
 AN2896
 SAMA5D2 Low-Power Modes Implementation

Scope

The SAMA5D2 series is a high-performance, ultra-low power Arm® Cortex®-A5 processor-based MPU.

This application note describes how to enter and exit SAMA5D2 low-power modes by providing Linux and
bare metal software examples, as well as hardware application schematics.. The purpose of this
document is to help users understand the low-power performance of SAMA5D2, and design power-
efficient applications.

This application note is a supplement to the SAMA5D2 Series data sheet. It should be used in
conjunction with the following reference documents.

Reference Documents

Document Type Title Lit. No. Available

Data Sheet SAMA5D2 Series DS60001476 http://www.microchip.com

User's Guide SAMA5D2 Xplained Ultra Evaluation Kit DS50002691 http://www.microchip.com

Application Note SAMA5D2 Discrete Power Supply
Solution AN44059 http://www.microchip.com

Data Sheet ACT8945A – http://www.active-semi.com

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 1

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.active-semi.com

Table of Contents

Scope.. 1

Reference Documents...1

1. SAMA5D2 Low Power Modes Overview... 4
1.1. SAMA5D2 Low-Power Consumption Modes..4

2. Power Supply Implementation for SAMA5D2 Low-Power Modes............................. 7
2.1. Introduction to Hardware Implementations...7
2.2. Hardware Implementation of BSR Mode Using a PMIC...8
2.3. Hardware Implementation of BSR Mode Using Discrete Components.. 8

3. Generic Recommendations to Set the System to Low-Power Modes.....................10

4. Bare Metal Software Implementation.. 12
4.1. Backup and Backup Self-Refresh Modes...12
4.2. Ultra Low-Power Mode...14
4.3. Idle Mode..17

5. Linux Software Implementation... 18
5.1. Linux Power Management Core (System Sleep Model).. 18
5.2. Power Management Implementation on SAMA5D2...24

6. Measurement Results..31
6.1. Conditions.. 31
6.2. Suspend/Wake-up Time Measurement.. 33
6.3. Consumption Measurement... 34

7. Conclusion...39

8. Appendix A. Linux Code Patch for Time Measurement...40

9. Revision History...43
9.1. Rev. A - 12/2018...43

The Microchip Web Site.. 44

Customer Change Notification Service..44

Customer Support... 44

Microchip Devices Code Protection Feature... 44

Legal Notice...45

Trademarks... 45

 AN2896

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 2

Quality Management System Certified by DNV...46

Worldwide Sales and Service..47

 AN2896

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 3

1. SAMA5D2 Low Power Modes Overview

1.1 SAMA5D2 Low-Power Consumption Modes
The SAMA5D2 devices feature five low-power modes: Backup, Backup Self-refresh (BSR), Ultra Low-
power 0 (ULP0), Ultra Low-power 1 (ULP1) and Idle.

These modes provide a wide range of power consumption performances (from a few microamps to a few
milliamps) and wake-up times (from a few microseconds to a few hundred milliseconds) to accommodate
very different application needs. The following sections give a detailed description of the device operation
in each low-power mode.

1.1.1 Backup Mode
In an application, Backup mode corresponds to an extended power-down period of the processor. In this
mode, the processor, its peripherals and its memories are unpowered. Only the backup area of the device
remains powered and operating, thus maintaining the Real Time Clock (RTC), the backup registers, the
backup SRAM and the security module running. The security module protects the application against
tampering through tamper pins PIOBU0-7, and in the SAMA5D23 and SAMA5D28, against out-of-range
operation in terms of frequency (f), temperature (T) and voltage (V) through dedicated monitors. All
tamper detections are time-stamped via the RTC.

At Backup mode entry or exit, it is good practice to use the Shutdown Controller (SHDWC) of the
processor to help manage the power supply unit of the application.

This peripheral controls the SHDN pin that is further used on the board to enable or disable power supply
channels. Typically, the software asserts SHDN low when entering Backup mode, and the SHDWC
automatically toggles SHDN back to high upon a wake-up event. Backup mode exit is possible through
RTC events, WKUP0, WKUP2 to WKUP9 pin events, Low-power Asynchronous Receiver (RXLP) events
or Analog Comparator Controller (ACC) events.

When in Backup mode, the SAMA5D2 current consumption is reduced to a few micro-amps in VDDBU
(backup area power) and it is therefore possible to supply VDDBU from a supercapacitor or from a LiMn
coin cell battery. To further reduce current consumption in the storage element, the SAMA5D2 features a
power switch that selects the power source of the backup area either from VDDBU or from VDDANA
(analog rail power). When VDDANA is present, the backup area can be powered from VDDANA by
setting the SCTRL and SSWCTRL bits in SFRBU_PSWBUCTRL. The following table gives an example of
battery lifetime estimation depending on the duty cycle usage of the application backup battery.

Table 1-1. Typical Lifetime Estimation for Common Storage Elements on VDDBU

Storage
Element Capacity

Backup Consumption
at 25°C

Battery Self-
Discharge

Current
(10 years)

% Time the
Application is

in Backup Mode

Estimated
Average

Consumption(2)

Lifetime

Backup
Mode

Running
Mode Hours Years

CR2032
LiMin battery 210 mAh 4.5 μA 1.5 μA 0.2 μA

10% 2 μA 105K 12(1)

50% 3.2 μA 66K 7.5
90% 4.4 μA 48K 5.4

0.2F Super
Cap charged
at 3.3V

(3.3V-1.7V) *
0.2F = 0.32C 4.5 μA 1.5 μA N/A N/A 4.5 μA 20(3) –

 AN2896
SAMA5D2 Low Power Modes Overview

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 4

Note: 
1. This is a theoretical lifetime calculation based on the battery capacity only. In practice, aging effects

of the battery may limit this number.
2. Average consumption (µA)= (4.5 × d + 1.5 × (1-d)) + 0.2 where d is the percentage of time the

application is in Backup mode.
3. In the case of a supercapacitor, it is assumed that this element is fully recharged between two

backup periods. Here, 20 hours is the time the SAMA5D2 can stay in Backup mode with this
element.

1.1.2 Backup Self-Refresh (BSR) Mode
This mode is an extension of the previous mode with the application context saved in the external DDR
memory operating in Self-refresh mode, in the perspective to restart the application faster.

In this mode, the VDDBU and VDDIODDR power inputs must be maintained, as well as the power inputs
of the DDR component.

The system power consumption in BSR is mainly that of the DDR, therefore the choice of the DDR type is
of prime importance. In a similar way, the choice of the regulator(s) that maintain(s) DDR supplies in BSR
mode should optimize efficiency at low current (see Conclusion).

1.1.3 ULP0, ULP1 and Idle Modes
In these three low-power modes, all SAMA5D2 power supplies are applied within their operating range.
Power saving is achieved by reducing the frequency or stopping the clock signals of the processor and/or
its peripherals.

Each mode is described below. An approximate wake-up time is given to ease understanding. For
accurate values, refer to SAMA5D2 Series data sheet, section Electrical Characteristics.

• In Idle mode, only the processor clock is stopped and all peripherals are still operating. When
exiting this mode, the processor operates at full speed. Typically, a few processor clock cycles are
needed to enter and exit this mode. In a Linux® environment, this corresponds to Suspend-to-Idle.

• In ULP0 mode, the processor is stopped and its peripherals operate at a very low frequency (from a
few kHz to a few MHz). At wake-up from this mode, the processor restarts at this very low
frequency. Power consumption can be optimized by reducing the frequency at the expense of a
longer wake-up time. In this mode, the processor is placed in Wait-For-Interrupt (WFI) state,
therefore any interrupt source can trigger return to normal operation.

• In ULP1 mode, the processor clock and the peripheral clocks are stopped. Prior to entering this
mode and to stop the clocks, the source of every clock is switched to the Main RC oscillator running
at a typical 12 MHz. The Power Management Controller (PMC) then stops this oscillator at ULP1
entry. Upon a wake-up event, the PMC automatically restarts this oscillator, thus clocking back the
device to 12 MHz. Unlike ULP0, only a few events like wake-up pins, USB resume and others (see
the SAMA5D2 Series data sheet) can wake up the device from ULP0. This mode achieves both a
very low current consumption on VDDCORE (power of the core, typically less than 0.5 mW at room
temperature) and a fast wake-up time of a few microseconds.

The following table summarizes how the core, peripherals and DDR are powered and clocked in each
mode.

Table 1-2. Core and Peripheral Clock Versus Mode

Mode Processor Core Peripherals/Internal SRAM Memory

Idle Not Clocked (WFI) Clocked

 AN2896
SAMA5D2 Low Power Modes Overview

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 5

...........continued
Mode Processor Core Peripherals/Internal SRAM Memory

ULP0 Not Clocked (WFI) Clocked at low frequency

ULP1 Not Clocked (WFE) Not clocked

 AN2896
SAMA5D2 Low Power Modes Overview

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 6

2. Power Supply Implementation for SAMA5D2 Low-Power Modes

2.1 Introduction to Hardware Implementations
From a power supply perspective, two cases must be considered to manage the SAMA5D2 low-power
modes:

• In ULP0, ULP1 and Idle modes, all the device’s power inputs operate within their specified range.
As the power consumption is reduced, the power supply circuit can be switched to a power-saving
mode.

• In BSR, all power supply inputs of the device are turned off, except VDDBU, VDDIODDR and those
of the memory, that must be maintained. To manage this case, the application can either send an
I2C command to the PMIC or use a PIOBU (powered and clocked in the backup area) to signal the
power supply to enter a specific powering case.

The following figures provide simplified timing diagrams at entry and exit of Backup and BSR modes. See
the SAMA5D2 Series data sheet for complete information about power-up and power-down sequences.

Figure 2-1. Example of Backup Mode Entry and Exit

VDDBU

NRST

VDDIODDR

SHDN

time

Other VDD

App. Status Application is running...Supply Start.
Processor Reset

Application is in Backup Mode.
DDR is not powered, RTC is running...

Backup mode exit upon
wake-up event (e.g., RTC alarm)

Application is
running...

Software Shutdown routine
 with shutdown command

Wake-up event

Figure 2-2. Example of BSR Mode Entry and Exit Using PIOBU

VDDBU

time

NRST

VDDIODDR

PIOBUx

PIOBUx notifies the power management circuit
to maintain or shutdown VDDIODDR

Other VDD

SHDN

App. Status Application is running...Supply Start.
Processor Reset

Application is in Backup Self Refresh Mode (BSR).
DDR is powered, RTC is running...

BSR mode exit upon
wake-up event (e.g., RTC alarm)

Application is
running...

Software Shutdown routine
 with shutdown command

Wake-up event

The following sections give an example of hardware implementation using a PMIC device or discrete
components.

 AN2896
Power Supply Implementation for SAMA5D2 Low-Power ...

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 7

In both examples, the description aims at setting the Backup Self-refresh mode.

2.2 Hardware Implementation of BSR Mode Using a PMIC
The following figure illustrates the SAMA5D2 Xplained board power supply. The power management IC
ACT8945A provides the power to the processor and to its external DDR3L-SDRAM memory. Prior to
entering BSR mode, the application sends to the PMIC the desired channel configuration in BSR mode
over the I²C interface.

Typically, the software requests the PMIC to maintain VOUT1 (VDD_1V35, power of the DDR3L memory)
and to turn off other channels. This configuration is executed when the SHDN pin is cleared by the
processor.

Figure 2-3. PMIC Schematic

Place TP11 and TP14 to Bottom.

VDD_2V5

VDD_3V3

VDD_3V3

VDD_1V8

WAKE UP RESET

VIN_5V

nPBSTAT

VBAT

VBAT

VDD_1V2

VDD_1V35

VDD_3V3

VBAT

VDDFUSE

VSYS_5V

VDD_3V3_LP

VDD_LED
VSYS_5V

VDDSDHC1V8

VSYS_5V

VSYS_5V

VDD_5V_IN

VSYS_5V

VDD_3V3

SHDN[9]

PMIC_CHGLEV_PA12[7]

PMIC_IRQ_PB13[7]

PMIC_TWD0_PD21[8]
PMIC_TWCK0_PD22[8]

NRST[9,10,12,14,15]

5V_EXT_INP[15]

PMIC_LBO/EXP_PC8[8,15]

C19
4.7uF

R17 100R 1%

R30 0R

J3
1X3Pin

1
2
3

R14 49.9K 1%

C2
10uF

Q2
BSS138

1

3

2

R12
100K

C8
100nF

R9 1K

R24

3.9K 1%

R26

DNP(8.2K 1%)

C10 100nF

C38
100nF

C24
100nF

R16 100R 1%

R
7

10
K

R27

2.43K 1%

TP11
SMD

B
P

3
Ta

ct
 S

w
itc

h

C22
10uF

C20
10uF

R330 0R

R22 1.5M 1%

R19
0R

C37
10uF

R8
68K

C23
10uF

R327 0R

R44 100R 1%

C7
DNP(1nF)

R13
49.9K 1%

L6 2.2uH

R18

11K 1%

C169
4.7uF

R
6

10
K

C165
4.7uF

C173
4.7uF

R20 100R 1%

Q7
IRLML64021

32

R21 2.2M 1%

L3

180ohm at 100MHz

1 2Q1
BSS138

1

3

2

C17
4.7uFB

P
2

Ta
ct

 S
w

itc
h

C166
47nF

J4

DNP(Header 1X2 2.00MM)

1
2

C13
4.7uF

C164
10uF

C3
10uF

C163
10uF

Q3
BSS138

1

3

2

C1
100nF

L5 2.2uH

C167
100nF

TP14
SMD

D1 RED

R41 DNP(0R)

C176
10uF

D9
RB160M-60TR

L1 2.2uH

R15
100K

R11

DNP(11K 1%)

U2 ACT8945AQJ405-T

CHGIN
33

ACIN
21

LBI
20

ISET
23

REFBP
1

CHGLEV
22

nRSTO
11

nIRQ
12

nPBSTAT
13

nLBO
19

SDA
27

SCL
26

VSEL
25

PWRHLD
10

G
N

D
A

3
P

W
R

E
N

18

G
N

D
P

12
37

G
N

D
P

3
14

E
X

P
A

D
41

VSYS1
31

VSYS2
32

VP1
39

VP2
35

VP3
16

INL
6

NC1
40

nSTAT
28

BAT1
29

BAT2
30

TH
24

SW1
38

OUT1
2

SW2
36

OUT2
34

SW3
15

OUT3
17

OUT4
4

OUT5
5

OUT6
8

OUT7
7

nPBIN
9

2.3 Hardware Implementation of BSR Mode Using Discrete Components
The following figure provides a discrete components power supply schematic optimized for SAMA5D2
systems equipped with LPDDR2 memories.

The input voltage VIN can range from 3.0V to 5.5V. This schematic uses most of the principles
(sequencing, reset assertion, etc.) described in the application note “SAMA5D2 Discrete Power Supply
Solution” (see Reference Documents). The SHDN pin of the Shutdown Controller (SHDWC) is used to
start and stop the supply channels, and the PIOBU0 pin is dedicated to the BSR mode management.
When PIOBU0 is set to high level, the EN_LPDDR signal is maintained high whatever the level on SHDN.
Therefore, both the VDD_1V2 and VDD_1V8 rails connected to the LPDDR2 device and to VDDIODDR
of the SAMA5D2 are maintained. As the LPDDR2 devices have stringent power-off requirements, U0 is
added to detect early power input loss, and Q5A/Q5B help discharge VDD_1V2 and VDD1V8 promptly.

 AN2896
Power Supply Implementation for SAMA5D2 Low-Power ...

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 8

Figure 2-4. Discrete Components Schematic

C10
1µF

GND

VIN

GND

PGND

U1 MIC2230-AA

AVIN/PVIN

AGND

EN2

SW2

FB2

SW1

FB1

EN1

PGOOD

/FPWM

GND

C17
10µF

VDD_3V3L10 2.2µH

R13
75k

R14
24k

GND

C18
10µF

VDD_1V25L11 2.2µH

R15
62k

R16
110k

C11
10µF

GND

R10 1MΩ

GND

C12
4.7nFEN1

R11 47k

GND

C14
47nF

C15
180pF

C16
180pF

EN_CORE

PIOBU0

GND

PGND

U2 MIC2230-G4

AVIN/PVIN

AGND

EN2

SW2

OUT2

SW1

OUT1

EN1

PGOOD

/FPWM

C20
1µF

GND

C21
10µF

GND

GND

C23
10µF

VDD_1V2L20 2.2µH

GND

C24
10µF

VDD_1V8L21 2.2µH

VDDQ
VDD2
VDDCA

GND

R12 220kΩ
C13

100nF

VDD_3V3
D1

GND

EN_LPDDR

GND C22
390pF

PG_CORE

VDD1

LPDDR2 device

VDDIODDR

VDDCORE
VDDPLLA
VDDHSIC
VDDUTMIC

SAMA5D2 device

VDDIOPx
VDDSDMMC
VDDISC
VDDANA
VDDUTMII
VDDAUDIOPLL
VDDOSC

R31
4.7k

VDD_3V3

SHDN
(From SAMA5D2)

GND

VIN

R30
100k

EN1

NRST
(To SAMA5D2)

Q1A Q2A Q2B

STARTB

GND

R32
100k

Q3A Q3B

VIN

PG_CORE

GND

C30
100nF

R33
47kΩ

VDD_3V3

D2

VIN

R34
100k

GND

PIOBU0
(From SAMA5D2 :
- Set PIOBU0 (VDDBU level) to
maintain VDD_1V2 and VDD_1V8
during BSR mode.
- Clear PIOBU0 to unpower the
memory during Backup mode.

EN_LPDDR

R35
100k

Q4A Q1B

DIS_LPDDR

Q4B

GND

Q5A Q5B

R36
470

VDD_1V8

DIS_LPDDR

R37
470

VDD_1V2

U0 MIC841N-AA

VDD

LTH OUT

GNDHTH

R39
34k

R40
274k GND

GPIO

GND

VIN

R38
690k VIN_PFAIL

NMOS :
- Q1x (Dual N-Channel Low Vt) : e.g. BSS138DW
- Q2x, Q3x, Q4x, Q5x (Dual N-Channel) : e.g. 2N7002DW
Diodes Dx : 1N4148

R38, R39, R40 set for :
VHI = 4.5V
VLO = 4.0V

SHDN
PIOBU0
NRST

SHDN
PIOBU0

NRST

R41
100k

VDD_3V3

R17
10k

SHDN / NRST

EN_LPDDR (BSR mode)

LPDDR rails Discharge

 AN2896
Power Supply Implementation for SAMA5D2 Low-Power ...

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 9

3. Generic Recommendations to Set the System to Low-Power Modes
As the SAMA5D2 power consumption can be as low as a few micro-amps in some modes, it is of prime
importance to ensure that no leakage current is lost outside the device at system level. The following
generic recommendations apply prior to entering one of the low-power modes:

• Verify the state of the external components that will remain powered during the low-power mode. It
may be necessary to set some of those in Standby mode or Low-power mode, or even turn them
off. In Backup or BSR mode, it may be convenient to remove the power to the components that are
not used in this mode. This should be assessed on a case-by-case basis.

• Verify the state of each IO of the device. In particular, any component connected to the SAMA5D2,
including pull-up and pull-down resistors, may create a leakage path. In addition, even though an
I/O is configured as an input, forcing this line with an active clock (e.g. the serial clock from a
master on a serial link, or the clock from an Ethernet PHY) would result in some power
consumption in the VDDCORE domain.

• To avoid leakages in the VDDBU power domain, the I/Os of the MPU belonging to the VDDBU
power domain (WKUP, PIOBUx, RXD, COMPP, COMPN and SHDN) must not be directly
connected to the I/Os of an external component (e.g. PMIC) unless carefully verified. It is good
practice to isolate those lines with an external buffer (e.g. a simple NMOS transistor). In case of
direct connection, leakage paths from the VDDBU power domain to the main power domain may be
created through the ESD protection diodes of these I/Os. See examples below.

Figure 3-1. SHDN Pin Connection

 AN2896
Generic Recommendations to Set the System to Low-P...

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 10

Figure 3-2. WKUP Pin Connection

• Before entering Backup mode or BSR mode, and thus turning off the power supplies, it is good
practice to slow down the device operation, to avoid maximum execution speed at power supply
collapse. To do so, it is recommended to switch the master clock (MCK) source to the slow clock.

• If the power supply circuit features a specific low-power mode, it may be appropriate to enter this
mode.

• To reduce extra power consumption when using the USB in Idle mode(1), the different ports must be
forced to Suspend mode by setting the SFR_OHCIICR.SUSPEND_x bit.

Note: 
1. USB device: set the DETACH bit to 1 and the PULLD_DIS bit to 0 in register UDPHS_CTRL.

Any other combinations of these two bits may cause additional consumption.
USB host: force all USB host ports to suspend by setting the SUSPEND_A, SUSPEND_B
and SUSPEND_C bits to 1 in register SFR_OHCIICR, at the end of the USB suspend routine.

 AN2896
Generic Recommendations to Set the System to Low-P...

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 11

4. Bare Metal Software Implementation
The following bare metal examples provide the detailed procedure to enter each SAMA5D2 low-power
mode. The project used in this section is based on the SAMA5D2 Software Package (IAR7.40).

Some of the methods to reduce power consumption are:

• Adjust the system clocks at run time
• Put devices in Sleep mode based on their usage
• Put the memory in Self-refresh mode
• Put the system in Backup mode

The above methods are explained in detail in this section, where power management for low-power mode
is split in three parts:

• Backup modes
• Ultra Low-power modes
• Idle mode

4.1 Backup and Backup Self-Refresh Modes

4.1.1 How to Enter Backup Mode
Backup mode is entered by shutting down all power rails except VDDBU, so that only the backup area is
running. The core, peripherals and internal memory are turned off and, in the specific case of SAMA5D2
Xplained board, all external components are unpowered.

1. Configure the wake-up sources in the Shutdown Controller.
2. Slow down the device operation by switching the master clock (MCK) to Slow Clock.
3. Enter Backup mode by asserting the SHDN pin to notify the PMIC or discrete components that all

powers except VDDBU can be turned off.

Sample code:
// Switch back to VDDBU power on backup area instead of VDDANA.
SFRBU->SFRBU_PSWBUCTRL = SFRBU_PSWBUCTRL_WPKEY_PASSWD;
/* config the wakeup */
shdwc_configure_wakeup();
/* clear status */
(void)shdwc_get_status();
/* PCK = MCK = 32 kHz */
/* Select Slow Clock as input clock for PCK and MCK */
PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR_
/* enter backup mode */
shdwc_do_shutdown();

4.1.2 How to Exit Backup Mode
Backup mode exit is triggered by any of the following events:

• WKUP0
• WKUP1 (Security Module event)
• WKUP2 to WKUP9 pins (PIOBU0 to PIOBU7, level transition, configurable debouncing)
• Character received on a low-power UART receiver (RXLP)
• Analog comparison

 AN2896
Bare Metal Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 12

• RTC alarm

When a wake-up event is detected, the SHDN pin is driven high automatically by the Shutdown
Controller. On the SAMA5D2 Xplained board, this makes the PMIC turn on all SAMA5D2 power supplies.

Once the SAMA5D2 is powered and the NRST pin is released, the ROM code is executed and loads the
bootstrap from a storage media (eMMC, SD card, etc.) in the internal SRAM. The bootstrap is then
executed out of the internal SRAM.

4.1.3 How to Enter Backup Self-Refresh (BSR) Mode
BSR mode is an extension of Backup mode. To enter this mode, the DDR memory must first be set to
Self-refresh mode, and both VDDBU and VDDIODDR must be powered. The sequence to enter BSR
mode is detailed below. Steps 1 and 2 can be executed from the DDR, while steps 3 to 8 must be
executed from the internal SRAM.

1. Software saves all context information to resume (application-dependent).
2. Copy to SRAM and execute out of SRAM the routine to set the DDR to Self-refresh mode and to

shut down the device (as soon as the DDR is in Self-refresh, accessing the DDR is no longer
possible).

3. Put the DDR in Self-refresh mode and wait until the self-refresh status is OK (refer to the MPDDRC
section in the SAMA5D2 Series data sheet).

4. Set the BUMEN bit, in the SFRBU_DDRBUMCR register, to isolate the DDR I/O segment from the
VDDCORE shutdown.

5. Configure the wake-up sources in the Shutdown Controller.
6. Switch the system clock to Slow Clock.
7. Assert PIOBU0 or send I2C controls to the PMIC (this configures the PMIC so that it maintains

VDDIODDR for the next shutdown period).
8. Enter BSR mode by asserting the SHDN pin.

All external components must be turned off, except the DDR memory.

When a PMIC power solution is used, the PMIC should be first configured to maintain the appropriate
rails (e.g. VDD_1V35 on SAMA5D2 Xplained board) before being shut down.

When a discrete components solution is used, the PIOBU must be controlled to shut down all power
except VDDIODDR and VDD_1V35.

Sample code:

// Data and configuration to be saved prior
// to entering BSR mode (Application dependent) */
...
/* Set the DDR in Self Refresh */
MPDDRC->MPDDRC_LPR = MPDDRC_LPR_LPCB_SELFREFRESH;
//Check if self-refresh is done; if not, continue.
while(!(MPDDRC->MPDDRC_LPR & MPDDRC_LPR_SELF_DONE));
// Enable DDR Backup Mode
SFRBU->SFRBU_DDRBUMCR = SFRBU_DDRBUMCR_BUMEN;
// Disable the DDR Controller clock signal at PMC level for the periph
PMC->PMC_PCR = (PMC_PCR_CMD | PMC_PCR_GCKCSS_MCK_CLK | (ID_MPDDRC));
//Disable ddrclk
PMC->PMC_SCDR |= PMC_SCDR_DDRCK;
// Configure PMIC to be in BSR
board_cfg_pmic_ulpm(selfrefresh, backup);
/* config the wakeup */
shdwc_configure_wakeup();
/* clear status */
(void)shdwc_get_status();
// Switch back to VDDBU power on backup area.
SFRBU->SFRBU_PSWBUCTRL = SFRBU_PSWBUCTRL_WPKEY_PASSWD;

 AN2896
Bare Metal Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 13

/* PCK = MCK = 32 kHz */
/* Select Slow Clock as input clock for PCK and MCK */
PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR_CSS_Msk) | PMC_MCKR_CSS_SLOW_CLK;
 while (!(PMC->PMC_SR & PMC_SR_MCKRDY));
/* enter backup mode */
shdwc_do_shutdown();

4.1.4 How to Exit BSR Mode
Exiting BSR mode is initiated by any of the following events:

• WKUP0
• WKUP1 (Security Module event)
• WKUP2 to WKUP9 pins (PIOBU0 to PIOBU7, level transition, configurable debouncing)
• Character received on a low-power UART receiver (RXLP)
• Analog comparison
• RTC alarm

When a wake-up event is detected, the Shutdown Controller drives the SHDN pin automatically. This
makes the power supply restart and, when the NRST pin is released, the ROM boot sequence is started.

The ROM code is executed and loads the customer bootstrap in internal SRAM. The bootstrap must
check the state of the BUMEN bit in the SFRBU_DDRBUMCR register and re-initialize the DDR
controller. The DDR memory automatically exits Self-refresh mode when an access in the DDR memory
space occurs. The following sequence must be executed to connect DDR pads to the CPU domain.

Sample code:

if ((SFRBU->SFRBU_DDRBUMCR & SFRBU_DDRBUMCR_BUMEN) != 0)
/* Connect the DDR Pads to the CPU domain, VCCCORE */
SFRBU->SFRBU_DDRBUMCR &= ~SFRBU_DDRBUMCR_BUMEN;

4.2 Ultra Low-Power Mode
Ultra Low-power mode (ULP) includes two submodes: ULP0 mode and ULP1 mode.

As described in Table 1-2, the difference between ULP0 and ULP1 is the presence (ULP0) or the
absence (ULP1) of clocks in the system. In both modes, the SAMA5D2 is fully powered (i.e., all its power
inputs are properly supplied).

To further decrease the system power consumption in ULP0 or ULP1, these SAMA5D2 ULP modes may
be combined with some power saving techniques applied to other components in the system. In some
cases, it may even be possible to power down some of these components.

4.2.1 How to Enter ULP0 Mode
The sequence to enter ULP0 mode is detailed below. The code used to enter this mode must be
executed out of the internal SRAM.

1. Set the DDR to Self-refresh mode.
2. Set the interrupts to wake up the system.
3. Disable all unused peripheral clocks.
4. Set the I/Os to an appropriate state, and disable the USB transceivers if they are not used (refer to

the Special Function Registers (SFR) section in the SAMA5D2 Series datasheet).
5. Switch the system clock to Slow Clock.
6. Disable the PLLs, the main crystal oscillator and the 12 MHz RC oscillator.

 AN2896
Bare Metal Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 14

7. Enter the Wait for Interrupt mode and disable the PCK clock in the PMC_SCDR register.

Sample code:

 /* Back up IOs and USB transceivers */
read_reg[0] = PMC->PMC_PCSR0;
read_reg[1] = PMC->PMC_PCSR1;
read_reg[2] = PMC->PMC_SCSR;
read_reg[3] = PMC->CKGR_UCKR;

/* Set the DDR in sSelf Refresh */
MPDDRC->MPDDRC_LPR = MPDDRC_LPR_LPCB_SELFREFRESH;
//Check if self-refresh is done; if not, continue.
while(!(MPDDRC->MPDDRC_LPR & MPDDRC_LPR_SELF_DONE));

/* Disable the USB transceivers and all peripheral clocks */
board_save_misc_power();

/* config the wakeup */
shdwc_configure_wakeup();

/* clear status */
(void)shdwc_get_status();

/* config wake up sources and active polarity */
pmc_set_fast_startup_polarity(0, PMC_FSPR_FSTP0);
pmc_set_fast_startup_mode(PMC_FSMR_FSTT0 | PMC_FSMR_FSTT2 | PMC_FSMR_LPM);

/* Select Slow Clock as input clock for PCK and MCK */
PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR_CSS_Msk) | PMC_MCKR_CSS_SLOW_CLK;
while (!(PMC->PMC_SR & PMC_SR_MCKRDY));

//arch_irq_disable();
asm("cpsid if");
/* enter ULP0 mode */
asm("WFI");

/* Restore default PCK and MCK */
pmc_set_custom_pck_mck(&clock_test_setting[0]);
_restore_console();

/* Restore IOs and USB transceivers */
PMC->PMC_PCER0 = read_reg[0];
PMC->PMC_PCER1 = read_reg[1];
PMC->PMC_SCER = read_reg[2];
PMC->CKGR_UCKR = read_reg[3];

// Switch VDDBU power on backup areato VDDANA decreasing the power consumption on VDDBU
battery
SFRBU->SFRBU_PSWBUCTRL = SFRBU_PSWBUCTRL_WPKEY_PASSWD | SFRBU_PSWBUCTRL_SSWCTRL;
/

4.2.2 How to Exit ULP0 Mode
The wake-up from ULP0 mode is triggered by any enabled interrupt. In this example, Push Button BP1 is
used as the wake-up source. The software resumes by executing the instruction following the WFI
instruction by configuring the Arm core with the command asm(”cpsid if”); . Hence, in the previous sample
code, the first line of code executed is “pmc_set_custom_pck_mck” to make sure that the DDR memory is
clocked at the correct frequency. The PMC registers are configured as they were before entering ULP0
mode, then Self-refresh mode is disabled and the code can continue and access the DDR in normal
mode.

4.2.3 How to Enter ULP1 Mode
The sequence to enter ULP1 mode is detailed below. The code used to enter this mode must be
executed out of the internal SRAM.

1. Set the DDR to Self-refresh mode.

 AN2896
Bare Metal Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 15

2. Set the events to enable a system wake-up.
3. Disable all peripheral clocks.
4. Set the I/Os to an appropriate state and disable the USB transceivers.
5. Switch the system clock to the 12 MHz RC oscillator.
6. Disable the PLLs and the main oscillator.
7. Enter ULP1 mode by either:

– setting the CKGR_MOR.WAITMODE bit, or
– setting the PMC_FSMR.LPM bit and executing the processor WaitForEvent (WFE)

instruction.

Then, immediately after setting the WAITMODE bit or using the WFE instruction, wait for the
PMC_SR.MCKRDY bit to be set.

Sample code:

/* Back up IOs and USB transceivers */
read_reg[0] = PMC->PMC_PCSR0;
read_reg[1] = PMC->PMC_PCSR1;
read_reg[2] = PMC->PMC_SCSR;
read_reg[3] = PMC->CKGR_UCKR;
/* Set the DDR in Self Refresh */
MPDDRC->MPDDRC_LPR = MPDDRC_LPR_LPCB_SELFREFRESH;
//Check if self-refresh is done; if not, continue.
while(!(MPDDRC->MPDDRC_LPR & MPDDRC_LPR_SELF_DONE));
/* Disable the USB transceivers and all peripheral clocks */
board_save_misc_power();
/* config the wakeup */
shdwc_configure_wakeup();
/* clear status */
(void)shdwc_get_status();

/* config wake up sources and active polarity */
pmc_set_fast_startup_polarity(0, PMC_FSPR_FSTP0);
pmc_set_fast_startup_mode(PMC_FSMR_FSTT0 | PMC_FSMR_FSTT2 | PMC_FSMR_RTCAL | PMC_FSMR_LPM);

/* Disable the PLLs and the main oscillator */
/* ultra low power mode 1, RC12 is selected for Main Clock */
PMC->CKGR_MOR = (PMC->CKGR_MOR & ~CKGR_MOR_KEY_Msk) | CKGR_MOR_MOSCRCEN | CKGR_MOR_KEY_PASSWD;
/* Wait internal 12MHz RC Startup Time for clock stabilization */
while (!(PMC->PMC_SR & PMC_SR_MOSCRCS));

PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR_CSS_Msk) | PMC_MCKR_CSS_MAIN_CLK;
while (!(PMC->PMC_SR & PMC_SR_MCKRDY));

/* switch MAIN clock to internal 12MHz RC */
PMC->CKGR_MOR = (PMC->CKGR_MOR & ~(CKGR_MOR_MOSCSEL | CKGR_MOR_KEY_Msk)) |
CKGR_MOR_KEY_PASSWD;
PMC->CKGR_MOR = (PMC->CKGR_MOR & ~(CKGR_MOR_MOSCXTEN | CKGR_MOR_MOSCXTBY | CKGR_MOR_KEY_Msk))
| CKGR_MOR_KEY_PASSWD;

/* enter ULP1 */
asm("WFE");
asm("WFE");

/* wait for the PMC_SR.MCKRDY bit to be set. */
while ((PMC->PMC_SR & PMC_SR_MCKRDY) == 0);

/* Restore default PCK and MCK */
pmc_set_custom_pck_mck(&clock_test_setting[0]);
_restore_console();

/* Restore IOs and USB transceivers */
PMC->PMC_PCER0 = read_reg[0];
PMC->PMC_PCER1 = read_reg[1];
PMC->PMC_SCER = read_reg[2];
PMC->CKGR_UCKR = read_reg[3];

// Switch VDDBU power on backup areato VDDANA decreasing the power consumption on VDDBU

 AN2896
Bare Metal Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 16

battery
 SFRBU->SFRBU_PSWBUCTRL = SFRBU_PSWBUCTRL_WPKEY_PASSWD | SFRBU_PSWBUCTRL_SSWCTRL;

4.2.4 How to Exit ULP1 Mode
The method to exit ULP1 mode is similar to the method described for ULP0 mode.

In the above sample code, the RTC is used as the wake-up source.

The software resumes by executing the instruction following the WFE instruction. Hence, in the previous
sample code, the first piece of code executed is “pmc_set_custom_pck_mck” to make sure that the DDR
memory is clocked at the correct frequency. The PMC registers are configured as they were before
entering ULP1 mode, then Self-refresh mode is disabled and the code can continue and access the DDR
in normal mode.

4.3 Idle Mode
As the purpose of Idle mode is to save the device power consumption, all power supplies operate within
their specified range.

Power consumption in this mode is application-dependent, but it can be reduced by enabling the Dynamic
Clock Gating in the L2 Cache Controller (set L2CC_POWCR.DCKGATEN = 1).

4.3.1 How to Enter Idle Mode
To enter Idle mode, disable PCK and execute the Wait for Interrupt (WFI) instruction.

Sample code:

//Disable PCK
PMC->PMC_SCDR = PMC_SCDR_PCK;
//Enter Idle mode
asm(“wfi”);

4.3.2 How to Exit Idle Mode
The processor can be awakened from Idle mode by an interrupt. The system resumes where it was
before entering WFI mode.

Sample code:

static void configure_buttons(void)
{
 int i = 0;
 for (i = 0; i < ARRAY_SIZE(button_pins); ++i){
 //Configure PIOs as inputs.
 pio_configure(&button_pins[i], 1);
 //Adjust PIO debounce filter parameters, here we have set a 10 Hz filter,
 //this is an example..
 pio_set_debounce_filter(&button_pins[i], 10);
 //Initialize PIOs interrupt with its handlers,
 //see PIO definition in board.h.
 pio_configure_it(&button_pins[i]);
 pio_add_handler_to_group(button_pins[i].group,
 button_pins[i].mask, pio_handler);
 //Enable PIO line interrupts.
 pio_enable_it(button_pins);
 }
}

In the above sample code, Push Button BP1 is used as the wake-up source, so, before entering Idle
mode, the corresponding PIO must be configured as an interrupt source.

 AN2896
Bare Metal Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 17

5. Linux Software Implementation
The following section is based on Linux4SAM version 5.7. Refer to http://www.linux4sam.org.

The Linux Power Management (PM) framework provides multiple ways of saving power. Some of the
methods used to reduce power consumption are:

• Using a tickless kernel
• Adjusting system clocks at run time
• Putting devices to sleep based on their usage
• Suspending system to memory
• Putting the system in Hibernate mode

The Linux power management options are split in two main categories:

• Runtime power management
• System sleep model

Runtime power management refers to switching devices to sleep states (by disabling clocks or switching
to advanced power management hardware-related states).

The system sleep power management model refers to executing system-related power management
routines by putting the whole system in a power saving state.

The power management options discussed in Section 5.2 are part of the system sleep power
management model. The system with a SAMA5D2-based SoC running Linux operating system can
switch to a low-power mode and save various amounts of power depending on the mode chosen.

This application note describes only the system sleep model, since this is the one related to the low-
power modes described in Section 1.1.

5.1 Linux Power Management Core (System Sleep Model)
The power management core implementation offers the infrastructure to allow systems to be switched
from an active running mode to a low-power mode (Suspend operation), and from a low-power mode to
an active mode (Resume operation) without affecting system functionality.

Standard Linux implementation provides four ways to save power. The Linux sleep states are:

• Suspend-to-Idle
• Power-On Suspend
• Suspend-to-RAM
• Suspend-to-Disk

This section describes the Power-On Suspend and Suspend-to-RAM power saving modes.

5.1.1 File System Interfaces
Linux file system interfaces enable the user to switch to the required power management state, to set
power management parameters and to retrieve statistics.

The main Linux file system interfaces for power management are:

/sys/power
/sys/kernel/debug/sleep_time
/sys/kernel/debug/suspend_stats

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 18

http://www.linux4sam.org

/sys/kernel/debug/wakeup_sources
/sys/devices/.../power/wakeup

/sys/power

is the main interface used to control switching to a low-power sleep state. The options are:

ls -l /sys/power/
-rw-r--r-- 1 root root 4096 Jan 12 17:37 pm_async
-rw-r--r-- 1 root root 4096 Jan 12 17:37 pm_freeze_timeout
-rw-r--r-- 1 root root 4096 Jan 12 17:37 pm_print_times
-rw-r--r-- 1 root root 4096 Jan 12 17:37 pm_test
-r--r--r-- 1 root root 4096 Jan 12 17:37 pm_wakeup_irq
-rw-r--r-- 1 root root 4096 Jan 12 17:37 state
-rw-r--r-- 1 root root 4096 Jan 12 17:37 wakeup_count

The /sys/power/state interface is the principal power management file system interface and triggers
the transition to a power saving state. On SAMA5D2 Linux based systems, the supported sleep states
are:
cat /sys/power/state
freeze standby mem

To switch to one of these states, write the string corresponding to the required state into the /sys/
power/state file, as indicated in Table 5-1.

Table 5-1. Linux Sleep States and Commands

Linux Sleep States Command to Enter Sleep State

Suspend-to-Idle echo freeze > /sys/power/state
Power-On Suspend or Standby echo standby > /sys/power/state
Suspend-to-RAM echo mem > /sys/power/state
Suspend-to-Disk or Hibernation NA as string “disk” not present in /sys/power/state

For an overview of the Linux sleep states, check the Documentation section on https://www.kernel.org.

A brief description of the file system interfaces is as follows:

• /sys/power/pm_async: allows suspend and resume callbacks of some devices to be executed
in parallel with each other and in parallel with the main suspend thread

• /sys/power/pm_freeze_timeout: specifies how long it will take to freeze all freezable
processes

• /sys/power/pm_print_times: used to print the time taken by devices to execute suspend and
resume operations

• /sys/power/pm_test: used to test power management options
• /sys/power/pm_wakeup_irq: prints the wake-up IRQ
• /sys/power/wakeup_count: reading returns the number of wake-up events and writing aborts

the current transition to a sleep state

For debugging purposes, files are provided in the debugfs file system:

• /sys/kernel/debug/sleep_time prints the time (in seconds) spent by the Sleep operation.
• /sys/kernel/debug/suspend_stats prints Suspend statistics.
• /sys/kernel/debug/wakeup_sources prints the current registered wake-up sources.

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 19

https://www.kernel.org

Resuming from a low-power state is performed based on events received from devices or external pins.
Devices can be set up to act as wake-up sources. The Linux file system offers an interface to enable
setting the wake-up capability for devices:

• /sys/devices/.../power/wakeup files can be set by writing “enabled” or “disabled” strings so
that the device acts or not as a wake-up source.

5.1.2 Core Implementation
The following figure summarizes the main elements of Linux power management implementation.

Figure 5-1. Linux Power Management Architecture Overview

Driver

Hardware

Platform

SubSystems
PM CORE

Terms used in the above figure are defined as follows, in a Linux context:

• Driver: a computer program used to control the hardware (IP/MCU/MPU)
• Subsystem: a code shared by drivers of the same type. Ex.: I2C drivers share a common code that

forms the Linux I2C subsystem and implements common algorithms specific to I2C devices
• Platform: code that implements platform-specific algorithms (e.g. SAMA5D2 implements its own

platform code that controls SAMA5D2-specific features, e.g. Backup and Self-refresh features)
• PM core: power management code that implements common power management algorithms and

activates subsystems, drivers and platform power management logic
• Hardware: the IP/MCU/MPU which is affected by the actions taken by drivers, subsystem, platform

and PM core

The PM core contains generic power management code that is executed when entering/leaving a power
saving state. The Freeze or Suspend-To-Idle state freezes the user space processes and leaves
hardware in a working state. The other power saving states switch hardware to more power saving
modes.

As shown in Figure 5-1, to enable switching to more advanced power saving states, three elements must
provide PM hooks that will be accessed by the PM core in suspend/resume operations:

• device drivers
• subsystems where device drivers were registered
• platform code

The hardware must provide support for advanced power saving modes.

In the platform initialization phase of Linux, the platform code must register the platform-specific power
suspend/resume code to  the PM core. This is done by providing a structure such as the following to the
PM core:

struct platform_suspend_ops {
int (*valid)(suspend_state_t state);

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 20

int (*begin)(suspend_state_t state);
int (*prepare)(void);
int (*prepare_late)(void);
int (*enter)(suspend_state_t state);
void (*wake)(void);
void (*finish)(void);
bool (*suspend_again)(void);
void (*end)(void);
void (*recover)(void);
};

The platform PM related code is executed in the final step of the suspend operation and in the first step of
the resume operation. Depending on the power saving mode, the platform code puts the CPUs in
different power saving modes.

The Linux kernel device model introduces devices, classes and buses. The PM core makes use of these
notions to choose and apply the correct PM policies. In addition, the notions of parent and child devices
are very useful in the suspend/resume procedure to suspend/resume the devices in the right order. In
Linux, drivers implement a structure of type struct devices, and subsystems implement a structure of
type struct class or struct bus_type. Every structure from the device driver model implements a
structure of type struct dev_pm_ops as follows:
struct dev_pm_ops {
int (*prepare)(struct device *dev);
void (*complete)(struct device *dev);
int (*suspend)(struct device *dev);
int (*resume)(struct device *dev);
int (*freeze)(struct device *dev);
int (*thaw)(struct device *dev);
int (*poweroff)(struct device *dev);
int (*restore)(struct device *dev);
int (*suspend_late)(struct device *dev);
int (*resume_early)(struct device *dev);
int (*freeze_late)(struct device *dev);
int (*thaw_early)(struct device *dev);
int (*poweroff_late)(struct device *dev);
int (*restore_early)(struct device *dev);
int (*suspend_noirq)(struct device *dev);
int (*resume_noirq)(struct device *dev);
int (*freeze_noirq)(struct device *dev);
int (*thaw_noirq)(struct device *dev);
int (*poweroff_noirq)(struct device *dev);
int (*restore_noirq)(struct device *dev);
int (*runtime_suspend)(struct device *dev);
int (*runtime_resume)(struct device *dev);
int (*runtime_idle)(struct device *dev);
};

With drivers and subsystems implementing structures of type struct dev_pm_os, the PM core
executes the correct hardware-related settings in order to switch peripherals to advanced power saving
modes. Every subsystem or driver provides suspend/resume functionality via this structure to the PM core
(Figure 5-2), allowing the PM core to switch peripherals to the right power state. Note that old platform
drivers are only providing suspend and resume functions to the PM core via struct
platform_driver. The PM code executes them.

In addition to the Linux device driver model, the PM core introduces the concept of power domain. A
power domain contains one or more devices sharing reference clocks or power resources. Devices can
be part of a power domain and power domains can be nested. Power domains also offer PM
functionalities to the PM core via the struct dev_pm_ops structure (Figure 5-2).

Figure 5-2 shows that drivers and subsystems register PM operations to the PM core, and that also
platform-related PM operations are registered to the PM core if specific power saving modes need to be
implemented.

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 21

Figure 5-2. Linux Power Management Implementation Overview

Driver

Platform

SubSystems PM CORE

class

bus

pm_domain

platform_suspend_ops

dev_pm_opsregister()

dev_pm_ops

dev_pm_ops

dev_pm_ops

As shown in Figure 5-2, and depending on the Linux device driver model, more than one PM operation
can be registered for a device from:

• the device power domain,
• the device class,
• the device bus,
• the device driver.

At suspend/resume, the PM core checks the registered PM operations in the order specified above, and
executes the first PM operations matched. The registered PM operations are mutually exclusive, which
means that only the PM operations for the device's power domain, class, bus or driver, is executed by the
PM core in a suspend/resume sequence.

General suspend/resume steps are described in Figure 5-3.

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 22

Figure 5-3. Suspend/Resume General Phases

1 - PM notifiers

2 - Freeze/unfreeze processes

3 - Suspend/resume drivers

4 - Suspend/resume platform

User

Suspend request

Kernel

Hardware

As specified in Figure 5-3, the suspend request is initialized from the user space. Applications can
register PM-related notifiers that are called in the first suspend phase. After this, the kernel freezes all
processes (kernel and user space) and suspends devices and then the platform. The resume goes
through the states described in Figure 5-3, but in reverse order.

Figure 5-4 details the suspend and resume of devices and platform specified in Figure 5-3. The figure
shows the order of execution for platform PM operations (see struct platform_suspend_ops) and
device PM operations (see struct dev_pm_ops) specified in platform initialization code and drivers'
probe functions.

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 23

Figure 5-4. Suspend/Resume Detailed Phases

S
us

pe
nd

 p
ha

se

begin()

prepare()

suspend()

prepare()

suspend_later()

suspend_noirq()

prepare_late()

disable_nonboot_cpus()

enter()

platform devices

Suspend event

R
es

um
e

ph
as

e

end()

completed()

resume()

finish()

resume_early()

resume_noirq()

wake()

enable_nonboot_cpus()

platform devices

Resume event

Suspended state

Running state

5.2 Power Management Implementation on SAMA5D2

5.2.1 Supported Modes
The Linux power management modes supported by SAMA5D2 SoCs are as follows:

• Idle
• ULP0
• ULP1
• Backup Self-refresh (BSR)

Idle mode puts the CPU core in Wait-For-Interrupt (WFI) state.

BSR, ULP0 and ULP1 modes are described in Section 4.1 and Section 4.2.

This section describes the implementation for BSR and ULP0/ULP1 modes.

5.2.2 AT91Bootstrap Support
In BSR mode, the CPU core (except the backup area) is shut down. To enable resuming the system,
AT91Bootstrap support has been added. This support is based on the fact that the backup area is the
only part that remains active while the system is suspended (except the DDR memory, which remains in
Self-refresh mode). Linux and AT91Bootstrap communicate via the backup area (SECURAM).

The following figure shows how AT91Bootstrap and Linux interact with each other in the process of
suspend and resume in BSR mode.

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 24

Figure 5-5. Linux and AT91Bootstrap Communication for Suspend/Resume for BSR Mode

(3) suspend

(1) init
(2) save cpu_resume function

Linux

(4) save suspend status

(5) system suspended

SECURAM

Backup area

AT91Bootstrap

(6) wake
(7) read SECURAM content

(8) execute resume

error?

SECURAM
suspended?

execute cpu_resume

execute cpu_resetLinux (9’) cold reset

(9) system is resumed

yes no

yes no

su
sp

en
d

tim
e

Figure 5-5 describes a standard suspend/resume sequence for BSR mode. As shown, when a suspend
request is initialized, Linux saves the resume code and suspend status in SECURAM, and the core's
power is turned off. When a wake-up event is detected, AT91Bootstrap starts and checks the suspend
status and whether the memory content has changed. Depending on the suspend status read from
SECURAM, AT91Bootstrap jumps to Linux execution, leading to executing the resume code. If
AT91Bootstrap detects errors in the resume procedure, a cold reset is performed.

5.2.3 Linux Kernel Parameter
Previous sections explained that the Linux four sleep states and the four SAMA5D2 power management
modes cannot be matched one to one. The SAMA5D2 SoC power management modes can be
considered as slight variations of the same Linux “Power-On Suspend” sleep mode.

A technique has been developed to allow the user to choose which SAMA5D2 power management mode
to map to one particular Linux sleep mode. This mapping is done statically at system initialization by
using Linux kernel command line parameters. Those parameters, like any other kernel parameters, can
be passed while starting Linux by the bootloader.

U-Boot is used in the Linux4SAM reference distribution and the new parameter is appended to the
bootargs U-Boot variable.

The new kernel parameter, atmel.pm_modes, requires two arguments for the two SAMA5D2 low-power
modes chosen.

The atmel.pm_modes format is as follows:

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 25

Figure 5-6. “atmel.pm_modes” Command Format

atmel.pm_modes = ,

standby
(Normal Linux standby
mode)

ulp0

ulp1

backup
(BSR mode)

standby
(Normal Linux standby
mode)

ulp0

ulp1

backup
(BSR mode)

Activated by running:
echo standby > /sys/power/state

Activated by running:
echo mem > /sys/power/state

For example, to initialize the system with normal Linux standby and SAMA5D2 BSR mode, use the
following value for atmel.pm_modes:

atmel.pm_modes=standby,backup
The value of atmel.pm_modes can be retrieved from a running Linux system by using the following
command:

cat /proc/cmdline
This way, the user can check from Linux the mapping between Linux sleep states (Power-On Suspend,
Suspend-to-RAM) and SAMA5D2 power management modes (Idle, ULP0, ULP1, BSR).

5.2.4 Linux Support
Implementation of the modes listed in Section 5.3.1 was done by adding suspend/resume support for
both the driver's code and the platform's code (see Figure 5-1 and Figure 5-2). On drivers, structures of
type struct dev_pm_ops were implemented. On platforms, a structure of type struct
platform_suspend_ops was implemented.

5.2.5 Drivers Implementation
As explained in 5.1.2 Core Implementation, Linux power management suspends and resumes SoC
peripherals by calling the functions provided by drivers in objects of type struct dev_pm_ops (or
platform_driver for old device drivers). To implement the Linux system sleep model, drivers must
implement the suspend and resume members in objects of type struct dev_pm_ops (or struct
platform_driver).

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 26

As the CPU power is cut off in Backup and Self-refresh modes, the peripheral state (register contents)
must be saved. Because memory remains in Self-refresh mode, its content is preserved, and the
peripheral state can be saved. In the resume part of the driver, this state is restored from memory.

The UART driver is an example. As explained in 5.1.2 Core Implementation, the driver must provide to
the PM core suspend and resume functions. In Linux kernel source code, the UART driver is located at
drivers/tty/serial/atmel_serial.c and the suspend and resume functions are
atmel_serial_suspend and atmel_serial_suspend. These functions are provided to the Linux
PM core via an object of type struct platform_driver, as shown below:
static struct platform_driver atmel_serial_driver = {
 .probe = atmel_serial_probe,
 .remove = atmel_serial_remove,
 .suspend = atmel_serial_suspend,
 .resume = atmel_serial_resume,
 .driver = {
 .name = “atmel_usart”,
 .of_match_table = of_match_ptr(atmel_serial_dt_ids),
 },
};

in the probe phase of the UART driver (see probe function, atmel_serial_probe) via the following line
of code:

ret = platform_driver_register(&atmel_serial_driver);

Since in BSR mode, the CPU power is turned off and the DDR is kept in Self-refresh mode, the IP's state
is saved in the DDR memory. The UART driver saves IP's state with the following code in the
atmel_serial_suspend function:

if (atmel_is_console_port(port) && !console_suspend_enabled) {
/* Cache register values as we won't get a full shutdown/startup
* cycle*/
atmel_port->cache.mr = atmel_uart_readl(port, ATMEL_US_MR);
atmel_port->cache.imr = atmel_uart_readl(port, ATMEL_US_IMR);
atmel_port->cache.brgr = atmel_uart_readl(port, ATMEL_US_BRGR);
atmel_port->cache.rtor = atmel_uart_readl(port,atmel_port->rtor);
atmel_port->cache.ttgr = atmel_uart_readl(port, ATMEL_US_TTGR);
atmel_port->cache.fmr = atmel_uart_readl(port, ATMEL_US_FMR);
atmel_port->cache.fimr = atmel_uart_readl(port, ATMEL_US_FIMR);
}

In the resume phase, this state is restored as can be seen in the atmel_serial_resume function:

if (atmel_is_console_port(port) && !console_suspend_enabled) {
/* Cache register values as we won't get a full shutdown/startup
* cycle*/
atmel_port->cache.mr = atmel_uart_readl(port, ATMEL_US_MR);
atmel_port->cache.imr = atmel_uart_readl(port, ATMEL_US_IMR);
atmel_port->cache.brgr = atmel_uart_readl(port, ATMEL_US_BRGR);
atmel_port->cache.rtor = atmel_uart_readl(port,atmel_port->rtor);
atmel_port->cache.ttgr = atmel_uart_readl(port, ATMEL_US_TTGR);
atmel_port->cache.fmr = atmel_uart_readl(port, ATMEL_US_FMR);
atmel_port->cache.fimr = atmel_uart_readl(port, ATMEL_US_FIMR);
}

5.2.6 Platform Implementation
On the platform side, code has been added to deal with the modes specified in Section 5.3.1 (mainly for
BSR and ULP0/ULP1 modes).

During the Linux initialization phase, the command line parameter is read to check if the platform code
needs to deal with those modes.

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 27

The power management platform initialization code checks the device tree for:

• Shutdown Controller (SHDWC)
• Special Function Registers Backup (SFRBU)
• SECURAM
• DRAM controller
• Power Management Controller (PMC)

and memory maps these devices. The memory-mapped regions are used in the suspend/resume
procedure (see at91_pm_suspend_in_sram function).

During the platform-related PM initialization phase, SECURAM is written with the suspend status and
address of the resume function. During the resume process, AT91Bootstrap uses this information to
resume Linux as required (see Figure 5-5).

After the initialization phase, the platform is ready for suspend/resume operations. The platform suspend/
resume is the last/first phase of suspend/resume (see platform enter() state and platform end()
state in Figure 5-4).

The last suspend phase is executed from the internal SRAM. The corresponding code is copied to SRAM
at platform initialization and after each resume operation.

Depending on the suspend mode (BSR or ULP0/ULP1 modes), different levels of power saving are
implemented in the last suspend phase.

The last/first phase of the suspend/resume procedure is written in assembly code because this phase will
be executed from SRAM as the main memory (DDR) will be in Self-refresh mode while executing power
management instructions. The main entry point to the last suspend phase is the
at91_pm_suspend_in_sram() function. The argument received by this function is an object of type
struct at91_pm_data (initialized in platform initialization code) that keeps all data necessary in the
process of last/first phase of suspend/resume.

struct at91_pm_data {
 void __iomem *pmc;
 void __iomem *ramc[2];
 unsigned long uhp_udp_mask;
 unsigned int memctrl;
 unsigned int mode;
 void __iomem *shdwc;
 void __iomem *sfrbu;
 unsigned int standby_mode;
 unsigned int suspend_mode;
};

The last phase of the suspend procedure are detailed in the steps below (as seen in the
at91_pm_suspend_in_sram() function):

• Save registers on stack
• Store the content of the object of type struct at91_pm_data on the corresponding registers
• Activate DDR Self-refresh mode
• Switch to the selected power management mode

Depending on the selected power management mode, further settings will be done as follows:

1. Idle mode: CPU switches to WFI.
2. ULP0/ULP1 modes:

– Master clock settings are saved.

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 28

– Master clock source is switched to slow clock.
– PLLA settings are saved, then PLLA is disabled.

2.1. ULP0 mode:
• Crystal oscillator is turned off.
• CPU switches to WFI.

2.2. ULP1 mode:
• Main clock source is switched to 12 MHz RC oscillator.
• Crystal oscillator is disabled.
• Master clock source is switched to main clock.
• Enter ULP1 mode: CKGR_MOR.WAITMODE=1.

3. BSR mode:
– Shut down the CPU.

Figure 5-7. Last Suspend Phase

PM start

DDR

Execute instructions from DDR

suspend

Internal SRAMCPU

Copy suspend code to internal SRAM

Stop executing instructions from DDR
and switch DDR to Self-refresh

Execute suspend instruction
from internal SRAM

device/subsystem suspend

platform suspend

In BSR mode, the CPU core is powered off (that is why the CPU and internal SRAM timelines are
interrupted after platform suspend in Figure 5-7). For ULP0/ULP1 modes, processor power is kept, so the
CPU and internal SRAM timelines continue after the platform suspend code was executed.

The resume phase performs the settings in reverse order compared to the suspend phase. Depending on
the suspend mode:

1. Idle mode: the memory Self-refresh mode is deactivated and stack is restored.
2. ULP0/ULP1 modes:

2.1. ULP0 mode:

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 29

• Crystal oscillator is turned on.
2.2. ULP1 mode:

• Crystal oscillator is turned on.
• Master clock source is switched to slow clock.
• Main clock source is switched to crystal oscillator.
• Master clock source is switched to main clock.

2.3. ULP0/ULP1 modes:
• PLLA settings are restored.
• Master clock settings are restored.

3. Backup mode: cpu_resume function loads the stack saved by the suspend process and the
execution continues from the point where it was before suspend.

 AN2896
Linux Software Implementation

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 30

6. Measurement Results
This section describes how to perform measurements to evaluate consumption in the different modes.
The described measurements were performed at room temperature.

Power consumption measurement is based on the SAMA5D2 Xplained board. On the SAMA5D2
Xplained board, all SAMA5D2 power rails are supplied by a power management IC ACT8945AQJ405
(refer to the ACT8945A datasheet). Figure 2-3 is the PMIC part schematic (refer to the Schematics
section in SAMA5D2 Xplained Ultra Evaluation Kit User's Guide).

6.1 Conditions

6.1.1 Board Setup for Measurement
To perform the different measurements on the SAMA5D2 Xplained board, the bare metal or Linux
application clock settings were set to:

• 498 MHz for the CPU clock
• 166 MHz for the peripherals/master clock

The board offers several points of measurement, all of them feeding a specific power rail. Figure 6-1 is a
top view of the SAMA5D2 Xplained board and shows the jumper to access all these power rails. The
board was modified to enable access to two power rails that are not connected to jumpers on the board.
See Table 6-1 and Figure 6-2. In addition, only one type of DDR memory was used on this board. Custom
bare metal application and Linux OS were used and configured according to the board.

Figure 6-1. Power Jumpers on SAMA5D2 Xplained Board

 AN2896
Measurement Results

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 31

Figure 6-2. VDD_1V2 and VDD_1V35 Power Rail Access

Table 6-1 gives a correspondence between jumpers and power rails, as well as a description of the
different power rails connected to these jumpers.

Table 6-1. Power Rail Measurement Access and Feeding

Power Rail Jumper Power Rail Feeding

VDDBU JP6 Backup area

VDDCORE JP4 VDDCORE rail

VDD_1V2 N/A(1) VDDCORE, VDDPLLA, VDDUTMIC & VDDHCSIC

VDD_5V_IN JP8 Main power of the PMIC

VDDIODDR JP7 VDDIODDR rail

VDD_1V35 N/A(1) DDR memory

VDD_3V3_LP JP3 VDDOSC, VDDUTMII, VDDANA & VDDAUDIOPLL

VDD_3V3 JP5 VDDIOP0, VDDIOP1, VDDIOP2 & VDDISC

 AN2896
Measurement Results

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 32

Note: 
1. Before performing those measurements, a SAMA5D2 Xplained board was modified to enable

independent access to:
– The VDDCORE power consumption and the VDD_1V2 power consumption (VDDCORE,

VDDPLLA, VDDUTMIC and VDDHCSIC)
– The DDR memory power consumption powered by VDD_1V35 and the VDDIODDR power

rail power consumption (VDD_1V35 was taken directly on the memory)

In addition to jumpers for measurement purpose, the following jumpers must be left open:

• JP1 (Disable EDBG)
• JP2 (Disable Debug)
• JP9 (Disable CS of SPI/QSPI memory) when the application is not stored in an SDMMC or in an

eMMC

For more information on the SAMA5D2 Xplained board, refer to the SAMA5D2 Xplained Ultra Evaluation
Kit User's Guide (see Reference Documents).

6.1.2 Linux-Specific Code Changes
The measurements were performed with a SAMA5D2 Xplained board while monitoring PB5 pin toggling.
The Linux SD card image from the file linux4sam-poky-sama5d2_xplained-5.7.img.bz2(1) was patched
with the GIT patch given in Appendix A (see Appendix A. Linux Code Patch for Time Measurement).

Note: 
1. Available on ftp://www.at91.com/pub/demo/linux4sam_5.7.

6.2 Suspend/Wake-up Time Measurement
This section specifies the suspend/wake-up times for SAMA5D2 Low-Power modes.

6.2.1 Measurement Conditions
To measure suspend times, a pin was toggled before the suspend instruction and after the suspend was
finished. The same principle was used to measure wake-up time: the pin was toggled at the instant of
resume start and after resume was finished.

In bare metal applications, suspend measurements were started at the beginning of each bare metal
sample code in this application note (see sections 4.1.1, 4.1.3, 4.2.1 and 4.2.3) and finished just before
entering Low-Power mode. Wake-up time measurements were started immediately after the instruction to
enter the Low-Power mode until the end of the sample code.

6.2.2 Measured Values
Tests were done on bare metal and Linux operating systems. Five series of five measurements each
were performed, and the board was rebooted every five measurements.

Main test differences:

• Linux OS tests:
– Applications corresponding to Linux4sam version 5.7 were executing a simple embedded

distribution running from a root filesystem in SD Card.
– Most of the peripheral device states were saved and restored in suspend and resume

processes.

 AN2896
Measurement Results

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 33

ftp://www.at91.com/pub/demo/linux4sam_5.7

• Bare metal OS tests:
– Only one application (LED blink) was running.
– Peripheral devices were not treated in suspend and resume processes.

The following table summarizes results.

Table 6-2. Bare Metal and Linux Suspend and Wake-Up Time Measurements

Mode Operating System Time to Enter Low-power Mode Wake-up Time

Idle
Bare metal <10 μs(1) <1 μs(1)

Linux N/A NA

ULP0
Bare metal 5.6 ms 4 ms

Linux 184 ms 246 ms

ULP1
Bare metal 350 μs 15 μs

Linux 201 ms 238 ms

BSR
Bare metal 1.4 ms 600 μs

Linux 175 ms 2123 ms(2)

Note: 
1. Indicative timings. Actual timings (ns range) cannot be measured by the sample code given in this

application note.
2. Starting from AT91Bootstrap version 3.8.12, the wake-up time for BSR is decreased to approx. 800

ms.

Note:  To wake up the system from Low-Power modes, the 5V power supply on the SAMA5D2 Xplained
board must be kept connected.

In the Linux world, timing is strongly dependent on the save and restore processes of the peripheral
states. These results could be significantly improved by removing some of these unnecessary actions, as
the major part of the context is maintained in ULP0/ULP1/IDLE modes.

6.3 Consumption Measurement
This section describes results of the SAMA5D2 Xplained board power consumption tests using a bare
metal application and a Linux application.

6.3.1 Measured Values
Table 6-3 gives power consumption on each rail when the application is in Running mode.

For Linux, the Linux4SAM 5.7 distribution is started, the Root filesystem is in SD Card and the kernel runs
with a few daemons.

Table 6-3. Applications in Running Mode

Power Rail Application Consumption Comment

VDD_1V35
Linux

18 mA The DDR is powered.
Bare metal

 AN2896
Measurement Results

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 34

...........continued
Power Rail Application Consumption Comment

VDDIODDR
Linux

8 mA The VDDIODDR rail is powered so that it can communicate
with the DDR.Bare metal

VDDCORE
Linux 65 mA This difference shows that the Linux scheduler uses Idle

mode to reduce its power consumption.Bare metal 86 mA

VDDBU
Linux

1.5 μA SFRBU_PSWBUCTRL is set to the power backup area with
VDDANA instead of VDDBU and saves battery life time.Bare metal

VDD3V3
Linux 1.5 mA On the Linux side, a real application is running, so there is

activity on Ethernet PHY and mass storage.

Bare metal 220 μA As this is a bare metal application, there is no activity on the
GPIO. Power consumption is at the minimum.

VDD3V3LP

Linux 30 mA On the Linux side, the peripherals powered by VDDUTMI,
VDDAUDIOPLL and VDDANA (UTMI transceiver, audio
PLL, analog, etc.) are enabled, whereas they are disabled
on the bare metal devices.

Bare metal 1.7 mA

VDD5V
Linux 120 mA The application on the Linux side is much more complex

than on the bare metal side.Bare metal 98 mA

Table 6-4 gives the different power consumptions on each rail when the application is in Idle mode.

For Linux, the Idle mode is selected by using the following command line parameter:

atmel.pm_modes=standby,ulp0
and running the following command:

echo standby > /sys/power/state
Table 6-4. Applications in Idle Mode

Power Rail Application Consumption Comment

VDD_1V35
Linux

18 mA The DDR is powered.
Bare metal

VDDIODDR
Linux

8 mA The VDDIODDR rail is powered so that it can communicate
with the DDR.Bare metal

VDDCORE
Linux 46 mA –

Bare metal 35 mA –

VDDBU
Linux

1.5 μA SFRBU_PSWBUCTRL is set to the power backup area with
VDDANA instead of VDDBU and saves battery life time.Bare metal

 AN2896
Measurement Results

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 35

...........continued
Power Rail Application Consumption Comment

VDD3V3
Linux 1.1 mA –

Bare metal 2.3 mA –

VDD3V3LP
Linux 6.4 mA –

Bare metal 1.7 mA –

VDD5V

Linux 68 mA The core is powered but not clocked. Peripherals are
powered and clocked.
On the Linux side, proper management of external
components (Standby mode of Ethernet PHY) leads to a
reduced total power consumption.

Bare metal 78 mA

Table 6-5 gives the different power consumptions on each rail when the application is in ULP0 mode.

For Linux, the ULP0 mode is selected by using the following command line parameter:

atmel.pm_modes=standby,ulp0
and running the following command:

echo mem > /sys/power/state
Table 6-5. Applications in ULP0 Mode

Power Rail Application Consumption Comment

VDD_1V35
Linux

11 mA DDR power is maintained so that the code remains loaded
before jumping to ULP0 mode.Bare metal

VDDIODDR
Linux

190 μA
The VDDIODDR rail is maintained powered to be able to
restart code execution as soon as the SAMA5D2 device
exits ULP0 mode.Bare metal

VDDCORE
Linux

250 μA The core is powered and clocked at 512 Hz.
Bare metal

VDDBU
Linux

1.5 μA SFRBU_PSWBUCTRL is set to the power backup area with
VDDANA instead of VDDBU and saves battery life time.Bare metal

VDD3V3
Linux

1.2 mA
–

Bare metal –

VDD3V3LP
Linux

340 μA
–

Bare metal –

VDD5V

Linux 39 mA The core is powered but not clocked. Peripherals are
powered and clocked at 512 Hz.
On the Linux side, a proper management of external
components (Standby mode of Ethernet PHY) leads to a
reduced power consumption.

Bare metal 67 mA

 AN2896
Measurement Results

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 36

Table 6-6 gives the different power consumptions on each rail when the application is in ULP1 mode.

For Linux, the ULP1 mode is selected by using the following command line parameter:

atmel.pm_modes=standby,ulp1
and running the following command:

echo mem > /sys/power/state
Table 6-6. Application in ULP1 Mode

Power rail Application Consumption Comment

VDD_1V35
Linux

11 mA DDR power is maintained so that the code remains loaded
before jumping to ULP1 mode.Bare metal

VDDIODDR
Linux

190 μA
The VDDIODDR rail is maintained powered to be able to
restart code execution as soon as the SAMA5D2 device
exits ULP1 modeBare metal

VDDCORE
Linux

250 μA The core is powered but not clocked.
Bare metal

VDDBU
Linux

1.5 μA
SFRBU_PSWBUCTRL configures the power backup area so
that it is fed with VDDANA instead of VDDBU to save battery
life time.Bare metal

VDD3V3
Linux

1.2 mA
–

Bare metal –

VDD3V3LP
Linux

340 μA
–

Bare metal –

VDD5V

Linux 39 mA Core and peripherals are powered but not clocked.
On the Linux side, a proper management of external
components (Standby mode of Ethernet PHY) leads to a
reduced power consumption.

Bare metal 67 mA

Table 6-7 gives the different power consumptions on each rail when the application is in BSR mode.

For Linux, the BSR mode is selected by using the following command-line parameter:

atmel.pm_modes=standby,backup
and running the following command:

echo mem > /sys/power/state
Table 6-7. Applications in Backup Self-Refresh (BSR) Mode

Power Rail Application Consumption Comment

VDD_1V35
Linux

11 mA The DDR power is maintained to be able to keep the code
loaded in DDR prior to jump in BSR mode.Bare metal

 AN2896
Measurement Results

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 37

...........continued
Power Rail Application Consumption Comment

VDDIODDR
Linux

190 μA
The VDDIODDR rail is maintained powered to be able to
restart as soon as the main power is applied to the
SAMA5D2.Bare metal

VDD5V
Linux

52 mA Only the backup area of the SAMA5D2 device is powered,
the DDR is in BSR, the PMIC is powered.Bare metal

VDDBU
Linux

3.8 μA Only VDDBU is powering the backup area.
Bare metal

VDDCORE,

VDD3V3,

VDD3V3LP

Linux

0 These power inputs are not supplied in Backup and BSR
modes.

Bare metal

Whatever the application, bare metal or Linux, only the VDDBU and the VDD_1V35 are powered
(VDDIODDR is taken from the VDD_1V35), so the power consumption is exactly the same for each
application.

 AN2896
Measurement Results

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 38

7. Conclusion
In any modern system, power consumption aspects cannot be ignored. One way to optimize an
application power performance is to enable periods of time when the system can be set to a low-power
mode. The SAMA5D2 device features several low-power modes with specific power consumption levels
and associated suspend/wake-up times to serve this need.

This application note demonstrates these low-power modes for a specific configuration (SAMA5D2
Xplained board with DDR3L memory). Note that significantly different results can be obtained with
different memory types.

The following table gives an estimation of the power consumption for two memory types and three low-
power modes. The values given are at 85°C, as provided in the memory data sheets. Values at 25°C are
expected to be 3 times to 5 times lower.

Table 7-1. Power Consumption Estimations

SAMA5D2 Low-power Modes(1) Memory(3)
Total(2)

Mode SAMA5D2 LPDDR2 DDR3L

ULP0 mode 3.1 mW
3 mW - 6.1 mW

- 16 mW 19.1 mW

ULP1 mode 2.9 mW
3 mW - 5.9 mW

- 16 mW 18.9 mW

BSR mode 0
3 mW - 3 mW

- 16 mW 16 mW

Note: 
1. All values are taken from the SAMA5D2 Series data sheet at 85°C.
2. The total power consumption includes DDR power + VDDCORE. The real total power consumption

depends on the efficiency of the power supply.
3. It is assumed that the self-refresh power consumption at 85°C is approximately 16 mW for a

DDR3L memory and 3 mW for a LPDDR2 memory. These are the data sheet values available at
the time this application note is written.

This table shows mainly that:

• for a system equipped with a DDR3L memory, very little benefit is obtained in terms of power
consumption when using BSR mode instead of ULP0/1,

• for a system equipped with an LPDDR2 memory, about 50% of power consumption is saved by
using BSR mode.

Finally, this application note shows significant differences for suspend and wake-up times in ULP1 mode
between a complex operating system such as Linux (that saves and restores the full context, which is
more than needed) and a simple bare metal application. Thus, specific improvements are needed for a
complex OS to leverage the full ULP1 performance.

 AN2896
Conclusion

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 39

8. Appendix A. Linux Code Patch for Time Measurement
This is the patch to be applied in addition to Linux4SAM 5.7 in order to measure suspend and wake-up
times. The process consists basically in toggling a GPIO.
diff --git a/arch/arm/boot/dts/at91-sama5d2_xplained_common.dtsi b/arch/arm/boot/dts/at91-
sama5d2_xplained_common.dtsi
index a9bf487feb21..85b909c9b875 100644
--- a/arch/arm/boot/dts/at91-sama5d2_xplained_common.dtsi
+++ b/arch/arm/boot/dts/at91-sama5d2_xplained_common.dtsi
@@ -734,7 +734,7 @@
 compatible = "gpio-leds";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_led_gpio_default>;
- status = "okay"; /* conflict with pwm0 */
+ status = "disabled"; /* conflict with pwm0 */

 red {
 label = "red";
diff --git a/arch/arm/mach-at91/pm.c b/arch/arm/mach-at91/pm.c
index e756bc71ffce..aa0d8e65c17e 100644
--- a/arch/arm/mach-at91/pm.c
+++ b/arch/arm/mach-at91/pm.c
@@ -489,6 +489,12 @@ static void __init at91_pm_backup_init(void)
 struct device_node *np;
 struct platform_device *pdev = NULL;

+ np = of_find_compatible_node(NULL, NULL, "atmel,sama5d2-pinctrl");
+ if (!np)
+ return;
+ pm_data.gpioc = of_iomap(np, 0);
+ of_node_put(np);
+
 if ((pm_data.standby_mode != AT91_PM_BACKUP) &&
 (pm_data.suspend_mode != AT91_PM_BACKUP))
 return;
diff --git a/arch/arm/mach-at91/pm.h b/arch/arm/mach-at91/pm.h
index f39679b39d5c..9ef80de101d2 100644
--- a/arch/arm/mach-at91/pm.h
+++ b/arch/arm/mach-at91/pm.h
@@ -35,6 +35,7 @@ struct at91_pm_data {
 unsigned int mode;
 void __iomem *shdwc;
 void __iomem *sfrbu;
+ void __iomem *gpioc;
 unsigned int standby_mode;
 unsigned int suspend_mode;
 };
diff --git a/arch/arm/mach-at91/pm_data-offsets.c b/arch/arm/mach-at91/pm_data-offsets.c
index c0a73e62b725..dc98d3be399b 100644
--- a/arch/arm/mach-at91/pm_data-offsets.c
+++ b/arch/arm/mach-at91/pm_data-offsets.c
@@ -11,6 +11,7 @@ int main(void)
 DEFINE(PM_DATA_MODE, offsetof(struct at91_pm_data, mode));
 DEFINE(PM_DATA_SHDWC, offsetof(struct at91_pm_data, shdwc));
 DEFINE(PM_DATA_SFRBU, offsetof(struct at91_pm_data, sfrbu));
+ DEFINE(PM_DATA_GPIOC, offsetof(struct at91_pm_data, gpioc));

 return 0;
 }
diff --git a/arch/arm/mach-at91/pm_suspend.S b/arch/arm/mach-at91/pm_suspend.S
index 0f639102f4ef..81d1da65ab0e 100644
--- a/arch/arm/mach-at91/pm_suspend.S
+++ b/arch/arm/mach-at91/pm_suspend.S
@@ -18,10 +18,32 @@

 #define SRAMC_SELF_FRESH_ACTIVE 0x01
 #define SRAMC_SELF_FRESH_EXIT 0x00
+#define ATMEL_PIO_PB5_SODR 0x50
+#define ATMEL_PIO_PB5_CODR 0x54
+

 pmc .req r0

 AN2896
Appendix A. Linux Code Patch for Time Measur...

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 40

 tmp1 .req r4
 tmp2 .req r5
+gpio .req r6
+
+/*
+ * Turn off green led
+ */
+ .macro turn_off_led
+ ldr gpio, .gpioc
+ mov tmp2, #32
+ str tmp2, [gpio, #ATMEL_PIO_PB5_SODR]
+ .endm
+
+/*
+ * Turn on green led
+ */
+ .macro turn_on_led
+ ldr gpio, .gpioc
+ mov tmp2, #32
+ str tmp2, [gpio, #ATMEL_PIO_PB5_CODR]
+ .endm

 /*
 * Wait until master clock is ready (after switching master clock source)
@@ -68,9 +90,14 @@ tmp2 .req r5
 mov tmp1, #AT91_PMC_PCK
 str tmp1, [pmc, #AT91_PMC_SCDR]

+ turn_off_led
+
 dsb

 wfi @ Wait For Interrupt
+
+ turn_on_led
+
 #else
 mcr p15, 0, tmp1, c7, c0, 4
 #endif
@@ -116,6 +143,11 @@ ENTRY(at91_pm_suspend_in_sram)
 cmp tmp1, #0
 ldrne tmp2, [tmp1, #0x10]

+ ldr tmp1, [r0, #PM_DATA_GPIOC]
+ str tmp1, .gpioc
+ cmp tmp1, #0
+ ldrne tmp2, [tmp1, #0x12]
+
 /* Active the self-refresh mode */
 mov r0, #SRAMC_SELF_FRESH_ACTIVE
 bl at91_sramc_self_refresh
@@ -283,6 +315,9 @@ ENTRY(at91_backup_mode)
 ldr r0, .shdwc
 mov tmp1, #0xA5000000
 add tmp1, tmp1, #0x1
+
+ turn_off_led
+
 str tmp1, [r0, #0]
 ENDPROC(at91_backup_mode)

@@ -343,8 +378,13 @@ ENDPROC(at91_backup_mode)
 orr tmp1, tmp1, #AT91_PMC_WAITMODE
 bic tmp1, tmp1, #AT91_PMC_KEY_MASK
 orr tmp1, tmp1, #AT91_PMC_KEY
+
+ turn_off_led
+
 str tmp1, [pmc, #AT91_CKGR_MOR]

+ turn_on_led
+
 wait_mckrdy

 /* Enable the crystal oscillator */
@@ -451,6 +491,8 @@ ENDPROC(at91_ulp_mode)

 AN2896
Appendix A. Linux Code Patch for Time Measur...

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 41

 .word 0
 .sfr:
 .word 0
+.gpioc:
+ .word 0
 .memtype:
 .word 0
 .pm_mode:
diff --git a/kernel/power/main.c b/kernel/power/main.c
index 281a697fd458..544dc29a085c 100644
--- a/kernel/power/main.c
+++ b/kernel/power/main.c
@@ -15,6 +15,7 @@
 #include <linux/workqueue.h>
 #include <linux/debugfs.h>
 #include <linux/seq_file.h>
+#include <linux/gpio.h>

 #include "power.h"

@@ -358,6 +359,8 @@ static ssize_t state_store(struct kobject *kobj, struct kobj_attribute
*attr,
 suspend_state_t state;
 int error;

+ gpio_direction_output(37, 0);
+
 error = pm_autosleep_lock();
 if (error)
 return error;
@@ -377,6 +380,9 @@ static ssize_t state_store(struct kobject *kobj, struct kobj_attribute
*attr,

 out:
 pm_autosleep_unlock();
+
+ gpio_direction_output(37, 1);
+
 return error ? error : n;
 }

--
2.7.4

 AN2896
Appendix A. Linux Code Patch for Time Measur...

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 42

9. Revision History

9.1 Rev. A - 12/2018

First issue.

 AN2896
Revision History

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 43

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 AN2896

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 44

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 AN2896

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 45

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-3947-9

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile
are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 AN2896

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 46

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 47

	Scope
	Reference Documents
	Table of Contents
	1. SAMA5D2 Low Power Modes Overview
	1.1. SAMA5D2 Low-Power Consumption Modes
	1.1.1. Backup Mode
	1.1.2. Backup Self-Refresh (BSR) Mode
	1.1.3. ULP0, ULP1 and Idle Modes

	2. Power Supply Implementation for SAMA5D2 Low-Power Modes
	2.1. Introduction to Hardware Implementations
	2.2. Hardware Implementation of BSR Mode Using a PMIC
	2.3. Hardware Implementation of BSR Mode Using Discrete Components

	3. Generic Recommendations to Set the System to Low-Power Modes
	4. Bare Metal Software Implementation
	4.1. Backup and Backup Self-Refresh Modes
	4.1.1. How to Enter Backup Mode
	4.1.2. How to Exit Backup Mode
	4.1.3. How to Enter Backup Self-Refresh (BSR) Mode
	4.1.4. How to Exit BSR Mode

	4.2. Ultra Low-Power Mode
	4.2.1. How to Enter ULP0 Mode
	4.2.2. How to Exit ULP0 Mode
	4.2.3. How to Enter ULP1 Mode
	4.2.4. How to Exit ULP1 Mode

	4.3. Idle Mode
	4.3.1. How to Enter Idle Mode
	4.3.2. How to Exit Idle Mode

	5. Linux Software Implementation
	5.1. Linux Power Management Core (System Sleep Model)
	5.1.1. File System Interfaces
	5.1.2. Core Implementation

	5.2. Power Management Implementation on SAMA5D2
	5.2.1. Supported Modes
	5.2.2. AT91Bootstrap Support
	5.2.3. Linux Kernel Parameter
	5.2.4. Linux Support
	5.2.5. Drivers Implementation
	5.2.6. Platform Implementation

	6. Measurement Results
	6.1. Conditions
	6.1.1. Board Setup for Measurement
	6.1.2. Linux-Specific Code Changes

	6.2. Suspend/Wake-up Time Measurement
	6.2.1. Measurement Conditions
	6.2.2. Measured Values

	6.3. Consumption Measurement
	6.3.1. Measured Values

	7. Conclusion
	8. Appendix A. Linux Code Patch for Time Measurement
	9. Revision History
	9.1. Rev. A - 12/2018

	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

