 1015

2

EID[5:0] DLC[3:0]
4

12

9
RTR RB1

SID[10:0]

EID[17:6]

8

FILHIT[4:0]
8

Data Byte 1

Data Byte 3

Data Byte 5

Data Byte 7

Data Byte 0

Data Byte 2

Data Byte 4

Data Byte 6

Word 7

SID SRR EID RTR

SID RTR DLC

DLCMessage Buffer 0

Message Buffer 1

Message Buffer 2

Message Buffer 3
(TX)

Message Buffer 4

Message Buffer 5

Message Buffer 6

Message Buffer 7

Extended

Standard

CAN Data Frames

Word 3

Word 4

Word 5

Word 6

RB0

Device RAMTransmit Message

Transm
it Priority Arbitration

1315

1215

1315

57

Identifier

Identifier
 2008-2020 Microchip Technology Inc. DS70000353D-page 37

dsPIC33E/PIC24E Family Reference Manual
A code example to transmit a standard frame using Message Buffer 0 is shown in Example 7-1.

Example 7-1: Code Example for Standard Data Frame Transmission
#include <p33Exxxx.h>

/* This code example demonstrates a method to configure the Allie#2009
CAN module to transmit

Standard ID CAN messages. */

/* Include fuse configuration code here. Optionally the fuse configuration can be specified
via MPLAB IDE Menu operations. */

FUSE_CONFIGURATION_MACROS_COME_HERE

#define NUM_OF_CAN_BUFFERS 32

/* This is the CAN message buffer declaration. Note the buffer alignment. */

unsigned int can1MsgBuf[NUM_OF_CAN_BUFFERS][8]
 __attribute__((aligned(NUM_OF_CAN_BUFFERS * 16)));

int main(void)
{
 unsigned long address;

 /* Place code to set device speed here. For this example the device speed should be set at
40 MHz (i.e., the device is operating at 40 MIPS). */

 ConfigureDeviceClockFor40MIPS();

 /* The dsPIC33E device features I/O remap. This I/O remap configuration for the CAN
module can be performed here. */

 SetIORemapForCANModule();

 /* Set up the CAN1 module to operate at 250 kbps. The CAN module should be first placed
in configuration mode. */

 C1CTRL1bits.REQOP = 4;
 while(C1CTRL1bits.OPMODE != 4);

 C1CTRL1bits.WIN = 0;

 /* Set up the CAN module for 250kbps speed with 10 Tq per bit. */

 C1CFG1 = 0x47; // BRP = 8 SJW = 2 Tq
 C1CFG2 = 0x2D2;
 C1FCTRL = 0xC01F; // No FIFO, 32 Buffers

/* Assign 32x8word Message Buffers for CAN1 in device RAM. This example uses DMA0 for TX.
Refer to Section 9.1 “DMA Operation for Transmitting Data” for details on DMA channel
configuration for CAN transmit. */

 DMA0CONbits.SIZE = 0x0;
 DMA0CONbits.DIR = 0x1;
 DMA0CONbits.AMODE = 0x2;
 DMA0CONbits.MODE = 0x0;
 DMA0REQ = 70;
 DMA0CNT = 7;
 DMA0PAD = (volatile unsigned int)&C1TXD;

DMA0STAL = (unsigned int) &can1msgBuf;
DMA0STAH = 0;

 DMA0CONbits.CHEN = 0x1;
DS70000353D-page 38  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Example 7-1: Code Example for Standard Data Frame Transmission (Continued)
 /* Configure Message Buffer 0 for Transmission and assign priority */

 C1TR01CONbits.TXEN0 = 0x1;
 C1TR01CONbits.TX0PRI = 0x3;

 /* At this point the CAN1 module is ready to transmit a message. Place the CAN module in
Normal mode. */

 C1CTRL1bits.REQOP = 0;
 while(C1CTRL1bits.OPMODE != 0);

 /* Write to message buffer 0 */
 /* CiTRBnSID = 0bxxx1 0010 0011 1100
 IDE = 0b0
 SRR = 0b0
 SID<10:0>= 0b100 1000 1111 */

 can1MsgBuf[0][0] = 0x123C;

 /* CiTRBnEID = 0bxxxx 0000 0000 0000
 EID<17:6> = 0b0000 0000 0000 */

 can1MsgBuf[0][1] = 0x0000;
/* CiTRBnDLC = 0b0000 0000 xxx0 1111
 EID<17:6> = 0b000000
 RTR = 0b0
 RB1 = 0b0
 RB0 = 0b0
 DLC = 0b1111 */

 can1MsgBuf[0][2] = 0x0008;
/* Write message data bytes */
 can1MsgBuf[0][3] = 0xabcd;
 can1MsgBuf[0][4] = 0xabcd;
 can1MsgBuf[0][5] = 0xabcd;
 can1MsgBuf[0][6] = 0xabcd;

 /* Request message buffer 0 transmission */
 C1TR01CONbits.TXREQ0 = 0x1;

/* The following shows an example of how the TXREQ bit can be polled to check if transmission
is complete. */

 while(C1TR01CONbits.TXREQ0 == 1);

 /* Message was placed successfully on the bus */
 while(1);
}

 2008-2020 Microchip Technology Inc. DS70000353D-page 39

dsPIC33E/PIC24E Family Reference Manual
A code example to transmit an extended frame using Message Buffer 2 is shown in Example 7-2.

Example 7-2: Code Example for Extended Data Frame Transmission
#include <p33Exxxx.h>

/* This code example demonstrates a method to configure the CAN module to transmit Extended
ID CAN messages. */

/* Include fuse configuration code here. Optionally the fuse configuration can be specified via
MPLAB IDE Menu operations. */

FUSE_CONFIGURATION_MACROS_COME_HERE

#define NUM_OF_CAN_BUFFERS 32

/* This is the CAN message buffer declaration. Note the buffer alignment. */

unsigned int can1MsgBuf[NUM_OF_CAN_BUFFERS][8]
 __attribute__((aligned(NUM_OF_CAN_BUFFERS * 16)));

int main(void)
{
 unsigned long address;

 /* Place code to set device speed here. For this example the device speed should be set at
40 MHz (i.e., the device is operating at 40 MIPS). */

ConfigureDeviceClockFor40MIPS();

 /* The dsPIC33E device features I/O remap. This I/O remap configuration for the CAN module
can be performed here. */

 SetIORemapForCANModule();

/* Set up the CAN1 module to operate at 250 kbps. The CAN module should be first placed in
configuration mode. */
C1CTRL1bits.REQOP = 4;

 while(C1CTRL1bits.OPMODE != 4);

 C1CTRL1bits.WIN = 0;

 /* Set up the CAN module for 250kbps speed with 10 Tq per bit. */

 C1CFG1 = 0x47; // BRP = 8 SJW = 2 Tq
 C1CFG2 = 0x2D2;
 C1FCTRL = 0xC01F; // No FIFO, 32 Buffers

/* Assign 32x8 word Message Buffers for CAN1 in device RAM. This example uses DMA0 for TX.
Refer to Section 9.1 “DMA Operation for Transmitting Data” for details on DMA channel
configuration for CAN transmit. */

DMA0CONbits.SIZE = 0x0;
 DMA0CONbits.DIR = 0x1;
 DMA0CONbits.AMODE = 0x2;
 DMA0CONbits.MODE = 0x0;
 DMA0REQ = 70;
 DMA0CNT = 7;
 DMA0PAD = (volatile unsigned int)&C1TXD;

DMA0STAL = (unsigned int) &can1msgBuf;
DMA0STAH = 0;

 DMA0CONbits.CHEN = 0x1;
DS70000353D-page 40  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Example 7-2: Code Example for Extended Data Frame Transmission (Continued)
 /* Configure Message Buffer 2 for Transmission and assign priority */

 C1TR23CONbits.TXEN2 = 0x1;
 C1TR23CONbits.TX2PRI = 0x3;

 /* At this point the CAN1 module is ready to transmit a message. Place the CAN module in
Normal mode. */

C1CTRL1bits.REQOP = 0;
 while(C1CTRL1bits.OPMODE != 0);

 /* Write to message buffer 2*/
 /* CiTRBnSID = 0bxxx1 0010 0011 1101
 IDE = 0b1
 SRR = 0b1
 SID<10:0> : 0b100 1000 1111 */

 can1MsgBuf[2][0] = 0x123D;

 /* CiTRBnEID = 0bxxxx 1111 0000 0000
 EID<17:6> = 0b1111 0000 0000 */

 can1MsgBuf[2][1] = 0x0F00;

/* CiTRBnDLC = 0b0000 1100 xxx0 1111
 EID<17:6> = 0b000011
 RTR = 0b0
 RB1 = 0b0
 RB0 = 0b0
 DLC = 0b1000 */

 can1MsgBuf[2][2] = 0x0C08;

/* Write message data bytes */
 can1MsgBuf[2][3] = 0xabcd;
 can1MsgBuf[2][4] = 0xabcd;
 can1MsgBuf[2][5] = 0xabcd;
 can1MsgBuf[2][6] = 0xabcd;

/* Request message buffer 2 transmission */
 C1TR23CONbits.TXREQ2 = 0x1;

/* The following shows an example of how the TXREQ bit can be polled to check if transmission
is complete. */

 while(C1TR23CONbits.TXREQ2 == 1);

 /* Message was placed successfully on the bus */
 while(1);
}

 2008-2020 Microchip Technology Inc. DS70000353D-page 41

dsPIC33E/PIC24E Family Reference Manual
7.2 Aborting a Transmit Message
Setting the Abort All Pending Transmissions bit (ABAT) in the CAN Control Register 1
(CxCTRL1[12]) requests an abort of all pending messages. To abort a specific message, the
Message Send Request (TXREQm) bit (CxTRmnCON[3]) associated with that message buffer
must be cleared. In either case, the message is only aborted if the CAN module has not started
transmitting the message on the bus or the message has been started, but it is interrupted by
loss of arbitration or an error.

7.3 Transmitting and Responding Remote Frames

7.3.1 TRANSMIT A REMOTE FRAME
A node expecting to receive a data frame with a specific identifier value can initiate the
transmission of the respective data by another node by sending the remote frame. The remote
frame can be either in the standard format or extended format.
A remote frame is similar to a data frame, with the following exceptions:
• The RTR bit is recessive (RTR = 1)
• There is no Data field
• The value of the DLCx bits is 0 ≤ DLC ≤ 8
To transmit a remote frame, the user application must perform these tasks:
1. Configure the message buffer for transmission and assign a priority to the buffer.
2. Write the remote frame in the appropriate message buffer. The transmitted identifier must

be identical to the identifier of the data frame to be received.
3. Set the transmit request bit for the buffer to initiate transmission of the remote frame.

7.3.2 RESPOND TO A REMOTE FRAME
The node acting as the source to respond to the remote frame request needs to configure an
acceptance filter to match the identifier of the remote frame. Message Buffers 0-7 can respond
to remote frames, so the Acceptance Filter Buffer Pointer (FnBP) should point to one of the eight
message buffers. The TX/RX Buffer Selection (TXENn) and Auto-Remote Transmit Enable
(RTRENm) bits in the CAN TX/RX Buffer m Control register (CxTRMNCON[7] and
CxTRmnCON[2]) must be set to respond to the remote frame.
This is the only case where the Acceptance Filter Buffer Pointer (FnBP) points to a message
buffer that is configured for transmission (TXENn = 1).
Figure 7-2 illustrates the remote frame handling process:
1. CAN Node 1 sends an RTR (using Message Buffer 1).
2. CAN Node 2 receives the request and responds by sending the data frame (using

Message Buffer 7).
3. The data frame is received by CAN Node 1.
4. The data frame is stored in Message Buffer 14 of CAN Node 1.

Note: When configured for automatic response to remote frames (RTREN = 1), the CAN
module ignores the value of the DLCx bits in the incoming RTR message. If the
application needs to transmit a data payload size specified by the DLCx bits in the
received RTR message, it should not enable automatic RTR response. The
application should process the RTR message like any other received message.
Check if the RTR bit is set and then transmit a message whose payload size is
equal to the DLCx bits in the receive RTR message.
DS70000353D-page 42  2008-2020 Microchip Technology Inc.


 2008-2020 M

icrochip Technology Inc.
D

S70000353D
-page 43

Enhanced C
A

N
 M

odule

Fig

Filter 15

ilter 0

Message Buffer 0

Message Buffer 1

Message Buffer 7 (TX)

Message Buffer 8

Message Buffer 31

 NODE 2

4

3

 data frame.
.

cally.
ure 7-2: Remote Frame Transmit and Response

MASK 2
MASK 1

MASK 0

Filter 15

MASK 2
MASK 1

MASK 0

Remote Frame

Data Frame

SID SRR = 0 EID RTR = 0 DLC

SID RTR = 0 DLC

SID SRR = 1 EID RTR = 1

SID RTR = 1 DLC

Extended Message

Standard Message

DLC

F

Filter 0

Message Buffer 0

Message Buffer 1 (TX)

Message Buffer 14 (RX)

Message Buffer 31

CAN NODE 1 CAN

2

1

Note 1: The node transmitting the remote frame must have a transmit buffer from which to send the remote frame, and one receive buffer to receive the
2: The node receiving the remote frame must have a transmit buffer from which to transmit a data frame in response to the received remote frame
3: The FnBPx bits (CxBUFPNTm) should be pointing to a transmit buffer in case of remote transmission.
4: The RTREN bits (CxTRmnCON) should be set so that when a remote transmit is received, the TXREQ bits (CxTRmnCON) will be set automati

dsPIC33E/PIC24E Family Reference Manual
A code example to transmit an extended remote frame using Message Buffer 2 is shown in
Example 7-3.

Example 7-3: Code Example for Transmitting Extended Remote Frame
#include <p33Exxxx.h>

/* This code example demonstrates a method to configure the CAN module to transmit Extended ID
CAN Remote frames */

/* Include fuse configuration code here. Optionally, the fuse configuration can be specified
via MPLAB IDE Menu operations. */

FUSE_CONFIGURATION_MACROS_COME_HERE

#define NUM_OF_CAN_BUFFERS 32

/* This is the CAN message buffer declaration. Note the buffer alignment. */

unsigned int can1MsgBuf[NUM_OF_CAN_BUFFERS][8]
 __attribute__((aligned(NUM_OF_CAN_BUFFERS * 16)));

int main(void)
{
 unsigned long address;

 /* Place code to set device speed here. For this example the device speed should be set at
40 MHz (i.e., the device is operating at 40 MIPS). */

 ConfigureDeviceClockFor40MIPS();

/* The dsPIC33E device features I/O remap. This I/O remap configuration for the CAN module can
be performed here. */

 SetIORemapForCANModule();

 /* Set up the CAN1 module to operate at 250 kbps. The CAN module should be first placed
in configuration mode. */

 C1CTRL1bits.REQOP = 4;
 while(C1CTRL1bits.OPMODE != 4);

 C1CTRL1bits.WIN = 0;

 /* Set up the CAN module for 250kbps speed with 10 Tq per bit. */
C1CFG1 = 0x47; // BRP = 8 SJW = 2 Tq

 C1CFG2 = 0x2D2;
C1FCTRL = 0xC01F; // No FIFO, 32 Buffers

 /* Assign 32x8word Message Buffers for CAN1 in device RAM. This example uses DMA0 for TX.
Refer to Section 9.1 “DMA Operation for Transmitting Data” for details on DMA channel
configuration for CAN transmit. */

 DMA0CONbits.SIZE = 0x0;
 DMA0CONbits.DIR = 0x1;
 DMA0CONbits.AMODE = 0x2;
 DMA0CONbits.MODE = 0x0;
 DMA0REQ = 70;
 DMA0CNT = 7;
 DMA0PAD = (volatile unsigned int)&C1TXD;

DMA0STAL = (unsigned int) &can1msgBuf;
DMA0STAH = 0;

 DMA0CONbits.CHEN = 0x1;
DS70000353D-page 44  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Example 7-3: Code Example for Transmitting Extended Remote Frame (Continued)
/* Configure Message Buffer 2 for Transmission and assign priority */

 C1TR23CONbits.TXEN2 = 0x1;
 C1TR23CONbits.TX2PRI = 0x3;

 /* At this point the CAN1 module is ready to transmit a message. Place the CAN module
in Normal mode. */

 C1CTRL1bits.REQOP = 0;
 while(C1CTRL1bits.OPMODE != 0);

 /* Write to message buffer 2*/
 /* CiTRBnSID = 0bxxx1 0010 0011 1101
 IDE = 0b1
 SRR = 0b1
 SID<10:0> : 0b100 1000 1111 */

 can1MsgBuf[2][0] = 0x123F;

 /* CiTRBnEID = 0bxxxx 1111 0000 0000
 EID<17:6> = 0b1111 0000 0000 */

 can1MsgBuf[2][1] = 0x0F00;

 /* CiTRBnDLC = 0b0000 1100 xxx0 1111
 EID<17:6> = 0b000011
 RTR = 0b1
 RB1 = 0b0
 RB0 = 0b0
 DLC = 0b1000 */

 /* RTR bit is set */
 can1MsgBuf[2][2] = 0x0E00;

/* An RTR message does not have a data payload. */

/* Request message buffer 2 transmission */
 C1TR23CONbits.TXREQ2 = 0x1;

 /* The following shows an example of how the TXREQ bit can be polled to check if
transmission is complete. */

 while(C1TR23CONbits.TXREQ2 == 1);

 /* Message was placed successfully on the bus */
 while(1);
}

 2008-2020 Microchip Technology Inc. DS70000353D-page 45

dsPIC33E/PIC24E Family Reference Manual
8.0 RECEIVING CAN MESSAGES
The CAN module can receive both standard and extended frames on the CAN bus node. This
module has the additional capability of automatically transferring the received messages to the
user-defined buffers in device RAM, thereby eliminating the need for the user application to
explicitly copy messages from hardware registers to the user-defined buffers. The storage format
of each message within the DMA buffer is identical to that of transmit buffers, with each message
(including the associated status register) occupying eight words in device RAM.
The two main stages that constitute the CAN reception process are described below, with a
simplified reception process example illustrated in Figure 8-1 and Figure 8-4.

8.1 Message Reception and Acceptance Filtering
As illustrated in Figure 8-1, every incoming message on the bus is received into a Message
Assembly Buffer, and its identifier field is compared with a set of 16 user-defined acceptance
filters. Each received standard data frame contains an 11-bit SID, and each extended data frame
contains an 11-bit SID and an 18-bit EID. If all bits in the incoming identifier completely match the
corresponding bits in any of the acceptance filters, the CAN module generates a DMA transfer
request to the DMA Controller so that the message can be received into the appropriate buffer
in device RAM.

Figure 8-1: Message Reception and Acceptance Filtering 7

SID EID

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7

Filter 0
Filter 1
Filter 2
Filter 3
Filter 4
Filter 5
Filter 6
Filter 7
Filter 8
Filter 9
Filter 10
Filter 11
Filter 12
Filter 13
Filter 14
Filter 15

Identifier
Comparison

CAN Data Frames

Filter Match (DMA Transfer Request)

Message
Assembly
Buffer

Acceptance
Filters (0-15)

User-Defined
DS70000353D-page 46  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
8.1.1 ACCEPTANCE FILTERS
Figure 8-2 illustrates the incoming message identifier being compared with the filter/mask bits for
standard frames. Figure 8-3 illustrates the incoming message identifier being compared with the
filter/mask bits for extended frames.

Figure 8-2: Acceptance Filtering for a Standard Message

Figure 8-3: Acceptance Filtering for an Extended Message

The Acceptance Filters 0-15 can be individually enabled or disabled using the Enable Filter bits
(FLTENx) in the CAN Acceptance Filter Enable register (CxFEN1[15:0]). The value of ‘x’ signifies
the register bit and corresponds to the index of the acceptance filter.
The Acceptance Filters 0-15 specify the identifiers that must be contained in an incoming
message for its contents to be passed to a receive buffer. Each of these filters consists of two
registers – one for the SIDs and the other for EIDs. These registers are identified as:
• CxRXFnSID: CAN Acceptance Filter Standard Identifier Register n (n = 0-15)
• CxRXFnEID: CAN Acceptance Filter Extended Identifier Register n (n = 0-15)

SID10 SID9

S
O
F

IDENTIFIER
11 Bits

R
T
R

I
D
E

DLC
4 Bits

CRC
16 Bits

ACK
2 Bits

EOF
7 Bits

IFS
3 Bits

SID1

11-Bit Identifier

RB0
DATA
8 Bits

SID0

SID10 SID9 SID1 SID0 EXIDE CxRXFnSID

CxRXMnSIDSID10 SID9 SID1 SID0 MIDE

Accept/Reject Message

SID10 SID1

S
O
F

IDENTIFIER
11 Bits

S
R
R

I
D
E

R
T
R

DLC
4 Bits

CRC
16 Bits

ACK EOF
7 Bits

IFS
3 Bits

SID0 29-Bit Identifier

IDENTIFIER
18 Bits

EID17 EID1 EID0

R
B
1

R
B
0

CxRXMnSID

CxRXFnSID

EID15 EID14 EID0

CxRXMnEID

SID10 SID0 EXIDE EID17 EID16

SID10 SID0 MIDE EID17 EID16 EID14 EID0EID15

CxRXFnEID

Accept/Reject Message

2 Bits
 2008-2020 Microchip Technology Inc. DS70000353D-page 47

dsPIC33E/PIC24E Family Reference Manual
8.1.2 ACCEPTANCE FILTER MASKS
As shown in Figure 8-2 and Figure 8-3, an acceptance filter mask determines which bits in the
incoming message identifiers are examined with the acceptance filters.
The acceptance filters optionally select one of the acceptance filter masks using the Mask
Source Select (FnMSK[1:0]) bits in the CxFMSKSEL1 and CxFMSKSEL2 registers:
• CxFMSKSEL1: CAN Filter 7-0 Mask Selection Register 1
• CxFMSKSEL2: CAN Filter 15-8 Mask Selection Register 2
The selection values for the FnMSK[1:0] bits are:
• 11 = Reserved
• 10 = Select Acceptance Filter Mask 2
• 01 = Select Acceptance Filter Mask 1
• 00 = Select Acceptance Filter Mask 0
Table 8-1 is a truth table that indicates how each bit in the identifier is compared to the masks
and filters to determine if the message should be accepted or rejected. The mask bit essentially
determines which bits to apply the filter to. If any mask bit is set to ‘0’, that bit is automatically
accepted, regardless of the filter bit.

8.1.3 MESSAGE TYPE SELECTION
The Extended Identifier Enable bit (EXIDE) in the CAN Acceptance Filter Standard Identifier
Register n (CxRXFnSID[3]) enables reception of either SID or EID messages. The Identifier
Receive Mode bit (MIDE) in the CAN Acceptance Filter Mask Standard Identifier Register n
(CxRXMnSID[3]) enables the EXIDE bit. If the MIDE bit is set, only the type of message selected
by the EXIDE bit is accepted. If the MIDE bit is clear, the EXIDE bit is ignored and all messages
that match the filter are accepted.

Table 8-2: Message Type Selections

Table 8-1: Acceptance Filter/Mask Truth Table
Mask (SIDx/EIDx) Filter (SIDx/EIDx) Message (SIDx/EIDx) Accept or Reject Bit x

0 x x Accept
1 0 0 Accept
1 0 1 Reject
1 1 0 Reject
1 1 1 Accept

EXIDE MIDE Selection

0 1 Acceptance filter to check for SID
1 1 Acceptance filter to check for EID
x 0 Acceptance filter to check for SID/EID
DS70000353D-page 48  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
8.1.4 ACCEPTANCE FILTER CONFIGURATION
A sample code used to configure Acceptance Filter 0 to receive the SID messages using the
Acceptance Filter Mask register to mask the SID[2:0] bits is shown in Example 8-1.

Example 8-1: Code Example for Filtering Standard Data Frame
#include <p33Exxxx.h>

/* This code example demonstrates a method to configure the CAN module to receive Standard ID
CAN messages. SID Messages with SID range 0x1D0-0x1D7 will be accepted. */

/* Include fuse configuration code here. Optionally the fuse configuration can be specified via
MPLAB IDE Menu operations. */

FUSE_CONFIGURATION_MACROS_COME_HERE

#define NUM_OF_CAN_BUFFERS 32

/* This is the CAN message buffer declaration. Note the buffer alignment. */

unsigned int can1MsgBuf[NUM_OF_CAN_BUFFERS][8]
__attribute__((aligned(NUM_OF_CAN_BUFFERS * 16)));

int main(void)
{
 unsigned long address;

 /* Place code to set device speed here. For this example the device speed should be set at
40 MHz (i.e., the device is operating at 40 MIPS). */

ConfigureDeviceClockFor40MIPS();

 /* The dsPIC33E device features I/O remap. This I/O remap configuration for the CAN module
can be performed here. */

 SetIORemapForCANModule();

 /* Set up the CAN1 module to operate at 250 kbps. The CAN module should be first placed
in configuration mode. */

 C1CTRL1bits.REQOP = 4;
 while(C1CTRL1bits.OPMODE != 4);

 C1CTRL1bits.WIN = 1;

 /* Set up the CAN module for 250kbps speed with 10 Tq per bit. */

C1CFG1 = 0x47; // BRP = 8 SJW = 2 Tq
 C1CFG2 = 0x2D2;
 C1FCTRL = 0xC01F; // No FIFO, 32 Buffers

 /* Assign 32x8word Message Buffers for CAN1 in device RAM. This example uses DMA1 for RX.
Refer to Section 9.1 “DMA Operation for Transmitting Data” for details on DMA channel
configuration for CAN transmit. */

 DMA1CONbits.SIZE = 0x0;
 DMA1CONbits.DIR = 0x0;
 DMA1CONbits.AMODE = 0x2;
 DMA1CONbits.MODE = 0x0;
 DMA1REQ = 34;
 DMA1CNT = 7;
 DMA1PAD = (volatile unsigned int)&C1RXD;

DMA1STAL = (unsigned int) &can1msgBuf;
DMA1STAH = 0;

 DMA1CONbits.CHEN = 0x1;
 2008-2020 Microchip Technology Inc. DS70000353D-page 49

dsPIC33E/PIC24E Family Reference Manual
Example 8-1: Code Example for Filtering Standard Data Frame (Continued)
 /* Select Acceptance Filter Mask 0 for Acceptance Filter 0 */

C1FMSKSEL1bits.F0MSK=0x0;

 /* Configure Acceptance Filter Mask 0 register to mask SID<2:0>
 * Mask Bits (11-bits) : 0b111 1111 1000 */

 C1RXM0SIDbits.SID = 0x7F8;

 /* Configure Acceptance Filter 0 to match standard identifier

Filter Bits (11-bits): 0b011 1010 xxx with the mask setting, message with SID
range 0x1D0-0x1D7 will be accepted by the CAN module. */

C1RXF0SIDbits.SID = 0x01D0;

 /* Acceptance Filter 0 to check for Standard Identifier */

C1RXM0SIDbits.MIDE = 0x1;
 C1RXF0SIDbits.EXIDE= 0x0;

 /* Acceptance Filter 0 to use Message Buffer 10 to store message */

 C1BUFPNT1bits.F0BP = 0xA;

/* Filter 0 enabled for Identifier match with incoming message */

C1FEN1bits.FLTEN0=0x1;

 /* Clear Window Bit to Access CAN
 * Control Registers */

 C1CTRL1bits.WIN=0x0;

 /* Place the CAN module in normal
 * mode. */

 C1CTRL1bits.REQOP = 0;
 while(C1CTRL1bits.OPMODE != 0);

 /* The following code shows one example of how the application can wait
for a message to be received in message buffer 10 */

 while(1)
 {
 /* Message was received. */
 while (C1RXFUL1bits.RXFUL10 == 0);
 C1RXFUL1bits.RXFUL10 = 0;

 }
}

DS70000353D-page 50  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
A code example used to configure Acceptance Filter 2 to receive EID messages using the
Acceptance Filter Mask register to mask the EID[5:0] bits is shown in Example 8-2.

Example 8-2: Code Example for Filtering Extended Data Frame
#include <p33Exxxx.h>
/* This code example demonstrates a method to configure the CAN module to receive Extended

ID CAN messages. EID Messages with EID range 0x3FFC0-0x3FFFF will be accepted. */
/* Include fuse configuration code here. Optionally the fuse configuration can be specified

via MPLAB IDE Menu operations. */
FUSE_CONFIGURATION_MACROS_COME_HERE
#define NUM_OF_CAN_BUFFERS 32
/* This is the CAN message buffer declaration. Note the buffer alignment. */

unsigned int can1MsgBuf[NUM_OF_CAN_BUFFERS][8]
__attribute__((aligned(NUM_OF_CAN_BUFFERS * 16)));

int main(void)
{
 unsigned long address;

/* Place code to set device speed here. For this example the device speed should be set at
40 MHz (i.e., the device is operating at 40 MIPS). */

 ConfigureDeviceClockFor40MIPS();

/* The dsPIC33E device features I/O remap. This I/O remap configuration for the CAN
module can be performed here. */

 SetIORemapForCANModule();

 /* Set up the CAN1 module to operate at 250 kbps. The CAN module should be first placed
in configuration mode. */

 C1CTRL1bits.REQOP = 4;
 while(C1CTRL1bits.OPMODE != 4);

 C1CTRL1bits.WIN = 1;

 /* Set up the CAN module for 250 kbps speed with 10 Tq per bit. */

C1CFG1 = 0x47; // BRP = 8 SJW = 2 Tq
 C1CFG2 = 0x2D2;
 C1FCTRL = 0xC01F; // No FIFO, 32 Buffers

/* Configure Acceptance Filter Mask 1
 * register to mask EID<5:0>
 * Mask Bits (29-bits) : 0b1 1111 1111 1111 1111 1111 1100 0000
 * SID<10:0> : 0b11111111111 ..SID<10:0> or EID<28:18>
 * EID<17:16> : 0b11 ..EID<17:16>
 * EID<15:0> : 0b1111111111000000 ..EID<15:0> */

 C1RXM1SID = 0xFFEB;
 C1RXM1EID = 0xFFC0;

 /* Configure Acceptance Filter 2 to match extended identifier
 * Filter Bits (29-bits) : 0b0 0000 0000 0011 1111 1111 11xx xxxx
 * SID<10:0> : 0b00000000000 ..SID<10:0> or EID<28:18>
 * EID<17:16> : 0b11 ..EID<17:16>
 * EID<15:0> : 0b1111111111xxxxxx ..EID<15:0> */

 C1RXF2SID = 0xB;
 C1RXF2EID = 0xFFFF;

 /* Acceptance Filter 2 to use Message Buffer 6 to store message */

C1BUFPNT1bits.F2BP = 0x6;

 /* Filter 2 enabled for Identifier match with incoming message */

C1FEN1 = 0;
 C1FEN1bits.FLTEN2 = 0x1;
 2008-2020 Microchip Technology Inc. DS70000353D-page 51

dsPIC33E/PIC24E Family Reference Manual
Example 8-2: Code Example for Filtering Extended Data Frame (Continued)
/* Assign 32x8word Message Buffers for CAN1 in device RAM. This example uses DMA1 for RX.

Refer to Section 9.1 “DMA Operation for Transmitting Data” for details on DMA channel
configuration for CAN transmit. */

 DMA1CONbits.SIZE = 0x0;
 DMA1CONbits.DIR = 0x0;
 DMA1CONbits.AMODE = 0x2;
 DMA1CONbits.MODE = 0x0;
 DMA1REQ = 34;
 DMA1CNT = 7;
 DMA1PAD = (volatile unsigned int)&C1RXD;

DMA1STAL = (unsigned int) &can1msgBuf;
DMA1STAH = 0;

 DMA1CONbits.CHEN = 0x1;

 /* Select Acceptance Filter Mask 1 for Acceptance Filter 2 */

 C1FMSKSEL1bits.F2MSK=0x1;

/* Clear Window Bit to Access CAN Control Registers */

C1CTRL1bits.WIN = 0x0;

C1CTRL1bits.REQOP = 0;
 while(C1CTRL1bits.OPMODE != 0);

/* The following code shows one example of how the application can wait for a message to be
received in message buffer 6 */

 while(1)
 {
 /* Message was received. */
 while (C1RXFUL1bits.RXFUL6 == 0);
 C1RXFUL1bits.RXFUL6 = 0;
 }
}

DS70000353D-page 52  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
8.2 Buffer Selection and DMA Transfer
As illustrated in Figure 8-4, if a filter match occurs, a DMA transfer request is generated by the
CAN module to the DMA Controller to automatically copy the received message into the
appropriate message buffer in a user-defined device RAM area. The CAN module supports up
to 32 message buffers. The user application can use the DMA Message Buffer Size bits
(DMABS[2:0]) in the CAN FIFO Control register (CxFCTRL[15:13]) to select either 4, 6, 8, 12, 16,
24 or 32 message buffers. The selection of the receive buffer index (and therefore, the device
RAM addresses in which a message is written by the DMA Controller) is dependent on which
filter matched the incoming identifier, and is configurable by the user application. The DMA
Controller moves the data into the appropriate addresses in the device RAM area and generates
a DMA interrupt after the user-specified number of words are transferred. For more details on
DMA channel configuration for CAN data transfers, refer to Section 9.0 “DMA Controller
Configuration”.

Figure 8-4: Buffer Selection and DMA Transfer

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7

Filter 0
Filter 1
Filter 2
Filter 3
Filter 4
Filter 5
Filter 6
Filter 7
Filter 8
Filter 9
Filter 10
Filter 11
Filter 12
Filter 13
Filter 14
Filter 15

Identifier
Comparison

Filter Match

Message
Assembly
Buffer

Acceptance
Filters
(0-15)

User-Defined

F0BP[3:0]
F1BP[3:0]
F2BP[3:0]
F3BP[3:0]
F4BP[3:0]
F5BP[3:0]
F6BP[3:0]
F7BP[3:0]
F8BP[3:0]
F9BP[3:0]
F10BP[3:0]
F11BP[3:0]
F12BP[3:0]
F13BP[3:0]
F14BP[3:0]
F15BP[3:0]

F1BP[3:0] = 0111

Message Buffer 0
Message Buffer 1

Message Buffer 7

Message Buffer 31

CAN Buffers in Device RAM

DMA
Transfer

Start of CAN Buffers

+

x16

Message Stored Here

Filter Buffer Pointers (0-15)
 2008-2020 Microchip Technology Inc. DS70000353D-page 53

dsPIC33E/PIC24E Family Reference Manual
8.2.1 BUFFER SELECTION
There are four Acceptance Filter Buffer Pointer registers that select which message buffer the
received message is stored into for Acceptance Filters 0-15.
• CxBUFPNT1: CAN Filter 0-3 Buffer Pointer Register 1
• CxBUFPNT2: CAN Filter 4-7 Buffer Pointer Register 2
• CxBUFPNT3: CAN Filter 8-11 Buffer Pointer Register 3
• CxBUFPNT4: CAN Filter 12-15 Buffer Pointer Register 4
When the incoming message identifier is matched by one of the acceptance filters, the internal
logic looks up the Buffer Pointer (FnBP[3:0]) and uses that as an address for the corresponding
message buffer. The address is provided to the DMA channel by the peripheral. Therefore, the
DMA channel must be configured in the Peripheral Indirect mode.
The values for FnBP[3:0] are interpreted as follows:
• 1111 = Message is received in Receive FIFO Buffer
• 1110 = Message is received in Message Buffer 14

•
•
•

• 0001 = Message is received in Message Buffer 1
• 0000 = Message is received in Message Buffer 0

8.2.2 RECEIVING MESSAGES INTO MESSAGE BUFFERS 0-7
Message Buffers 0-7 can be configured to transmit or receive the CAN messages using the TX/
RX Buffer Selection bit (TXENm) in the CAN TX/RX Buffer m Control register (CxTRmnCON[7]).
The Acceptance Filter Buffer Pointer (FnBPx) selects one of the message buffers to store the
received message, provided it is configured as a receive buffer (TXENm = 0).
If a message buffer is set up as a transmitter with the RTRENm bit (CxTRmnCON[2]) set, and an
acceptance filter pointing to that message buffer detects a message, the message buffer will handle
the RTR instead of storing the message. This is the only case where the Acceptance Filter Buffer
Pointer (FnBPx) points to a message buffer that is configured for transmission (TXENn = 1).

8.2.3 RECEIVING MESSAGES INTO MESSAGE BUFFERS 8-14
Message Buffers 8-14 are receive buffers. The Acceptance Filter Buffer Pointer (FnBPx)
determines which message buffer to use.

8.2.4 RECEIVING MESSAGES INTO MESSAGE BUFFERS 15-31
Message Buffers 15-31 are receive buffers and are only usable as FIFO buffers because the
Acceptance Filter Buffer Pointer bits (FnBP[3:0]) can only directly address 16 entities. When
FnBP[3:0] = 1111, the results of a hit on that filter will write to the next available buffer location
within the FIFO.

Note: Multi-message buffering can be implemented by a user application by configuring
multiple acceptance filters with the same value. In this case, a received message
may match multiple filters, and the CAN module will assign the message to the
lowest numbered matching filter pointing to an empty buffer.

Note: The user application should not set the TXREQ bits (CxTRmnCON) when the buffer
is configured for receive operation (TXEN = 0). This could result in unpredictable
module behavior.
DS70000353D-page 54  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
8.2.5 RECEIVE BUFFER STATUS BITS
The receive buffers contain two status bits per message buffer: the Receive Buffer Full
flag (RXFULx), and the Receive Buffer Overflow flag (RXOVFx). These status bits are grouped
into registers for buffer full status and buffer overflow status.
• CxRXFUL1: CAN Receive Buffer Full Register 1
• CxRXFUL2: CAN Receive Buffer Full Register 2
• CxRXOVF1: CAN Receive Buffer Overflow Register 1
• CxRXOVF2: CAN Receive Buffer Overflow Register 2
When a received message is stored into a message buffer, the respective Receive Buffer Full
flag (RXFULx) is set in the CAN Receive Buffer Full register, and a received buffer interrupt
(CxINTF[1]) is generated. If an incoming message caused a filter match, and the message buffer
assigned to the matching filter is full (that is, the RXFULx bit associated with that buffer is already
‘1’), the corresponding RXOVFx bit (where ‘x’ is the number of the message buffer associated
with that buffer) is set and a receive buffer overflow interrupt is generated (CxINTF[2]). The
message is lost.

8.3 FIFO Buffer Operation
The CAN module supports up to 32 message buffers. The user application can employ the DMA
Message Buffer Size bits (DMABS[2:0]) in the CAN FIFO Control register (CxFCTRL[15:13]) to
specify the 4, 6, 8, 12, 16, 24 or 32 message buffers. The FIFO Start Area (FSA[4:0]) bits
(CxFCTRL[4:0]) are used to specify the start of the FIFO within the buffer area. The end of FIFO
is based on the number of message buffers defined in the DMABS[2:0] bits.
The user application should not allocate a FIFO area that contains the transmit buffers. Should
this condition occur, the module will attempt to point to the transmit buffer, but when a message
is received for that buffer, an overflow condition will cause the message contents to be lost.
Figure 8-5 illustrates that one of the message acceptance filters is set to store a received
message in FIFO (FnBPx = 1111). The start of FIFO is set to Message Buffer 5
(CxFCTRL[4:0] = 00101) and the end of FIFO is set to Message Buffer 11
(CxFCTRL[15:13] = 011) by allocating 12 message buffers.

Figure 8-5: Receiving Messages in FIFO

Note: If multiple filters match the identifier of the incoming message, and all the message
buffers assigned to all the matching filters are full, the RXOVFx bit corresponding
to the lowest numbered matching filter is set.

MASK 2
MASK 1

MASK 0

Filter 15

Filter Masks Message Acceptance Filters

FIFO

FIFO Buffer 0

FIFO Buffer x

Filter 0

FIFO Start

FIFO End

FnBPx

Device RAM

Message Buffer 0
Message Buffer 1

Message Buffer 31

FIFO Buffer 1

Message Buffer 11

Message Buffer 5

Note 1: The Acceptance Filter Buffer Pointer (FnBPx) should be ‘1111’ to store the received message in FIFO.
2: The starting address of the FIFO is specified by the FSA[4:0] bits (CxFCTRL[4:0]). In the figure, FSA [4:0] = 00101.
3: The end address of the FIFO is specified by DMABS[2:0] = 011 (CxFCTRL[15:13]).

1
2

3

 2008-2020 Microchip Technology Inc. DS70000353D-page 55

dsPIC33E/PIC24E Family Reference Manual
8.3.1 RECEIVING MESSAGES INTO FIFO AREA
The acceptance filter stores the received message in the FIFO area when FnBP[3:0] = 1111. It
uses a simple Buffer Pointer, beginning with the start of the FIFO as defined above, and
incrementing sequentially through the set of buffers within the FIFO area. When the end of the
buffer is reached, the counter wraps and points to the start of the FIFO area.
The Write Pointer value is accessible and is readable only by the user software in the FBP[5:0]
bits (CxFIFO[13:8]). When the message is stored in the buffer, the RXFULx bit associated with
the buffer is set and the FIFO buffer counter increments.
If the FBP[5:0] value points to a buffer, and the RXFULx bit associated with that buffer is
already ‘1’ at the time of the filter hit, and before writing of the message contents, the RXOVLx
bit associated with that buffer is set and the message is lost. After the message is lost, the
FBP[5:0] value increments normally.
If the FBP[5:0] value points to a transmit/receive buffer that is selected as a transmit buffer at the
time of the filter hit, and before writing of the message contents, the RXOVLx bit associated with
that buffer is set and the message is lost. After the message is lost, the FBP[5:0] value
increments normally.
The user software unloads the FIFO by reading the contents of a buffer. Once the buffer location
is read, the user software clears the RXFULx bit corresponding to that buffer. When an RXFULx
bit is cleared, the number of that corresponding buffer, plus one, is written to the FNRB[5:0] bits
(CxFIFO[5:0]) by the module. Only the user software can read this value; left shift it by four bits
and use it as an address offset for the next buffer to be read. The application software should
read the buffers and clear the corresponding RXFULx bit sequentially. If not, and an RXFULx flag
is set within a section of the FIFO intended to be available for writing, the RXOVLx bit associated
with that buffer is set and the message is lost. After the message is lost, the FBP[5:0] value will
increment, but FNRB[5:0] will not get incremented.
The module generates an interrupt condition if the FIFO is about to be full. This condition is
computed as shown in Equation 8-1.

Equation 8-1: FIFO Interrupt Calculation

The interrupt is generated as the RXFULx bit is set for the buffer that was just written to, and after
the FBPx bit has been updated. The computation uses the updated FBPx value.

FNRB FBP– 1=

or

andFNRB START=  FBP END= 
DS70000353D-page 56  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
8.4 FIFO Example
Figure 8-6 illustrates seven case examples of FIFO operation. The cases illustrated assume that
the start of FIFO is set to Message Buffer 5 (CxFCTRL[4:0] = 101) and the end of FIFO is set to
Message Buffer 11 (CxFCTRL[15:13] = 011).
• Case 1 – is the initialized case of the FIFO before any messages are received. The FIFO

Buffer Pointer points to Message Buffer 5 (FRBx = 5) and the FIFO Next Read Buffer
Pointer points to Message Buffer 6 (FNRBx = 5).

• Case 2 – shows the FIFO after one message is received and transferred to Message
Buffer 5. The FIFO Buffer Pointer is incremented (FBPx = 6) and the RXFULx status bit for
Message Buffer 5 is set (RXFULx = 1).

• Case 3 – shows the FIFO after the sixth received message. The FIFO Buffer Pointer points
to the last location in the FIFO area (FBPx = 5 + 6 = 11) and the FIFO Next Read Pointer
points to the start of the FIFO (FNRBx = 5). In this case, the FIFO is almost full and
generates a FIFO interrupt.

• Case 4 – shows the FIFO after the user software reads the first received message. When the
user software clears the RXFUL status bit for message buffer 5, the module writes the FIFO
Next Read Buffer Pointer with message buffer 5 plus 1 (FNRB = 5 + 1 = 6).

• Case 5 – shows the FIFO after the seventh message is received and written to Message
Buffer 11. The RXFULx status bit for Message Buffer 11 is set (RXFULx = 1). Instead of
incrementing, the FIFO Buffer Pointer is reloaded with the FIFO start address
(FBPx = FSAx = 5). Note that FBPx is now mathematically one less than FNRBx, which is the
condition that generates the FIFO interrupt at the time the RXFULx status bit is set for
Message Buffer 11.

• Case 6 – shows the FIFO after the eighth message is received and written to Message
Buffer 5. Now the FIFO is full. There is no interrupt signaled for this condition.

• Case 7 – shows the FIFO after the ninth received message. Now the FIFO has overflowed.
The module sets the RXOVLx bit for the buffer intended for writing. The message is lost.
The module generates a receive overflow interrupt.
 2008-2020 Microchip Technology Inc. DS70000353D-page 57

dsPIC33E/PIC24E Family Reference Manual
Figure 8-6: Example of FIFO Operation(1)

MB11 – RXFUL = 0
MB10 – RXFUL = 0
MB9 – RXFUL = 0
MB8 – RXFUL = 0
MB7 – RXFUL = 0
MB6 – RXFUL = 0
MB5 – RXFUL = 0

MB11 – RXFUL = 0
MB10 – RXFUL = 0
MB9 – RXFUL = 0
MB8 – RXFUL = 0
MB7 – RXFUL = 0
MB6 – RXFUL = 0
MB5 – RXFUL = 1

MB11 – RXFUL = 0
MB10 – RXFUL = 1
MB9 – RXFUL = 1
MB8 – RXFUL = 1
MB7 – RXFUL = 1
MB6 – RXFUL = 1
MB5 – RXFUL = 1

MB11 – RXFUL = 0
MB10 – RXFUL = 1
MB9 – RXFUL = 1
MB8 – RXFUL = 1
MB7 – RXFUL = 1
MB6 – RXFUL = 1
MB5 – RXFUL = 0

MB11 – RXFUL = 1
MB10 – RXFUL = 1
MB9 – RXFUL = 1
MB8 – RXFUL = 1
MB7 – RXFUL = 1
MB6 – RXFUL = 1 RXOVL = 1
MB5 – RXFUL = 1

MB11 – RXFUL = 1
MB10 – RXFUL = 1
MB9 – RXFUL = 1
MB8 – RXFUL = 1
MB7 – RXFUL = 1
MB6 – RXFUL = 1
MB5 – RXFUL = 1

MB11 – RXFUL = 1
MB10 – RXFUL = 1
MB9 – RXFUL = 1
MB8 – RXFUL = 1
MB7 – RXFUL = 1
MB6 – RXFUL = 1
MB5 – RXFUL = 0

Case 1: FIFO at Start Case 5: FIFO 7th Write
(About to Fill)(2)

Case 6: FIFO 8th Write FIFO Full(2)

FNRBx = 6

FBPx = 5

FNRBx = 6, FBPx = 6

Case 7: FIFO 9th Write
FIFO Overflow(2)

FBPx = 7
FNRBx = 6

FNRBx = 6

FBPx = 11

Case 4: FIFO 1st Read(3)

FNRBx = 5

FBPx = 11

FBPx = 6
FNRBx = 5

FNRBx = 5, FBPx = 5

Case 2: FIFO 1st Write(2)

Case 3: FIFO 6th Write

Shaded message buffers indicate the presence of a

(About to Fill)(2)

received message ready to be read by the user

Note 1: MBn represents Message Buffers 5-11.
2: ‘Write’ signifies that a message is stored in the FIFO message buffer and the RXFULx flag associated with that

buffer is set.
3: ‘Read’ signifies that the user software unloads the FIFO message buffer by reading the contents of that buffer.

Once the buffer location is read, the user software clears the RXFULx bit corresponding to that buffer.

application.
DS70000353D-page 58  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
8.5 DeviceNet™ Filtering
The DeviceNet filtering feature is based on the CAN Specification 2.0A protocol, in which up to
18 bits of the Data field can be compared with the EID of the message acceptance filter in
addition to the SID.
The DeviceNet feature is enabled or disabled by the DeviceNet Filter Bit Number (DNCNT[4:0])
bits in CAN Control Register 2 (CxCTRL2[4:0]). The value specified in the DNCNTx field
determines the number of data bits to be used for comparison with the EID bits of the message
acceptance filter. If the DNCNT[4:0] bits (CxCTRL2[4:0]) are cleared, the DeviceNet feature is
disabled.
For a message to be accepted, the 11-bit SID must match the SID[10:0] bits in the message
acceptance filter and the first ‘n’ data bits in the message should match the EID[17:0] bits in the
message acceptance filter. For example, as illustrated in Figure 8-7, the first 18 data bits of the
received message are compared with the corresponding identifier bits (EID[17:0]) of the
message acceptance filter.

Figure 8-7: CAN Operation with DeviceNet™ Filtering(1,2)

Note: The DeviceNet filtering feature will function only when all of the following are true:
• The IDE bit (CAN Message Buffer Word 0[0]) = 0, which means the message

is a Standard ID message
• The EXIDE bit (CxRXFn[3]) = 0
• The MIDE bit (CxRXMnSID[3] = 1
• The value of the DNCNT[4:0] bits (CxCTRL2[4:0]) is non-zero

SID10 SID9

S
O
F

IDENTIFIER
11 Bits

EOF
7 Bits 3 Bits

SID0

Accept/Reject Message

IFSDATA BYTE 0 DATA BYTE 1 DATA BYTE 2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Data Byte 0 Data Byte 1 Data Byte 2MESSAGE SID[10:0]

SID10 SID9 SID0 EID17 EID16 EID10 EID9 EID8 EID2 EID1 EID0

STANDARD MESSAGE DATA FRAME

MESSAGE ACCEPTANCE FILTER
SID[10:0]

MESSAGE ACCEPTANCE FILTER
EID[0:17]

Note 1: The DeviceNet™ filtering configuration shown for the EIDx bits is DNCNT[4:0] = 10010.
2: Any message acceptance filter used for DeviceNet filtering must have its MIDE bit set (CxRXMnSID[3] = 1) and EXIDE

bit cleared (CxRXFnSID[3] = 0).
 2008-2020 Microchip Technology Inc. DS70000353D-page 59

dsPIC33E/PIC24E Family Reference Manual
8.5.1 FILTER COMPARISONS
Table 8-1 shows the filter comparisons configured by the DNCNT[4:0] control bits
(CxCTRL2[4:0]). For example, if DNCNT[4:0] = 00011, a message in which only the 11-bit SID
matches the SID acceptance filter (SID[10:0]), and bits 7, 6 and 5 of Data Byte 0 match the EID
filter (EID[2:0]), the configuration is accepted.

8.5.2 SPECIAL CASES
There may be special cases when the message contains fewer data bits than are called for by
the DeviceNet filter configuration:
• Case 1 – If the DNCNT[4:0] bits are greater than 18, indicating that the user application

selected a number of bits greater than the total number of EID bits, the filter comparison
terminates with the 18th bit of the data (bit 6 of Data Byte 2). If the SID and all 18 data bits
match, the message is accepted.

• Case 2 – If the DNCNT[4:0] bits are greater than 16, and the received message DLC is 2
(indicating a payload of two data bytes), the filter comparison terminates with the 16th bit of
data (bit 0 of Data Byte 1). If the SID and all 16 bits match, the message is accepted.

• Case 3 – If the DNCNT[4:0] bits are greater than 8, and the received message has
DLC = 1 (indicating a payload of one data byte), the filter comparison terminates with the
8th bit of data (bit 0 of Data Byte 0). If the SID and all 8 bits match, the message is
accepted.

• Case 4 – If the DNCNT[4:0] bits are greater than 0, and the received message has
DLC = 0, indicating no data payload, the filter comparison terminates with the SID. If the
SID matches, the message is accepted.

Table 8-1: DeviceNet™ Filter Bit Configurations

 DeviceNet™ Filter
Configuration
(DNCNT[4:0])

Received Message Data Bits to be Compared
(Byte[bits])

EID Bits Used for
Acceptance

Filter

00000 No Comparison No comparison
00001 Data Byte 0[7] EID[17]
00010 Data Byte 0[7:6] EID[17:16]
00011 Data Byte 0[7:5] EID[17:15]
00100 Data Byte 0[7:4] EID[17:14]
00101 Data Byte 0[7:3] EID[17:13]
00110 Data Byte 0[7:2] EID[17:12]
00111 Data Byte 0[7:1] EID[17:11]
01000 Data Byte 0[7:0] EID[17:10]
01001 Data Byte 0[7:0] and Data Byte 1[7] EID[17:9]
01010 Data Byte 0[7:0] and Data Byte 1[7:6] EID[17:8]
01011 Data Byte 0[7:0] and Data Byte 1[7:5] EID[17:7]
01100 Data Byte 0[7:0] and Data Byte 1[7:4] EID[17:6]
01101 Data Byte 0[7:0] and Data Byte 1[7:3] EID[17:5]
01110 Data Byte 0[7:0] and Data Byte 1[7:2] EID[17:4]
01111 Data Byte 0[7:0] and Data Byte 1[7:1] EID[17:3]
10000 Data Byte 0[7:0] and Data Byte 1[7:0] EID[17:2]
10001 Byte 0[7:0] and Byte 1[7:0] and Byte 2[7] EID[17:1]
10010 Byte 0[7:0] and Byte 1[7:0] and Byte 2[7:6] EID[17:0]
10011

•
•
•

11111

Invalid Selection Invalid Selection
DS70000353D-page 60  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
9.0 DMA CONTROLLER CONFIGURATION
The CAN module uses device RAM for the message buffers to support both transmission and
reception of CAN messages. The number of message buffers to be used by the CAN module is
specified by the DMA Message Buffer Size bits (DMABS[2:0]) in the CAN FIFO Control register
(CxFCTRL[15:13]). The DMAxSTAL and DMAxSTAH registers in the DMA Controller define the
start of the CAN buffer area. The DMA Controller moves data between CAN and the message
buffers (placed in device RAM) without CPU intervention.

9.1 DMA Operation for Transmitting Data
The user application selects a message for transmission by setting the Message Send
Request bit (TXREQ) in the CAN TX/RX Buffer m or n Control register (CxTRmnCON[3]). The
CAN controller uses DMA to read the message from the message buffer and transmit the
message. The CAN module generates a transmit data interrupt to start a DMA cycle. In
response to the interrupt, the DMA channel that is configured for CAN message transmission
reads from the message buffer in device RAM and stores the message in the CAN Transmit
Data register (CxTXD). Eight words are transferred for every message transmitted by the CAN
controller. The detailed layout of the transmit message buffer is provided in Section 2.0 “CAN
Message Formats”. A sample code for configuring the DMA channel for CAN1 transmission is
shown in Example 9-1.

Example 9-1: DMA Channel 0 Configuration for CAN1 Transmission

Note: For more information on configuring and using the DMA module, refer to “Direct
Memory Access (DMA)” (DS70348) of the “dsPIC33/PIC24 Family Reference
Manual”, which is available from the Microchip website (www.microchip.com).

/* This code snippet shows an example of configuring a DMA channel for CAN
transmission. Refer to Example 7-1 for an application example */

/* Data Transfer Size: Word Transfer Mode */
DMA0CONbits.SIZE = 0x0;

/* Data Transfer Direction: device RAM to Peripheral */
DMA0CONbits.DIR = 0x1;

/* DMA Addressing Mode: Peripheral Indirect Addressing mode */
DMA0CONbits.AMODE = 0x2;

/* Operating Mode: Continuous, Ping-Pong modes disabled */
DMA0CONbits.MODE = 0x0;

/* Assign CAN1 Transmit event for DMA Channel 0 */
DMA0REQ = 70;

/* Set Number of DMA Transfer per CAN message to 8 words */
DMA0CNT = 7;

/* Peripheral Address: CAN1 Transmit Register */
DMA0PAD = (volatile unsigned int); & CITxD;

unsigned long address;

DMA0STAL = (unsigned int) &can1msgBuf;
DMA0STAH = 0;

/* Channel Enable: Enable DMA Channel 0 */
DMA0CONbits.CHEN = 0x1;

/* Channel Interrupt Enable: Enable DMA Channel 0 Interrupt */
IEC0bits DMA0IE = 1;
 2008-2020 Microchip Technology Inc. DS70000353D-page 61

dsPIC33E/PIC24E Family Reference Manual
9.2 DMA Operation for Receiving Data
When the CAN controller completes a received message (eight words), the completed message
is transferred to a message buffer in device RAM by the DMA module. The CAN module
generates a receive data interrupt to start a DMA cycle. In response to this interrupt, the DMA
channel that is configured for CAN message reception reads from the CAN Receive Data register
(CxRXD) and stores the message in the device RAM buffer. Eight words are transferred for every
message that is received by the CAN controller. The detailed layout of the received message is
provided in Section 2.0 “CAN Message Formats”. A sample code for configuring the DMA
channel for CAN1 reception is shown in Example 9-2.

Example 9-2: DMA Channel 1 Configuration for CAN1 Reception

Note: Please refer to “Direct Memory Access (DMA)” (www.microchip.com/DS70348)
in the “dsPIC33/PIC24 Family Reference Manual” for more information for
configuring the DMA Controller.

/* This code snippet shows an example of configuring a DMA channel for the
CAN message reception. Refer to Example 8-1 for an application example */

/* Data Transfer Size: Word Transfer Mode */
DMA1CONbits.SIZE = 0x0;

/* Data Transfer Direction: Peripheral to device RAM */
DMA1CONbits.DIR = 0x0;

/* DMA Addressing Mode: Peripheral Indirect Addressing mode */
DMA1CONbits.AMODE = 0x2;

/* Operating Mode: Continuous, Ping-Pong modes disabled */
DMA1CONbits.MODE = 0x0;

/* Assign CAN1 Receive event for DMA Channel 0 */
DMA1REQ = 34;

/* Set Number of DMA Transfer per CAN message to 8 words */
DMA1CNT = 7;

/* Peripheral Address: CAN1 Receive Register */
DMA1PAD = (volatile unsigned int) &C1RXD;
.
.
.
.
unsigned long address;

DMA1STAL = (unsigned int) &can1msgBuf;
DMA1STAH = 0;

/* Channel Enable: Enable DMA Channel 1 */
DMA1CONbits.CHEN = 0x1;

/* Channel Interrupt Enable: Enable DMA Channel 1 Interrupt */
IEC0bits.DMA1IE = 1;
DS70000353D-page 62  2008-2020 Microchip Technology Inc.

https://www.microchip.com/DS70348

Enhanced CAN Module
10.0 BIT TIMING
The nominal bit rate is the number of bits per second transmitted on the CAN bus.

Nominal Bit Time = 1 ÷ Nominal Bit Rate
There are four time segments in a bit time to compensate for any phase shifts due to oscillator
drifts or propagation delays. These time segments do not overlap each other and are
represented in terms of Time Quanta (TQ). One TQ is a fixed unit of time derived from the
oscillator clock. The total number of Time Quanta in a nominal bit time must be programmed
between 8 TQ and 25 TQ.
Figure 10-1 illustrates how the Time Quantum Frequency (FTQ) is obtained from the system
clock and also how the different time segments are programmed.

Figure 10-1: CAN Bit Timing

10.1 Bit Segments
Each bit transmission time consists of four time segments:
• Synchronization Segment – This time segment synchronizes the different nodes

connected on the CAN bus. A bit edge is expected to be within this segment. Based on
CAN protocol, the Synchronization Segment is assumed to be 1 TQ.

• Propagation Segment – This time segment compensates for any time delay that may
occur due to the bus line or due to the various transceivers connected on that bus.

• Phase Segment 1 – This time segment compensates for errors that may occur due to
phase shift in the edges. The time segment may be lengthened during resynchronization to
compensate for the phase shift.

• Phase Segment 2 – This time segment compensates for errors that may occur due to
phase shift in the edges. The time segment may be shortened during resynchronization to
compensate for the phase shift. The Phase Segment 2 time can be configured to be either
programmable or specified by the Phase Segment 1 time.

CAN Nominal Bit Time

Time Quanta

Time Segments Propagation Segment Phase Segment 1 Phase Segment 2Sync
Seg
1 TQ 1 TQ-8 TQ

Sample Point

BAUD RATE
PRESCALER

FCAN
 2

Prop Seg

Phase Seg1

Phase Seg2

Sync Seg

FTQ

Time Quanta

BRPx (CxCFG1[5:0])

PRSEGx (CxCFG2[2:0])

SEG1PHx (CxCFG2[5:3])

SEG2PHx (CxCFG2[10:8])

SJWx (CxCFG1[7:6])

1 TQ-8 TQ
1:1
1:2

1:64

1 TQ-8 TQ

1 TQ-8 TQ

1 TQ

8 TQ-25 TQ

1 TQ-8 TQ1 TQ-8 TQ
 2008-2020 Microchip Technology Inc. DS70000353D-page 63

dsPIC33E/PIC24E Family Reference Manual
10.2 Sample Point
The sample point is the point in a CAN bit time interval where the sample is taken and the bus
state is read and interpreted. It is situated between Phase Segment 1 and Phase Segment 2.
The CAN bus can be sampled once or three times at the sample point, as configured by the
Sample CAN Bus Line bit (SAM) in the CAN Baud Rate Configuration register (CxCFG2[6]).
• If CxCFG2[6] = 1, the CAN bus is sampled three times at the sample point. The most

common of the three samples determines the bit value.
• If CxCFG2[6] = 0, the CAN bus is sampled only once at the sample point.

10.3 Synchronization
Two types of synchronization are used: Hard Synchronization and Resynchronization. A Hard
Synchronization occurs once at the SOF. Resynchronization occurs inside a frame.
• Hard Synchronization takes place on the recessive-to-dominant transition of the Start bit.

The bit time is restarted from that edge.
• Resynchronization takes place when a bit edge does not occur within the Synchronization

Segment in a message. One of the Phase Segments is shortened or lengthened by an
amount that depends on the phase error in the signal. The maximum amount that can be
used is determined by the Synchronization Jump Width (SJW) parameter (CxCFG1[7:6]).

The length of Phase Segment 1 and Phase Segment 2 can be changed depending on oscillator
tolerances of the transmitting and receiving node. Resynchronization compensates for any
phase shifts that may occur due to the different oscillators used by the transmitting and receiving
nodes.
• Bit Lengthening – If the transmitting node in CAN has a slower oscillator than the

receiving node, the next falling edge, and therefore, the sample point can be delayed by
lengthening Phase Segment 1 in the bit time.

• Bit Shortening – If the transmitting node in CAN has a faster oscillator than the receiving
node, the next falling edge, and therefore, the sample point of the next bit can be reduced
by shortening Phase Segment 2 in the bit time.

• Synchronization Jump Width (SJW) – The SJW[1:0] bits (CxCFG1[7:6]) determine the
synchronization jump width by limiting the amount of lengthening or shortening that can be
applied to Phase Segment 1 and Phase Segment 2 time intervals. This segment should not
be longer than Phase Segment 2 time. The width can be 1 TQ-4 TQ.

10.4 CAN Bit Time Calculations
The steps that must be performed by the user application to configure the bit timing for the CAN
module are described below along with examples. It is assumed that the CANCKS bit
(CxCTRL[11]) is cleared resulting in FCAN = FP.

10.4.1 STEP 1: CALCULATE THE TIME QUANTUM FREQUENCY (FTQ)
• Select the Baud Rate (FBAUD) for the CAN bus.
• Select the number of Time Quanta in a bit time, based on your system requirements.
Equation 10-1 shows the formula for computing FTQ.

Equation 10-1: Time Quantum Frequency (FTQ)

Note 1: The total number of Time Quanta in a nominal bit time must be programmed
between 8 TQ and 25 TQ. Therefore, the FTQ is between 8 to 25 times the baud
rate (FBAUD).

2: Ensure that FTQ is an integer multiple of FBAUD to get the precise bit time.
Otherwise, the oscillator input frequency or the FBAUD may need to be changed.

FTQ N FBAUD=
DS70000353D-page 64  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
10.4.2 STEP 2: CALCULATE THE BAUD RATE PRESCALER
(BRP[5:0] (CXCFG1[5:0]))

Equation 10-2 shows the formula for computing the baud rate prescaler.

Equation 10-2: Baud Rate Prescaler

10.4.2.1 STEP 3: SELECT THE INDIVIDUAL BIT TIME SEGMENTS

The individual Bit Time Segments are selected using the CxCFG2 register:
Bit Time = Sync Segment + Propagation Segment + Phase Segment 1 + Phase Segment 2

Example 10-1 shows the procedure to calculate the FTQ to obtain a CAN bus speed of 1 Mbps
when the dsPIC33E/PIC24E device is operating at 40 MHz.

Example 10-1: CAN Bit Timing Calculation Example

Note 1: (Propagation Segment + Phase Segment 1) must be greater than or equal to the
length of Phase Segment 2.

2: Phase Segment 2 must be greater than the Synchronous Jump Width.

BRP<5:0> (CiCFG1<5:0>)
FCAN

2 FTQ 
------------------------ 1–=

Step 1: Calculate the FTQ.
If FBAUD = 1 Mbps and the number of Time Quanta ‘N’ = 20, then FTQ = 20 MHz

Step 2: Calculate the baud rate prescaler.
BRP[5:0] (CxCFG1[5:0]) = [40000000/(2 * FTQ)] – 1 = 1 – 1 = 0

Step 3: Select the individual Bit Time Segments.
Synchronization Segment = 1 TQ (constant)

Based on system characteristics, if the Propagation Delay = 5 TQ and if the sample point is to
be at 70% of Nominal Bit Time, then:

Phase Segment 2 = 30% of Nominal Bit Time = 6 TQ
Phase Segment 1 = 20 TQ – (1 TQ + 5 TQ + 6 TQ) = 8 TQ
 2008-2020 Microchip Technology Inc. DS70000353D-page 65

dsPIC33E/PIC24E Family Reference Manual
A code example for configuring the CAN bit timing parameters is shown in Example 10-2.

Example 10-2: Code Example for Configuring CAN Bit Timing Parameters
/* This code snippet shows an example of configuring the CAN module to

operate at 1 Mbps while the device is operating at 40 MHz */

/* Set the Operating Frequency of the device to be 40 MHz */

#define FP 40000000

/* Set the CAN module for Configuration Mode before writing into the Baud
Rate Control Registers */

C1CTRL1bits.REQOP = 4;

/* Wait for the CAN module to enter into Configuration Mode */

while(C1CTRL1bits.OPMODE! = 4);

/* FCAN is selected to be FP by clearing the CANCKS bit
/* FCAN = FP = 40 MHz */

C1CTRL1bits.CANCKS = 0x0;

/* Phase Segment 1 time is 8 TQ */
C1CFG2bits.SEG1PH = 0x7;

/* Phase Segment 2 time is set to be programmable */

C1CFG2bits.SEG2PHTS = 0x1;

/* Phase Segment 2 time is 6 TQ */

C1CFG2bits.SEG2PH = 0x5;

/* Propagation Segment time is 5 TQ */

C1CFG2bits.PRSEG = 0x4;

/* Bus line is sampled three times at the sample point */

C1CFG2bits.SAM = 0x1;

/* Synchronization Jump Width set to 4 TQ */

C1CFG1bits.SJW = 0x3;

/* Baud Rate Prescaler bits set to 1:1, (i.e., TQ = (2*1*1)/FCAN) */

C1CFG1bits.BRP = 0x0;

/* Put the CAN Module into Normal Operating Mode */

C1CTRL1bits.REQOP = 0;

/* Wait for the CAN module to enter into Normal Operating Mode */

while(C1CTRL1bits.OPMODE! = 0);
DS70000353D-page 66  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
11.0 CAN ERROR MANAGEMENT

11.1 CAN Bus Errors
The CAN specification defines five different ways of detecting errors:
• Bit Error
• Acknowledge Error
• Form Error
• Stuffing Error
• CRC Error
The bit error and the Acknowledge error occur at the bit level; the other three errors occur at the
message level.

11.1.1 BIT ERROR
A node that is sending a bit on the bus also monitors the bus. A bit error is detected when the bit
value that is monitored is different from the bit value that is sent. An exception is when a
recessive bit is sent during the stuffed bit stream of the Arbitration field or during the ACK slot. In
this case, no bit error occurs when a dominant bit is monitored. A transmitter sending a passive
error frame and detecting a dominant bit does not interpret this as a bit error.

11.1.2 ACKNOWLEDGE ERROR
In the Acknowledge field of a message, the transmitter checks if the Acknowledge slot (which it
has sent out as a recessive bit) contains a dominant bit. If not, this implies that no other node has
received the frame correctly. An Acknowledge error has occurred and as a result, the message
must be repeated.

11.1.3 FORM ERROR
A form error is detected when a fixed form bit field (EOF, Inter-frame Space, Acknowledge
Delimiter or CRC Delimiter) contains one or more illegal bits. For a receiver, a dominant bit during
the last bit of EOF is not treated as a form error.

11.1.4 STUFFING ERROR
A stuffing error is detected at the bit time of the sixth consecutive equal bit level in a message
field that should be coded by the method of bit stuffing.

11.1.5 CRC ERROR
The node transmitting a message computes and transmits the CRC corresponding to the
transmitted message. Every receiver on the bus performs the same CRC calculation as the
transmitter. A CRC error is detected if the calculated result is not the same as the CRC value
obtained from the received message.

11.2 Fault Confinement
Every CAN controller on a bus tries to detect the errors outlined above within each message. If
an error is found, the discovering node transmits an error frame, thus destroying the bus traffic.
The other nodes detect the error caused by the error frame (if they have not already detected the
original error) and take appropriate action (that is, discard the current message).
The CAN module maintains two error counters:
• Transmit Error Counter (CxEC[15:8])
• Receive Error Counter (CxEC[7:0])
There are several rules governing how these counters are incremented and/or decremented.
That is, a transmitter detecting a Fault increments its transmit error counter faster than the
listening nodes will increment their receive error counter. This is because there is a good chance
that it is the transmitter that is at Fault.

Note: The error counters are modified according to the CAN Specification 2.0B.
 2008-2020 Microchip Technology Inc. DS70000353D-page 67

dsPIC33E/PIC24E Family Reference Manual
A node starts out in the Error Active mode. When any one of the two error counters equals or
exceeds a value of 127, the node enters a state known as Error Passive. When the transmit error
counter exceeds a value of 255, the node enters the Bus Off state.
• An Error Active node transmits an Active Error frame when it detects errors
• An Error Passive node transmits a Passive Error frame when it detects errors
• A node that is in the Bus Off state transmits nothing on the bus
In addition, the CAN module employs an error warning feature that warns the user application
(when the transmit error counter equals or exceeds 96) before the node enters the Error Passive
state, as illustrated in Figure 11-1.

Figure 11-1: Error Modes

Bus
Off

Error
Active

Error
Passive

RERRCNT > 127 or
TERRCNT > 127

RERRCNT < 127 and
TERRCNT < 127

TERRCNT > 255

128 Occurrences of
11 Consecutive
“Recessive” Bits

Reset
DS70000353D-page 68  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
11.2.1 TRANSMITTER IN ERROR PASSIVE STATE
The Transmitter in Error State Bus Passive bit, TXBP (CxINTF[12]), is set when the transmit error
counter equals or exceeds 128 and generates an error interrupt (CxINTF[5]) upon entry into the
Error Passive state. The Transmit Error Passive flag is cleared automatically by the hardware if
the transmit error counter becomes less than 128 or greater than 255.

11.2.2 RECEIVER IN ERROR PASSIVE STATE
The Receiver in Error Bus Passive bit, RXBP (CxINTF[11]), is set when the receive error counter
equals or exceeds 128 and generates an error interrupt (CxINTF[5]) upon entry into the Error
Passive state. The Receive Error Passive flag is cleared automatically by the hardware if the
receive error counter becomes less than 128 or greater than 255.

11.2.3 TRANSMITTER IN BUS OFF STATE
The Transmitter in Error State Bus Off bit, TXBO (CxINTF[13]), is set when the transmit error
counter equals or exceeds 256 and generates an error interrupt (CxINTF[5])

11.2.4 TRANSMITTER IN ERROR WARNING STATE
The Transmitter in Error State Warning bit, TXWAR (CxINTF[10]), is set when the transmit error
counter is in the range of 96 and 127 (inclusive), and generates an error interrupt (CxINTF[5])
upon entry into the Error Warning state. The Transmit in Error State Warning flag is cleared
automatically by the hardware if the transmit error counter becomes less than 96 or greater
than 127.

11.2.5 RECEIVER IN ERROR WARNING STATE
The Receiver in Error State Warning bit, RXWAR (CxINTF[9]), is set when the receive error
counter is in the range of 96 and 127 (inclusive), and generates an error interrupt (CxINTF[5])
upon entry into the Error Warning state. The Receiver in Error State Warning flag is cleared
automatically by the hardware if the receive error counter becomes less than 96.
Additionally, there is an Error State Warning flag, EWARN (CxINTF[8]), which is set if at least one
of the error counters equals or exceeds the error warning limit of 96. EWARN is reset if both error
counters are less than the error warning limit.
 2008-2020 Microchip Technology Inc. DS70000353D-page 69

dsPIC33E/PIC24E Family Reference Manual
12.0 CAN INTERRUPTS
The CAN module generates three different interrupts, each with its own interrupt vector, interrupt
enable control bit, interrupt status flag and interrupt priority control bit. These interrupts are:
• CxTX – CAN Transmit Data Request
• CxRX – CAN Receive Data Ready
• Cx – CAN Event Interrupt

12.1 CAN Transmit Data Request Interrupt
The transmit data request interrupt represents the transmission of a single word in a CAN
message through the CAN Transmit Data register (CxTXD). The user application needs to assign
the CAN transmit data request interrupt to a DMA channel to automatically transfer messages
from the appropriate device RAM buffers to the CAN module (CxTXD register).

12.2 CAN Receive Data Ready Interrupt
The receive data request interrupt represents the reception of a single word of a CAN message
through the CAN Receive Data register (CxRXD). The user application needs to assign the CAN
receive data ready interrupt to a DMA channel to automatically transfer messages from the CAN
module (CxRXD register) to the appropriate device RAM buffers.

12.3 CAN Event Interrupt
The CAN event interrupt has seven main sources, each of which can be individually enabled. The
CAN Interrupt Flag register (CxINTF) contains the interrupt flags, and the CAN Interrupt Enable
register (CxINTE) contains the enable bits. The Interrupt Flag Code bits (ICODE[6:0]) in the CAN
Interrupt Code register (CxVEC[6:0]) can be used in combination with a jump table for efficient
handling of interrupts. All interrupts have one source, with the exception of the error interrupt. Any
of five error interrupt sources (TX Error Warning, RX Error Warning, TX Error Passive, RX Error
Passive and TX Bus Off) can set an Error Interrupt Flag (ERRIF). The source of the error interrupt
is determined by reading the CxINTF register. To clear the interrupt, the ERRIF flag must be
cleared. Clearing the ERRIF flag will not affect the status of the TX Error Warning, RX Error
Warning, TX Error Passive, RX Error Passive and TX Bus Off flags. These bits are read-only bits
and cannot be cleared by software.

Note: The ICODE[6:0] bits will reflect the highest priority CAN interrupt condition that is
active. For this, the interrupt should be enabled (the IE bit in the CxINTE register
should be set) and the interrupt condition should be active (the IF bit in the CxINTF
register should be set).
DS70000353D-page 70  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Figure 12-1 illustrates the CAN event interrupt generation from various interrupt sources.

Figure 12-1: CAN Event Interrupts

TX0

TX7

RXFUL0

RXFUL31

RXOVF0

RXOVF31

TX Error Warning (TXWAR)

RX Error Warning (RXWAR)

RX Error Passive (RXBP)

TX Error Passive (TXBP)

TX Bus Off (TXBO)

TBIF

RBIF

RBOVIF

ERRIF

FIFO Interrupt

Wake-up

Invalid Message

FIFOIF

WAKIF

IVRIF

CxINTF
CAN Event Interrupt

Transmit Buffer Interrupt

Receive Buffer Interrupt

Receive Buffer Overflow Interrupt

Error Interrupt
 2008-2020 Microchip Technology Inc. DS70000353D-page 71

dsPIC33E/PIC24E Family Reference Manual
12.3.1 TRANSMIT BUFFER INTERRUPT
The Message Buffers 0 to 7 that are configured for message transmission set the Transmit Buffer
Interrupt (TBIF) bit (CxINTF[0]) after the CAN message is transmitted. The ICODE[6:0] bits
(CxVEC[6:0]) indicate the specific message buffer that generated the transmit buffer interrupt.
The transmit buffer interrupt must be cleared in the Interrupt Service Routine (ISR) by clearing
the TBIF bit.

12.3.2 RECEIVE BUFFER INTERRUPT
When a message is successfully received and loaded into one of the receive buffers (Message
Buffers 0 to 31), the receive buffer interrupt (CxINTF[1]) is activated after the module sets the
RXFULx bits in the CxRXFULm registers. The ICODE[6:0] bits (CxVEC[6:0]) will indicate the
particular buffer that generated the interrupt. The receive buffer interrupt must be cleared in the
ISR by clearing the RBIF bit.

12.3.3 RECEIVE BUFFER OVERFLOW INTERRUPT
When a message is successfully received but the designated buffer is full, the receive overflow
interrupt (CxINTF[2]) is activated after the module sets the RXOVFx bits in the CxRXOVFn
registers. The ICODE[6:0] bits (CxVEC[6:0]) indicate which buffer generated the interrupt. The
receive buffer overflow interrupt must be cleared in the ISR by clearing the RBOVIF bit
(CxINTF[2]).

12.3.3.1 FIFO ALMOST FULL INTERRUPT

When the FIFO has only one remaining available buffer, the FIFO interrupt (CxINTF[3]) is
activated after the module sets the RXFULx bits in the CxRXFULn registers for the next to last
available buffer. The ICODE[6:0] bits (CxVEC[6:0]) indicate the FIFO overflow condition. The
FIFO almost full interrupt must be cleared in the ISR by clearing the FIFOIF bit (CxINTF[3]).

12.3.4 ERROR INTERRUPT
The error interrupt (CxINTF[5]) is generated by five sources:
• TX Error Warning
• RX Error Warning
• TX Error Passive
• RX Error Passive
• TX Bus Off
The ICODE[6:0] bits (CxVEC[6:0]) indicate the error condition. The error interrupt must be
cleared in the ISR by clearing the ERRIF bit (CxINTF[5]).

12.3.5 WAKE-UP INTERRUPT
In Sleep mode, the device monitors the CAN Receive pin (CxRX) for bus activity. A wake-up
(CxINTF[6]) interrupt is generated when bus activity is detected. The ICODE[6:0] bits
(CxVEC[6:0]) indicate the wake-up condition. The wake-up interrupt must be cleared in the ISR
by clearing the WAKIF bit (CxINTF[6]).

12.3.6 INVALID MESSAGE INTERRUPT
The invalid message/transmission interrupt is generated for any other type of errors during
message reception or transmission.
DS70000353D-page 72  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
13.0 CAN LOW-POWER MODES
The CAN module can respond to the CPU PWRSAV instruction.

13.1 Sleep Mode
A CPU PWRSAV,1 instruction stops the crystal oscillator and shuts down all system clocks. The
user application must ensure that the module is not active when the CPU goes into Sleep mode.
To protect the CAN bus system from fatal consequences due to violations of the above rule, the
module drives the CxTX pin into the Recessive state while in Sleep mode. The recommended
procedure is to bring the module into Disable mode before the CPU PWRSAV,1 instruction is
executed.

13.2 Idle Mode
A CPU PWRSAV,0 instruction signals the module to optionally shut down clocks. The module
powers down if the CAN Stop in Idle Mode bit (CSIDL) in the CAN Control Register 1
(CxCTRL1[13]) is ‘1’. The user application must ensure that the module is not active when the
CPU goes into Idle mode. To protect the CAN bus system from fatal consequences due to
violations of the above rule, the module drives the CxTX pin into the Recessive state while in
Sleep mode. The recommended procedure is to bring the module into Disable mode before the
CPU PWRSAV,0 instruction is executed.

13.3 Wake-up Functions
The module monitors the RX line for activity while the device is in Sleep mode. If the WAKIE bit
is set, the module generates an interrupt if bus activity is detected. Due to the delays in starting
up the oscillator and CPU, the message activity that caused the wake-up is lost.
After the CPU wakes up from Sleep, the CPU executes the CAN event ISR (if interrupts are
enabled); however, the CAN module itself would still be disabled. The CAN bus wake-up feature
only wakes when the device is in Sleep mode.
The module features a low-pass filter on the CxRX input line, which should be enabled when the
module is in CPU Sleep mode. This filter protects the module from wake-up due to short glitches
on the CAN bus. The filter is enabled by setting the WAKFIL bit (CxCFG2[14]).

14.0 CAN TIME STAMPING USING INPUT CAPTURE
The CAN module generates a signal that can be sent to a timer capture input whenever a valid
frame has been accepted. This is useful for time stamping and network synchronization.
Because the CAN Specification defines a frame to be valid if no errors occurred before the EOF
field has been transmitted successfully, the timer signal will be generated right after the EOF. A
pulse of one bit time is generated. Time stamping is enabled by the CAN Message Receive Timer
Capture Event Enable (CANCAP) control bit (CxCTRL1[3]). The IC2 capture input is used for
time stamping.

Note: The CAN wake-up filter must be enabled for the module to wake-up from Sleep
mode on detecting CAN bus activity.

Note: If the CAN capture is enabled, the IC2 pin becomes unusable as a general input
capture pin. In this mode, the IC2 channel derives its input signal from the C1RX or
C2RX pin instead of the IC2 pin.
 2008-2020 Microchip Technology Inc. DS70000353D-page 73

dsPIC33E/PIC24E Family Reference Manual
15.0 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33E/PIC24E device family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the Enhanced CAN Module module are:

Title Application Note #
No application notes at this time. N/A

Note: Please visit the Microchip website (www.microchip.com) for additional Application
Notes and code examples for the dsPIC33E/PIC24E family of devices.
DS70000353D-page 74  2008-2020 Microchip Technology Inc.

http://www.microchip.com
www.microchip.com
www.microchip.com

Enhanced CAN Module
16.0 REVISION HISTORY
Revision A (November 2008)
This is the initial released version of this document.

Revision B (March 2011)
This revision incorporates the following updates:
• Updated all DMA RAM references to device RAM
• Updated all time quanta clock (FTQ) references to time quantum frequency (FTQ)
• Updated all Remote Request Frame references to Remote Frame
• Updated all dsPIC33E references to dsPIC33E/PIC24E
• Buffers:

- Updated the bit value description for bit 1 and bit 0 in CAN Message Buffer Word 0
- Updated the bit value description for bit 9 in CAN Message Buffer Word 2

• Figures:
- Updated Figure 1-1
- Updated the label Message Buffer (DMA RAM) as Message Buffer (Device RAM) in

Figure 1-2
- Updated the logical value of SRR bit from ‘0’ to ‘1’ in Figure 2-3
- Removed “Figure 21-17: CAN Message Buffer Memory Usage” in Section 9.0 “DMA

Controller Configuration”
- Updated the figure title for Figure 7-2
- Changed Baud Rate Prescaler input FCY to FCAN in Figure 10-1
- Updated Figure 11-1

• Examples:
- Updated Example 7-1 through Example 9-2 and Example 10-2

• Equations:
- Changed FCY to FCAN in Equation 10-2

• Notes:
- Added a note on setting the TXREQm bit in Section 7.1 “Message Transmission

Flow”
- Deleted the following note in Section 7.1 “Message Transmission Flow”: Avoid set-

ting the TXREQ bit for a buffer that is configured for RX. Doing so can result in errone-
ous operation

- Added a note in Section 7.3.2 “Respond to a Remote Frame”
- Added a note on Section 8.2.2 “Receiving Messages Into Message Buffers 0-7”
- Updated the entire note in Figure 8-5
- Added a note on DeviceNet Filtering feature in Section 8.5 “DeviceNet™ Filtering”
- Added a note that provides additional details on the highest priority CAN interrupt

condition in Section 12.3 “CAN Event Interrupt”
- Updated the note on CAN wake-up filter in Section 13.3 “Wake-up Functions”

• Registers:
- A general notes was added and FCY was changed to FCAN for the BRP[5:0] bit value

definitions in Register 4-1
- Updated the bit description for bit 15-13 in Register 4-18
- Added the CANCKS bit in Register 4-23
- Updated the bit value description for bit 2 in Register 4-25

• Sections:
- Updated the Message Reception key feature in Section 1.0 “Introduction”
- Removed the following frame type from the list of CAN bus protocol supports four

frame types, in Section 2.0 “CAN Message Formats”: Interframe Space – provides
a separation between successive frames
 2008-2020 Microchip Technology Inc. DS70000353D-page 75

dsPIC33E/PIC24E Family Reference Manual
Revision B (March 2011) (Continued)
- Updated Section 1.2 “Message Buffers” and Section 1.3 “DMA Controller”

• Sections (Continued):
- Updated the logical value of the SRR but from ‘0’ to ‘1’ in Section 2.2 “Extended Data

Frame”
- Updated the remote frame exceptions in Section 2.3 “Remote Frame”
- Updated Section 2.6 “Interframe Space”
- Updated the register description for CiCTRL1: CAN Control Register 1 and CiCTRL2:

CAN Control Register 2 in Section 3.6 “CAN Control and Error Counter Registers”
- Changed the section title for Section 7.3 “Transmitting and Responding Remote

Frames”
- Changed the sub section title for Section 7.3.1 “Transmit a Remote Frame” and

Section 7.3.2 “Respond to a Remote Frame”
- Updated the remote frame exceptions in Section 7.3.1 “Transmit a Remote Frame”
- Updated Section 9.0 “DMA Controller Configuration”
- Updated the first paragraph of Section 10.4 “CAN Bit Time Calculations”
- Updated the transmit error counter range in Section 11.2.4 “Transmitter in Error

Warning State”
- Updated the receive error counter range in Section 11.2.5 “Receiver in Error Warn-

ing State”
- Updated Section 12.3.6 “Invalid Message Interrupt”
- Updated the term “TXCAN” to “CiTX” in Section 13.1 “Sleep Mode” and

Section 13.2 “Idle Mode”
- Updated Section 13.3 “Wake-up Functions”

• Tables:
- Added the CANCKS bit to the CAN1 Register Map When C1CTRL1.WIN = 0 or 1 (see

Table 3-1)
• Updated the Family Reference Manual name to dsPIC33E/PIC24E Family Reference

Manual
• Additional minor corrections such as language and formatting updates were incorporated

throughout the document

Revision C (December 2011)
This revision includes the following updates:
• Throughout the document, all occurrences of FCY were updated to: FP

• The following code examples were updated:
- Code Example for Standard Data Frame Transmission (see Example 7-1)
- Code Example for Extended Data Frame Transmission (see Example 7-2)
- Code Example for Transmitting Extended Remote Frame (see Example 7-3)
- Code Example for Filtering Standard Data Frame (see Example 8-1)
- Code Example for Filtering Extended Data Frame (see Example 8-2)
- DMA Channel 0 Configuration for CAN1 Transmission (see Example 9-1)
- DMA Channel 1 Configuration for CAN1 Reception (see Example 9-2)
- Code Example for Configuring CAN Bit Timing Parameters (see Example 10-2)

• Updated Section 9.0 “DMA Controller Configuration”
• All register maps were updated (CAN1 was changed to CAN and the File Names were

updated) (see Table 3-1 through Table 3-3)
• Table 21-8, Table 21-9, and Table 21-10 were removed
• Additional minor corrections such as language and formatting updates were incorporated

throughout the document
DS70000353D-page 76  2008-2020 Microchip Technology Inc.

Enhanced CAN Module
Revision D (September 2020)
This revision includes the following updates:
• Updated Section 7.1 “Message Transmission Flow”, Section 7.2 “Aborting a Transmit

Message”, Section 8.3.1 “Receiving Messages into FIFO Area”, Section 11.1.2
“Acknowledge Error” and Section 12.3 “CAN Event Interrupt”.

• Updated Register 4-24.
• Updated Example 7-1, Example 7-2, Example 7-3, Example 8-1, Example 8-2,

Example 9-1 and Example 9-2.
• Updated Table 3-1 and added Table 7-1.
• Reorganized Section 3.0 “Register Maps” and Section 4.0 “CAN Registers”.
• Updated to current family reference manual template format.
• Changed ECAN to CAN.
• Removed ™ from CAN.
• Additional minor updates to text and formatting have been incorporated throughout the

document.
 2008-2020 Microchip Technology Inc. DS70000353D-page 77

dsPIC33E/PIC24E Family Reference Manual
NOTES:
DS70000353D-page 78  2008-2020 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specifications contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip
devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications
contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished
without violating Microchip's intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication is provided for the sole
purpose of designing with and using Microchip products. Infor-
mation regarding device applications and the like is provided
only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets
with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE OR WARRANTIES RELATED TO
ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-
RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-
TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND
WHATSOEVER RELATED TO THE INFORMATION OR ITS
USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES
ARE FORESEEABLE. TO THE FULLEST EXTENT
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP
FOR THE INFORMATION. Use of Microchip devices in life sup-
port and/or safety applications is entirely at the buyer's risk, and
the buyer agrees to defend, indemnify and hold harmless
Microchip from any and all damages, claims, suits, or expenses
resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any Microchip intellectual property rights
unless otherwise stated.
 2008-2020 Microchip Technology Inc.

For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.
Trademarks
The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA
are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company,
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.
All other trademarks mentioned herein are property of their
respective companies.

© 2008-2020, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-6737-3
DS70000353D-page 79

www.microchip.com/quality
www.microchip.com/quality

DS70000353D-page 80  2008-2020 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

02/28/20

http://support.microchip.com
http://www.microchip.com

	Enhanced Controller Area Network (CAN)
	HIGHLIGHTS
	1.0 Introduction
	Figure 1-1: Typical CAN Bus Network
	Figure 1-2: CAN Interaction with DMA
	1.1 CAN Module
	1.2 Message Buffers
	1.3 DMA Controller

	2.0 CAN Message Formats
	Figure 2-1: CAN Bus Message Frame
	2.1 Standard Data Frame
	Figure 2-2: Format of the Standard Data Frame

	2.2 Extended Data Frame
	Figure 2-3: Format of the Extended Data Frame

	2.3 Remote Frame
	Figure 2-4: Format of the Standard Remote Frame
	Figure 2-5: Format of the Extended Remote Frame

	2.4 Error Frame
	2.5 Overload Frame
	2.6 Interframe Space

	3.0 Register Maps
	Table 3-1: CAN Register Map When C1CTRL1.WIN = 0 or 1(1)
	Table 3-2: CAN Register Map When C1CTRL1.WIN = 0(1)
	Table 3-3: CAN Register Map When C1CTRL1.WIN = 1(1)

	4.0 CAN Registers
	Register 4-1: CxCFG1: CAN Baud Rate Configuration Register 1
	Register 4-2: CxCFG2: CAN Baud Rate Configuration Register 2
	Register 4-3: CxFEN1: CAN Acceptance Filter Enable Register
	Register 4-4: CxRXFnSID: CAN Acceptance Filter Standard Identifier Register n (n = 0-15)
	Register 4-5: CxRXFnEID: CAN Acceptance Filter Extended Identifier Register n (n = 0-15)
	Register 4-6: CxRXMnSID: CAN Acceptance Filter Mask Standard Identifier Register n (n = 0-2)
	Register 4-7: CxRXMnEID: CAN Acceptance Filter Mask Extended Identifier Register n (n = 0-2)
	Register 4-8: CxFMSKSEL1: CAN Filter 7-0 Mask Selection Register 1
	Register 4-9: CxFMSKSEL2: CAN Filter 15-8 Mask Selection Register 2
	Register 4-10: CxBUFPNT1: CAN Filter 0-3 Buffer Pointer Register 1
	Register 4-11: CxBUFPNT2: CAN Filter 4-7 Buffer Pointer Register 2
	Register 4-12: CxBUFPNT3: CAN Filter 8-11 Buffer Pointer Register 3
	Register 4-13: CxBUFPNT4: CAN Filter 12-15 Buffer Pointer Register 4
	Register 4-14: CxRXFUL1: CAN Receive Buffer Full Register 1
	Register 4-15: CxRXFUL2: CAN Receive Buffer Full Register 2
	Register 4-16: CxRXOVF1: CAN Receive Buffer Overflow Register 1
	Register 4-17: CxRXOVF2: CAN Receive Buffer Overflow Register 2
	Register 4-18: CxFCTRL: CAN FIFO Control Register
	Register 4-19: CxFIFO: CAN FIFO Status Register
	Register 4-20: CxINTF: CAN Interrupt Flag Register
	Register 4-21: CxINTE: CAN Interrupt Enable Register(1)
	Register 4-22: CxVEC: CAN Interrupt Code Register
	Register 4-23: CxCTRL1: CAN Control Register 1
	Register 4-24: CxCTRL2: CAN Control Register 2
	Register 4-25: CxTRmnCON: CAN TX/RX Buffer m Control Register (m = 0,2,4,6; n = 1,3,5,7)
	Register 4-26: CxEC: CAN Transmit/Receive Error Count Register
	Register 4-27: CxRXD: CAN Receive Data Register
	Register 4-28: CxTXD: CAN Transmit Data Register

	5.0 CAN Message Buffers
	6.0 CAN Operating Modes
	6.1 Configuration Mode
	6.2 Normal Operation Mode
	6.3 Listen-Only Mode
	6.4 Listen All Messages Mode
	6.5 Loopback Mode
	6.6 Disable Mode

	7.0 Transmitting CAN Messages
	7.1 Message Transmission Flow
	Figure 7-1: CAN Transmission
	Example 7-1: Code Example for Standard Data Frame Transmission
	Example 7-1: Code Example for Standard Data Frame Transmission (Continued)
	Example 7-2: Code Example for Extended Data Frame Transmission
	Example 7-2: Code Example for Extended Data Frame Transmission (Continued)

	7.2 Aborting a Transmit Message
	7.3 Transmitting and Responding Remote Frames
	7.3.1 Transmit a Remote Frame
	7.3.2 Respond to a Remote Frame
	Figure 7-2: Remote Frame Transmit and Response
	Example 7-3: Code Example for Transmitting Extended Remote Frame
	Example 7-3: Code Example for Transmitting Extended Remote Frame (Continued)

	8.0 Receiving CAN Messages
	8.1 Message Reception and Acceptance Filtering
	Figure 8-1: Message Reception and Acceptance Filtering 7
	8.1.1 Acceptance Filters
	Figure 8-2: Acceptance Filtering for a Standard Message
	Figure 8-3: Acceptance Filtering for an Extended Message

	8.1.2 Acceptance Filter Masks
	Table 8-1: Acceptance Filter/Mask Truth Table

	8.1.3 Message Type Selection
	Table 8-2: Message Type Selections

	8.1.4 Acceptance Filter Configuration
	Example 8-1: Code Example for Filtering Standard Data Frame
	Example 8-1: Code Example for Filtering Standard Data Frame (Continued)
	Example 8-2: Code Example for Filtering Extended Data Frame
	Example 8-2: Code Example for Filtering Extended Data Frame (Continued)

	8.2 Buffer Selection and DMA Transfer
	Figure 8-4: Buffer Selection and DMA Transfer
	8.2.1 Buffer Selection
	8.2.2 Receiving Messages Into Message Buffers 0-7
	8.2.3 Receiving Messages Into Message Buffers 8-14
	8.2.4 Receiving Messages Into Message Buffers 15-31
	8.2.5 Receive Buffer Status Bits

	8.3 FIFO Buffer Operation
	Figure 8-5: Receiving Messages in FIFO
	8.3.1 Receiving Messages into FIFO Area
	Equation 8-1: FIFO Interrupt Calculation

	8.4 FIFO Example
	Figure 8-6: Example of FIFO Operation(1)

	8.5 DeviceNet™ Filtering
	Figure 8-7: CAN Operation with DeviceNet™ Filtering(1,2)
	8.5.1 Filter Comparisons
	Table 8-1: DeviceNet™ Filter Bit Configurations

	8.5.2 Special Cases

	9.0 DMA Controller Configuration
	9.1 DMA Operation for Transmitting Data
	Example 9-1: DMA Channel 0 Configuration for CAN1 Transmission

	9.2 DMA Operation for Receiving Data
	Example 9-2: DMA Channel 1 Configuration for CAN1 Reception

	10.0 Bit Timing
	Figure 10-1: CAN Bit Timing
	10.1 Bit Segments
	10.2 Sample Point
	10.3 Synchronization
	10.4 CAN Bit Time Calculations
	10.4.1 Step 1: Calculate the Time Quantum Frequency (Ftq)
	Equation 10-1: Time Quantum Frequency (Ftq)

	10.4.2 Step 2: Calculate the Baud Rate Prescaler (BRP[5:0] (CxCFG1[5:0]))
	Equation 10-2: Baud Rate Prescaler

	10.4.2.1 Step 3: Select the Individual Bit Time Segments
	Example 10-1: CAN Bit Timing Calculation Example
	Example 10-2: Code Example for Configuring CAN Bit Timing Parameters

	11.0 CAN Error Management
	11.1 CAN Bus Errors
	11.1.1 Bit Error
	11.1.2 Acknowledge Error
	11.1.3 Form Error
	11.1.4 Stuffing Error
	11.1.5 CRC Error

	11.2 Fault Confinement
	Figure 11-1: Error Modes
	11.2.1 Transmitter in Error Passive State
	11.2.2 Receiver in Error Passive State
	11.2.3 Transmitter in Bus Off State
	11.2.4 Transmitter in Error Warning State
	11.2.5 Receiver in Error Warning State

	12.0 CAN Interrupts
	12.1 CAN Transmit Data Request Interrupt
	12.2 CAN Receive Data Ready Interrupt
	12.3 CAN Event Interrupt
	Figure 12-1: CAN Event Interrupts
	12.3.1 Transmit Buffer Interrupt
	12.3.2 Receive Buffer Interrupt
	12.3.3 Receive Buffer Overflow Interrupt
	12.3.3.1 FIFO Almost Full Interrupt
	12.3.4 Error Interrupt
	12.3.5 Wake-up Interrupt
	12.3.6 Invalid Message Interrupt

	13.0 CAN Low-Power Modes
	13.1 Sleep Mode
	13.2 Idle Mode
	13.3 Wake-up Functions

	14.0 CAN Time Stamping Using Input Capture
	15.0 Related Application Notes
	16.0 Revision History
	Revision A (November 2008)
	Revision B (March 2011)
	Revision B (March 2011) (Continued)
	Revision C (December 2011)
	Revision D (September 2020)

	Worldwide Sales and Service

