MICROCHIP AN2396
SAMAS5D2 Low-Power Modes Implementation

Scope

The SAMAS5D?2 series is a high-performance, ultra-low power Arm® Cortex®-A5 processor-based MPU.

This application note describes how to enter and exit SAMA5D2 low-power modes by providing Linux and
bare metal software examples, as well as hardware application schematics.. The purpose of this
document is to help users understand the low-power performance of SAMA5D2, and design power-
efficient applications.

This application note is a supplement to the SAMA5D2 Series data sheet. It should be used in
conjunction with the following reference documents.

Reference Documents

Data Sheet SAMA5D2 Series DS60001476 | http://www.microchip.com
User's Guide SAMASD2 Xplained Ultra Evaluation Kit ~ DS50002691 = http://www.microchip.com

SAMASD2 Discrete Power Supply
Solution

Application Note AN44059 http://www.microchip.com

Data Sheet ACT8945A - http://www.active-semi.com

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 1

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.active-semi.com

AN2896

Table of Contents

S ToTo] o1 TN 1
Reference DOCUMENTS.........ooooiiiiii 1
1. SAMAS5D2 Low Power Modes OVEIVIEW.ccooiiiiiiiiiiiiiccicecee e 4
1.1. SAMAS5D2 Low-Power Consumption MOGES..........ccooiiiiiiiiiiiieeiiiie e 4
2. Power Supply Implementation for SAMA5D2 Low-Power Modes..............ccooeuveeeee. 7
2.1. Introduction to Hardware Implementations..............eueeiiiiiiiiiiiie e 7
2.2. Hardware Implementation of BSR Mode Using @ PMIC...........coooiiiiiiiiiiiiieeeceee e 8
2.3. Hardware Implementation of BSR Mode Using Discrete Components............cccooceeeviiieeinieeennne 8
3. Generic Recommendations to Set the System to Low-Power Modes..................... 10
4. Bare Metal Software Implementation.................eeviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 12
4.1. Backup and Backup Self-Refresh MOdES............ceiiiiiiiiiiiiiiii e 12
4.2, UHra LOW-POWET MOGE...........ouiiiiiiiiiiiie ettt ettt e e e e e e e e e e e e s e snnbaneeesenees 14
I T [0 | 1= /o To [T PP PP 17
5. Linux Software Implementation.................uuueiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 18
5.1. Linux Power Management Core (System Sleep Model)............cccooeeiiiiiiiiiiiiieiec e, 18
5.2. Power Management Implementation on SAMASD2.............cooiiiiiiieeeiiiie e 24
6. Measurement RESUIS........uuii i e e e e e e eenes 31
{20 I @7 o o 1110 o 1= TSRS 31
6.2. Suspend/Wake-up Time MEaSUIEMENL...........ueiiiiiiiiiiiee ettt e et s e e e e e e e e eareeeaeeas 33
6.3. Consumption MEASUIEMENL...........uuuiiiiiiiiiiee et e e e e e e e e tae e e e e e eearaeeeeeaeanees 34
A ©7] g To1 [VE] o o 1PN 39
8. Appendix A. Linux Code Patch for Time Measurement...................cccooeeeei. 40
9. ReVISION HISTOIY....coiiiiiiiieeie e e e e e 43
S T YA Ny 1 0 I TSRS 43
The MiIcroChip WED Site.......uuuiiiiiiiiieieeeeeeeee e 44
Customer Change Notification ServiCe.............ueiiviiiiiiiiiiiiiee e 44
L1013 (o0 0 1= T A 10T o] o T o VPP RSPPRR 44
Microchip Devices Code Protection Feature...........cccoooiiiiiiiiiis 44
[I=To = 1 N o) 1o =TT PP PP PPPPPPR 45
TrAAEMAIKS.ottt e e e e e et e e e e e e e e e as 45

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 2

AN2896

Quality Management System Certified by DNV........cciiiiiiiiiiee e 46

WOrldwide Sales AN SeIVICE.c. et eaaeaes 47

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 3

AN2896
SAMAS5D2 Low Power Modes Overview

1. SAMA5D2 Low Power Modes Overview

1.1 SAMAS5D2 Low-Power Consumption Modes

The SAMASD2 devices feature five low-power modes: Backup, Backup Self-refresh (BSR), Ultra Low-
power 0 (ULPO), Ultra Low-power 1 (ULP1) and Idle.

These modes provide a wide range of power consumption performances (from a few microamps to a few
milliamps) and wake-up times (from a few microseconds to a few hundred milliseconds) to accommodate
very different application needs. The following sections give a detailed description of the device operation
in each low-power mode.

111 Backup Mode
In an application, Backup mode corresponds to an extended power-down period of the processor. In this
mode, the processor, its peripherals and its memories are unpowered. Only the backup area of the device
remains powered and operating, thus maintaining the Real Time Clock (RTC), the backup registers, the
backup SRAM and the security module running. The security module protects the application against
tampering through tamper pins PIOBUO-7, and in the SAMA5D23 and SAMAS5D28, against out-of-range
operation in terms of frequency (f), temperature (T) and voltage (V) through dedicated monitors. All
tamper detections are time-stamped via the RTC.

At Backup mode entry or exit, it is good practice to use the Shutdown Controller (SHDWC) of the
processor to help manage the power supply unit of the application.

This peripheral controls the SHDN pin that is further used on the board to enable or disable power supply
channels. Typically, the software asserts SHDN low when entering Backup mode, and the SHDWC
automatically toggles SHDN back to high upon a wake-up event. Backup mode exit is possible through
RTC events, WKUPO, WKUP2 to WKUP9 pin events, Low-power Asynchronous Receiver (RXLP) events
or Analog Comparator Controller (ACC) events.

When in Backup mode, the SAMA5D2 current consumption is reduced to a few micro-amps in VDDBU
(backup area power) and it is therefore possible to supply VDDBU from a supercapacitor or from a LiMn
coin cell battery. To further reduce current consumption in the storage element, the SAMA5D2 features a
power switch that selects the power source of the backup area either from VDDBU or from VDDANA
(analog rail power). When VDDANA is present, the backup area can be powered from VDDANA by
setting the SCTRL and SSWCTRL bits in SFRBU_PSWBUCTRL. The following table gives an example of
battery lifetime estimation depending on the duty cycle usage of the application backup battery.

Table 1-1. Typical Lifetime Estimation for Common Storage Elements on VDDBU

Backup Consumption | Battery Self-

Storage at 25°C Discharge % Time the Estimated Lifetime
Capacity c Application is Average
Element : urrent
Backup | Running (10 years) in Backup Mode| Consumption(® Years
Mode Mode
SRR 10% 2 pA 105K | 12(1)
LiMir??Jattery 210 mAh 4.5 pA 1.5 pA 0.2 pA 50% 3.2 pA 66K 7.5
90% 4.4 pA 48K | 5.4
0.2F Super .
Cap charged (3'3\/:1 V) 4.5 pA 1.5 A N/A N/A 4.5 pA 200 —
at 3.3V 0.2F = 0.32C

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 4

AN2896
SAMAS5D2 Low Power Modes Overview

Note:

1. This is a theoretical lifetime calculation based on the battery capacity only. In practice, aging effects
of the battery may limit this number.

2. Average consumption (uA)= (4.5 x d + 1.5 x (1-d)) + 0.2 where d is the percentage of time the
application is in Backup mode.

3. Inthe case of a supercapacitor, it is assumed that this element is fully recharged between two
backup periods. Here, 20 hours is the time the SAMA5D2 can stay in Backup mode with this
element.

Backup Self-Refresh (BSR) Mode

This mode is an extension of the previous mode with the application context saved in the external DDR
memory operating in Self-refresh mode, in the perspective to restart the application faster.

In this mode, the VDDBU and VDDIODDR power inputs must be maintained, as well as the power inputs
of the DDR component.

The system power consumption in BSR is mainly that of the DDR, therefore the choice of the DDR type is
of prime importance. In a similar way, the choice of the regulator(s) that maintain(s) DDR supplies in BSR
mode should optimize efficiency at low current (see Conclusion).

ULPO, ULP1 and Idle Modes

In these three low-power modes, all SAMAS5D2 power supplies are applied within their operating range.
Power saving is achieved by reducing the frequency or stopping the clock signals of the processor and/or
its peripherals.

Each mode is described below. An approximate wake-up time is given to ease understanding. For
accurate values, refer to SAMA5D2 Series data sheet, section Electrical Characteristics.

* InIdle mode, only the processor clock is stopped and all peripherals are still operating. When
exiting this mode, the processor operates at full speed. Typically, a few processor clock cycles are
needed to enter and exit this mode. In a Linux® environment, this corresponds to Suspend-to-Idle.

* In ULPO mode, the processor is stopped and its peripherals operate at a very low frequency (from a
few kHz to a few MHz). At wake-up from this mode, the processor restarts at this very low
frequency. Power consumption can be optimized by reducing the frequency at the expense of a
longer wake-up time. In this mode, the processor is placed in Wait-For-Interrupt (WFI) state,
therefore any interrupt source can trigger return to normal operation.

* In ULP1 mode, the processor clock and the peripheral clocks are stopped. Prior to entering this
mode and to stop the clocks, the source of every clock is switched to the Main RC oscillator running
at a typical 12 MHz. The Power Management Controller (PMC) then stops this oscillator at ULP1
entry. Upon a wake-up event, the PMC automatically restarts this oscillator, thus clocking back the
device to 12 MHz. Unlike ULPOQ, only a few events like wake-up pins, USB resume and others (see
the SAMAS5D2 Series data sheet) can wake up the device from ULPO. This mode achieves both a
very low current consumption on VDDCORE (power of the core, typically less than 0.5 mW at room
temperature) and a fast wake-up time of a few microseconds.

The following table summarizes how the core, peripherals and DDR are powered and clocked in each
mode.

Table 1-2. Core and Peripheral Clock Versus Mode

Idle Not Clocked (WFI) Clocked

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 5

AN2896
SAMAS5D2 Low Power Modes Overview

........... continued

Mode | rocessorCore | Prphersintomal SRAW Momory
ULPO Not Clocked (WFI) Clocked at low frequency

ULP1 Not Clocked (WFE) Not clocked

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 6

AN2896
Power Supply Implementation for SAMA5D2 Low-Power ...

2. Power Supply Implementation for SAMA5D2 Low-Power Modes

21 Introduction to Hardware Implementations

From a power supply perspective, two cases must be considered to manage the SAMA5D2 low-power
modes:

* In ULPO, ULP1 and Idle modes, all the device’s power inputs operate within their specified range.
As the power consumption is reduced, the power supply circuit can be switched to a power-saving
mode.

* InBSR, all power supply inputs of the device are turned off, except VDDBU, VDDIODDR and those
of the memory, that must be maintained. To manage this case, the application can either send an
I2C command to the PMIC or use a PIOBU (powered and clocked in the backup area) to signal the
power supply to enter a specific powering case.

The following figures provide simplified timing diagrams at entry and exit of Backup and BSR modes. See
the SAMA5D2 Series data sheet for complete information about power-up and power-down sequences.

Figure 2-1. Example of Backup Mode Entry and Exit

A Software Shutdown routine Backup mode exit upon
with shutdown command wake-up event (e.g., RTC alarm)
Application is Application is in Backup Mode. X Supply Start. X ication i i
App. Status running... b DDR is not powered, RTC is running... Processor Reset Application is running...
Wake-upevent /- — - — - —f o — —_—— e —
SHDN |
NRST I I
VDDIODDR N\ N\ / /
VDDBU
Other VDD N\ \ / /
time
Figure 2-2. Example of BSR Mode Entry and Exit Using PIOBU
Software Shutdown routine BSR mode exit upon
with shutdown command wake-up event (e.g., RTC alarm)
A
Application is Application is in Backup Self Refresh Mode (BSR). Supply Start. X Rez(Tom R i
App. Status running... ¢ DDR is powered, RTC is running... Processor Reset Application is running..
Wake-upevent o — i — - —f0 ——
SHDN N
PIOBUX 1 |
NRST ; I I
VDDIODDR /
VDDBU |
!
Other VDD / N\ N\ / /|
! time

PIOBUXx notifies the power management circuit
to maintain or shutdown VDDIODDR

The following sections give an example of hardware implementation using a PMIC device or discrete
components.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 7

2.2

2.3

AN2896
Power Supply Implementation for SAMA5D2 Low-Power ...

In both examples, the description aims at setting the Backup Self-refresh mode.

Hardware Implementation of BSR Mode Using a PMIC

The following figure illustrates the SAMA5D2 Xplained board power supply. The power management IC
ACT8945A provides the power to the processor and to its external DDR3L-SDRAM memory. Prior to
entering BSR mode, the application sends to the PMIC the desired channel configuration in BSR mode
over the I*C interface.

Typically, the software requests the PMIC to maintain VOUT1 (VDD_1V35, power of the DDR3L memory)
and to turn off other channels. This configuration is executed when the SHDN pin is cleared by the
processor.

Figure 2-3. PMIC Schematic

U2 ACT8945AQJ405-T
VDD_5V_IN

VSYS_5v

D9
RB160M-60TR

VIN 5
g : VIN SV 331 cHeiN VSYs1
5 3 i vsys2 l
C165 VP1 o C163 ou C164 om C176 _L C167
4.7uF VP2 T A0uF T 10uF T 10uF | 100nF
[15] 5V_EXT_INP 21 VP3
Q7 — ACIN INL
< RLMLe402 = net VSYS_5v =
L) VBAT 28 Rd4 100R 1% D1 RED :
R11 R18 Ro1 220 1% nSTAT 4 v o ; .
. . * 20 29 Hm |
DNP(11K 1%, MK 1% R22 1.5M 1% LBI BAT1 730 VBAT 1 ® | DNP(Header 1X2 2.00MM)
A BAT2 18|43 c19
L ® 47uF
= 24 3] & | 1x3pi
R24 VDD_3v3 - 23 ™ =
3.9K 1% | ISET = L VDD_1V35
3 e 5 R27 & o REFBP w s o - T
1 &L d o u
= . 47nF SW1 T
x X 243K 1% ou - C20 o C23 co4
2 2 = = T 10uF T 10uF TmDnF
[7] PMIC_CHGLEV_PA12 A CHGLEV VDD_1v2
[9.10,12,14,15] NRST <__} { RIGAM AR T nRSTO = o
[71 ' PMIC_IRQ_PB13 ~SESTAT 2 nlRQ % L6 22uH .
R20 T00R 1% nPBSTAT SW2 734 T
[8,15] PMIC_LBO/EXP_PC8 A nLBO ouT2 c2 car cas
[8] PMIC_TWDO_PD21 5| SDA = 00F T 10uF 100nF
[8] PMIC_TWCKO_PD22 scL T
R26 & VSYS_5V VDD_3v3
VeYS 5V 778@%#\ =
DNP(8.2K 1%) R30A A e OR wa 15 L1 2204
25 Sl — Tt T
= = VSEL outs = C3 o C2 c1
RIS Ra DNP(OR) T 10uF T 10uF T 100nF
100K = VDDFUSE
10 =
PWRHLD VDD_2V5 3 VDD_3V3_LP
4 _ R327, a re OR _3V3_|
3 vsyssv ouT4
s VDD _3V3 VDD_LED
ouTs
cs nPBIN . ous -8 VDD 3V3 R3304 A re OR VDDSDHC1V8
100nF z N6 g
<& 2 vDD| 1V8 s
£38 28 am? - -2
R13 a © 0 0 u 1800hm at 100MHz
o o
49.9K 1% g g o o 5 3 s C169 LC17 LC173 LC13
d T4TUF TATUF TATUF TATUF
[9] SHDN 5 £
= £ o
[H R19 L
3 2 =
3 K 0R

WAKE UP RESET
Place TP11 and TP14 to Bottom.

Hardware Implementation of BSR Mode Using Discrete Components

The following figure provides a discrete components power supply schematic optimized for SAMA5D2
systems equipped with LPDDR2 memories.

The input voltage VIN can range from 3.0V to 5.5V. This schematic uses most of the principles
(sequencing, reset assertion, etc.) described in the application note “SAMA5D2 Discrete Power Supply
Solution” (see Reference Documents). The SHDN pin of the Shutdown Controller (SHDWC) is used to
start and stop the supply channels, and the PIOBUO pin is dedicated to the BSR mode management.
When PIOBUO is set to high level, the EN_LPDDR signal is maintained high whatever the level on SHDN.
Therefore, both the VDD_1V2 and VDD _1V8 rails connected to the LPDDR2 device and to VDDIODDR
of the SAMA5D2 are maintained. As the LPDDR2 devices have stringent power-off requirements, UQ is
added to detect early power input loss, and Q5A/Q5B help discharge VDD _1V2 and VDD1V8 promptly.

Application Note DS00002896A-page 8

© 2018 Microchip Technology Inc.

AN2896

Power Supply Implementation for SAMA5D2 Low-Power ...

Figure 2-4. Discrete Components Schematic

SHDN/NRST

VDD_3V3

EN_LPDDR (BSR mode)

an
> >
<SR34 <=R35
= =
S 100k S 100k
VDRAV3 EN_LPDDR

PIOBUO
(From SAMASD2

during BSR mode.

- Set PIOBUO (VDDBU level) to
maintain VDD_1V2 and VDD_1V8
- Clear PIOBUD to unpower the
memory during Backup mode.

LPDDR rails Discharge

VDD_3v3
VIN U0 MICB41N-AA T SAMASD2 device
VDD R41-
R38, R39, R40 set for. 100
VHI = 4.5V VIN_PFAIL
VLO=4.0v LTH ouT GPIO
HTH GND)| —
&
SHDN SHDN
& PIOBUO PIOBUO
NRST NRST
U1 MIC2230-AA L10 2.2uH VDDIOPX
Vﬂ . VDR_3V3 VDDSDMMC
sw2 T
VDDISC
c15 L SR13 VDDANA
180pF T 75k c17 VDDUTMIT
FB. LRi4 T 100F VDDAUDIOPLL
B
i VDDOSC
EN2
&ND
L11 2.2pH VDD_1V25 VDDCORE
T VDDPLLA
ENt sw c16 L Lris VDDHSIC
2 VDDUTMIC
[FPWM 180pF T Fo2k
C18 R17
Peo0e et bR16 T 10pF $10k
B
PGND__AGND i
PG_CORE SND GND
c14
470F
one VDDIODDR
U2 MIC2230-G4 120 2.2pH VDD_1v2
AVIN/PVIN SW2]
l €20 lCZI LPDDR2 device
1pF 10pF 23 EaSlElE T —
out2 10pF VDDQ
GND GND VDD2
EN2 I VDDCA
| &
r| [PGOOD
c22
&
390pF 121 2.2H VDD_1v8
EN_LPDDR_J ey swi vDD1
PIOBUO JFPWM
NMOS : ouTL c24
- Q1x (Dual N-Channel Low Vt) : e.g. BSS138DW PGND_AGND

- Q2x, Q3x, Q4x, Q5x (Dual N-Channel) : e.g. 2N7002DW
Diodes Dx : 1N4148

prr

&ND

© 2018 Microchip Technology Inc.

Application Note

DS00002896A-page 9

AN2896

Generic Recommendations to Set the System to Low-P...

Generic Recommendations to Set the System to Low-Power Modes

As the SAMAS5D2 power consumption can be as low as a few micro-amps in some modes, it is of prime
importance to ensure that no leakage current is lost outside the device at system level. The following
generic recommendations apply prior to entering one of the low-power modes:

» Verify the state of the external components that will remain powered during the low-power mode. It
may be necessary to set some of those in Standby mode or Low-power mode, or even turn them
off. In Backup or BSR mode, it may be convenient to remove the power to the components that are
not used in this mode. This should be assessed on a case-by-case basis.

* Verify the state of each IO of the device. In particular, any component connected to the SAMA5D2,
including pull-up and pull-down resistors, may create a leakage path. In addition, even though an
I/0 is configured as an input, forcing this line with an active clock (e.g. the serial clock from a
master on a serial link, or the clock from an Ethernet PHY) would result in some power
consumption in the VDDCORE domain.

* To avoid leakages in the VDDBU power domain, the I/Os of the MPU belonging to the VDDBU
power domain (WKUP, PIOBUx, RXD, COMPP, COMPN and SHDN) must not be directly
connected to the I/Os of an external component (e.g. PMIC) unless carefully verified. It is good
practice to isolate those lines with an external buffer (e.g. a simple NMOS transistor). In case of
direct connection, leakage paths from the VDDBU power domain to the main power domain may be
created through the ESD protection diodes of these 1/0s. See examples below.

Figure 3-1. SHDN Pin Connection

[815] PMIC_LBO/EXP_PC8 < >> DU AN 57 nLBO
] PMIC_TWDO PD21 << > 76 | SDA
(8] PMIC_TWCKD PD22 <> SCL
— VSYS_5V
VSYS 5V &
DNP(8.2K 1%)
= VSEL
2 ng R15
68K 100K
]
PWRHLD
2 3 vsys sv
1 1 . R14 A A49.9K 1 <4 f—"
> e 100nF TP14 TP Z <5 2 €
SMD SMD g
BSS138 |9 BSS138 |2 + 0 00— S 2 2 g
—— e R13 i i % 5 5 (ZD ﬁ
\ 49.9K 1% /7| § g o o ol ¥ 3
'y
o RO o \nIK C1044t00nE, | 1(]3 FL + 5 + <
g =
R12 BSS138 | rj o Z R1g jadon
100K @ g OR =
= i

WAKE UP RESET
Place TP11 and TP14 to Bottom.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 10

AN2896

Generic Recommendations to Set the System to Low-P...

Figure 3-2. WKUP Pin Connection

VDDBU VSYS_5V VSYS_5V
R346 R332 R333
100K 100K 3 100K

(9]

3
1 <‘$‘1 | nPBSTAT
Q9 08

5 BSS138

» Before entering Backup mode or BSR mode, and thus turning off the power supplies, it is good
practice to slow down the device operation, to avoid maximum execution speed at power supply
collapse. To do so, it is recommended to switch the master clock (MCK) source to the slow clock.

* If the power supply circuit features a specific low-power mode, it may be appropriate to enter this
mode.

+ To reduce extra power consumption when using the USB in Idle mode("), the different ports must be
forced to Suspend mode by setting the SFR_OHCIICR.SUSPEND _x bit.

Note:
1. USB device: set the DETACH bit to 1 and the PULLD_DIS bit to 0 in register UDPHS_CTRL.
Any other combinations of these two bits may cause additional consumption.
USB host: force all USB host ports to suspend by setting the SUSPEND_A, SUSPEND_B
and SUSPEND_C bits to 1 in register SFR_OHCIICR, at the end of the USB suspend routine.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 11

41

411

41.2

AN2896

Bare Metal Software Implementation

Bare Metal Software Implementation

The following bare metal examples provide the detailed procedure to enter each SAMA5D2 low-power
mode. The project used in this section is based on the SAMA5D2 Software Package (IAR7.40).

Some of the methods to reduce power consumption are:

* Adjust the system clocks at run time

» Putdevices in Sleep mode based on their usage
* Put the memory in Self-refresh mode

e Put the system in Backup mode

The above methods are explained in detail in this section, where power management for low-power mode
is split in three parts:

* Backup modes

* Ultra Low-power modes

* Idle mode

Backup and Backup Self-Refresh Modes

How to Enter Backup Mode

Backup mode is entered by shutting down all power rails except VDDBU, so that only the backup area is
running. The core, peripherals and internal memory are turned off and, in the specific case of SAMAS5D2
Xplained board, all external components are unpowered.

1. Configure the wake-up sources in the Shutdown Controller.
2. Slow down the device operation by switching the master clock (MCK) to Slow Clock.

3. Enter Backup mode by asserting the SHDN pin to notify the PMIC or discrete components that all
powers except VDDBU can be turned off.

Sample code:

// Switch back to VDDBU power on backup area instead of VDDANA.
SFRBU->SFRBU PSWBUCTRL = SFRBU PSWBUCTRL WPKEY PASSWD;
/* config the wakeup */

shdwc_configure wakeup () ;

/* clear status */

(void) shdwc get status();

/* PCK = MCK = 32 kHz */

/* Select Slow Clock as input clock for PCK and MCK */
PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR

/* enter backup mode */

shdwc do shutdown () ;

How to Exit Backup Mode
Backup mode exit is triggered by any of the following events:

« WKUPO

« WKUP1 (Security Module event)

« WKUP2 to WKUP9 pins (PIOBUO to PIOBU?7, level transition, configurable debouncing)
* Character received on a low-power UART receiver (RXLP)

* Analog comparison

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 12

413

AN2896

Bare Metal Software Implementation

. RTC alarm

When a wake-up event is detected, the SHDN pin is driven high automatically by the Shutdown
Controller. On the SAMA5D2 Xplained board, this makes the PMIC turn on all SAMA5D2 power supplies.

Once the SAMAS5D2 is powered and the NRST pin is released, the ROM code is executed and loads the
bootstrap from a storage media (eMMC, SD card, etc.) in the internal SRAM. The bootstrap is then
executed out of the internal SRAM.

How to Enter Backup Self-Refresh (BSR) Mode

BSR mode is an extension of Backup mode. To enter this mode, the DDR memory must first be set to
Self-refresh mode, and both VDDBU and VDDIODDR must be powered. The sequence to enter BSR
mode is detailed below. Steps 1 and 2 can be executed from the DDR, while steps 3 to 8 must be
executed from the internal SRAM.

. Software saves all context information to resume (application-dependent).

2. Copy to SRAM and execute out of SRAM the routine to set the DDR to Self-refresh mode and to
shut down the device (as soon as the DDR is in Self-refresh, accessing the DDR is no longer
possible).

3. Putthe DDR in Self-refresh mode and wait until the self-refresh status is OK (refer to the MPDDRC
section in the SAMA5D2 Series data sheet).

4. Setthe BUMEN bit, in the SFRBU_DDRBUMCR register, to isolate the DDR 1/O segment from the
VDDCORE shutdown.

5. Configure the wake-up sources in the Shutdown Controller.

6. Switch the system clock to Slow Clock.

7. Assert PIOBUO or send I°C controls to the PMIC (this configures the PMIC so that it maintains
VVDDIODDR for the next shutdown period).

8. Enter BSR mode by asserting the SHDN pin.

All external components must be turned off, except the DDR memory.

When a PMIC power solution is used, the PMIC should be first configured to maintain the appropriate
rails (e.g. VDD_1V35 on SAMA5D2 Xplained board) before being shut down.

When a discrete components solution is used, the PIOBU must be controlled to shut down all power
except VDDIODDR and VDD_1V35.

Sample code:

// Data and configuration to be saved prior
// to entering BSR mode (Application dependent) */

/* Set the DDR in Self Refresh */

MPDDRC->MPDDRC_LPR = MPDDRC LPR LPCB SELFREFRESH;

//Check if self-refresh is done; if not, continue.

while (! (MPDDRC->MPDDRC_LPR & MPDDRC LPR SELF DONE)) ;

// Enable DDR Backup Mode

SFRBU->SFRBU DDRBUMCR = SFRBU DDRBUMCR BUMEN;

// Disable the DDR Controller clock signal at PMC level for the periph

PMC->PMC_PCR = (PMC_PCR CMD | PMC_PCR GCKCSS MCK CLK | (ID MPDDRC)) ;
//Disable ddrclk
PMC->PMC_SCDR |= PMC_SCDR_DDRCK;

// Configure PMIC to be in BSR

board_cfg pmic_ulpm(selfrefresh, backup);

/* config the wakeup */

shdwc configure wakeup () ;

/* clear status */

(void) shdwc_get status();

// Switch back to VDDBU power on backup area.
SFRBU->SFRBU PSWBUCTRL = SFRBU PSWBUCTRL WPKEY PASSWD;

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 13

41.4

4.2

4.2.1

AN2896

Bare Metal Software Implementation

/* PCK = MCK = 32 kHz */

/* Select Slow Clock as input clock for PCK and MCK */

PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR CSS Msk) | PMC_MCKR CSS_SLOW CLK;
while (! (PMC->PMC SR & PMC SR MCKRDY));

/* enter backup mode */

shdwc_do_shutdown () ;

How to Exit BSR Mode
Exiting BSR mode is initiated by any of the following events:

+ WKUPO

« WKUP1 (Security Module event)

+ WKUP2 to WKUP9 pins (PIOBUO to PIOBU7, level transition, configurable debouncing)
* Character received on a low-power UART receiver (RXLP)

* Analog comparison

« RTCalarm

When a wake-up event is detected, the Shutdown Controller drives the SHDN pin automatically. This
makes the power supply restart and, when the NRST pin is released, the ROM boot sequence is started.

The ROM code is executed and loads the customer bootstrap in internal SRAM. The bootstrap must
check the state of the BUMEN bit in the SFRBU_DDRBUMCR register and re-initialize the DDR
controller. The DDR memory automatically exits Self-refresh mode when an access in the DDR memory
space occurs. The following sequence must be executed to connect DDR pads to the CPU domain.

Sample code:

if ((SFRBU->SFRBU DDRBUMCR & SFRBU DDRBUMCR BUMEN) 1= 0)
/* Connect the DDR Pads to the CPU domain, VCCCORE */
SFRBU->SFRBU DDRBUMCR &= ~SFRBU DDRBUMCR BUMEN;

Ultra Low-Power Mode
Ultra Low-power mode (ULP) includes two submodes: ULPO mode and ULP1 mode.

As described in Table 1-2, the difference between ULPO and ULP1 is the presence (ULPO) or the
absence (ULP1) of clocks in the system. In both modes, the SAMAS5D?2 is fully powered (i.e., all its power
inputs are properly supplied).

To further decrease the system power consumption in ULPO or ULP1, these SAMA5D2 ULP modes may
be combined with some power saving techniques applied to other components in the system. In some
cases, it may even be possible to power down some of these components.

How to Enter ULPO Mode

The sequence to enter ULPO mode is detailed below. The code used to enter this mode must be
executed out of the internal SRAM.

Set the DDR to Self-refresh mode.
Set the interrupts to wake up the system.
Disable all unused peripheral clocks.

Set the 1/Os to an appropriate state, and disable the USB transceivers if they are not used (refer to
the Special Function Registers (SFR) section in the SAMAS5D2 Series datasheet).

Switch the system clock to Slow Clock.
Disable the PLLs, the main crystal oscillator and the 12 MHz RC oscillator.

pPoODd =

o o

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 14

422

423

AN2896

Bare Metal Software Implementation

7. Enter the Wait for Interrupt mode and disable the PCK clock in the PMC_SCDR register.

Sample code:

/* Back up IOs and USB transceivers */
read reg[0] PMC->PMC PCSRO;

[0l = L
read reg[l] = PMC->PMC PCSRI1;
read reg([2] = PMC->PMC SCSR;
read reg[3] = PMC->CKGR_UCKR;

/* Set the DDR in sSelf Refresh */
MPDDRC->MPDDRC_LPR = MPDDRC_LPR LPCB_SELFREFRESH;
//Check if self-refresh is done; if not, continue.
while(!(MPDDRC—>MPDDRC7LPR & MPDDRC LPR SELF DONE)) ;

/* Disable the USB transceivers and all peripheral clocks */
board save misc power() ;

/* config the wakeup */
shdwc configure wakeup () ;

/* clear status */
(void) shdwc get status();

/* config wake up sources and active polarity */
pmc_set fast startup polarity (0, PMC_FSPR FSTPO) ;
pmc_set fast startup mode (PMC_FSMR FSTTO | PMC FSMR FSTTZ2 | PMC FSMR LPM);

/* Select Slow Clock as input clock for PCK and MCK */
PMC->PMC_MCKR = (PMC->PMC_MCKR & ~PMC_MCKR CSS Msk) | PMC_MCKR CSS_SLOW CLK;
while (! (PMC->PMC SR & PMC SR MCKRDY));

//arch_irq disable();
asm("cpsid if");

/* enter ULPO mode */
asm("WEI") ;

/* Restore default PCK and MCK */
pmc_set custom pck mck(&clock test setting[0]);
_restore console();

/* Restore IOs and USB transceivers */
PMC->PMC PCERO read reg[0]

PMC->PMC_PCER1 = read reg[l];
PMC->PMC_SCER = read reg[2];
PMC->CKGR_UCKR = read_reg[3];

// Switch VDDBU power on backup areato VDDANA decreasing the power consumption on VDDBU
battery

SFRBU->SFRBU PSWBUCTRL = SFRBU PSWBUCTRL WPKEY PASSWD | SFRBU PSWBUCTRL SSWCTRL;

/

How to Exit ULPO Mode

The wake-up from ULPO mode is triggered by any enabled interrupt. In this example, Push Button BP1 is
used as the wake-up source. The software resumes by executing the instruction following the WFI
instruction by configuring the Arm core with the command asm(’cpsid if”); . Hence, in the previous sample
code, the first line of code executed is “pmc_set _custom_pck_mck” to make sure that the DDR memory is
clocked at the correct frequency. The PMC registers are configured as they were before entering ULPO
mode, then Self-refresh mode is disabled and the code can continue and access the DDR in normal
mode.

How to Enter ULP1 Mode
The sequence to enter ULP1 mode is detailed below. The code used to enter this mode must be
executed out of the internal SRAM.

1. Set the DDR to Self-refresh mode.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 15

AN2896

Bare Metal Software Implementation

Set the events to enable a system wake-up.
Disable all peripheral clocks.
Set the 1/Os to an appropriate state and disable the USB transceivers.
Switch the system clock to the 12 MHz RC oscillator.
Disable the PLLs and the main oscillator.
Enter ULP1 mode by either:
— setting the CKGR_MOR.WAITMODE bit, or

— setting the PMC_FSMR.LPM bit and executing the processor WaitForEvent (WFE)
instruction.

No o~ wDN

Then, immediately after setting the WAITMODE bit or using the WFE instruction, wait for the
PMC_SR.MCKRDY bit to be set.

Sample code:

/* Back up IOs and USB transceivers */

read reg[0] = PMC->PMC_PCSRO;
read reg[l] = PMC->PMC_ PCSR1;
read reg([2] = PMC->PMC SCSR;
read reg[3] = PMC->CKGR _UCKR;

/* Set the DDR in Self Refresh */

MPDDRC->MPDDRC_LPR = MPDDRC LPR LPCB SELFREFRESH;

//Check if self-refresh is done; if not, continue.

while (! (MPDDRC->MPDDRC LPR & MPDDRC LPR SELF DONE)) ;

/* Disable the USB transceivers and all peripheral clocks */
board save misc_power();

/* config the wakeup */

shdwc configure wakeup () ;

/* clear status */

(void) shdwc get status();

/* config wake up sources and active polarity */
pmc_set fast startup polarity (0, PMC FSPR FSTPO);
pmc_set fast startup mode (PMC FSMR FSTTO | PMC FSMR FSTT2 | PMC FSMR RTCAL | PMC_FSMR LPM) ;

/* Disable the PLLs and the main oscillator */
/* ultra low power mode 1, RC12 is selected for Main Clock */

PMC->CKGR_MOR = (PMC->CKGR_MOR & ~CKGR MOR KEY Msk) | CKGR_MOR MOSCRCEN | CKGR MOR KEY PASSWD;
/* Wait internal 12MHz RC Startup Time for clock stabilization */

while (! (PMC->PMC SR & PMC_SR_MOSCRCS)) ;

PMC->PMC_MCKR = (PMC->PMC MCKR & ~PMC MCKR CSS Msk) | PMC MCKR CSS MAIN CLK;

while (! (PMC->PMC SR & PMC SR MCKRDY));

/* switch MAIN clock to internal 12MHz RC */

PMC->CKGR MOR = (PMC->CKGR MOR & ~(CKGR MOR MOSCSEL | CKGR MOR KEY Msk))
CKGR_MOR KEY PASSWD;
PMC->CKGR MOR = (PMC->CKGR MOR & ~(CKGR MOR MOSCXTEN | CKGR MOR MOSCXTBY | CKGR MOR KEY Msk))

| CKGR_MOR KEY PASSWD;

/* enter ULP1 */
asm("WFE") ;
asm("WFE") ;

/* wait for the PMC_SR.MCKRDY bit to be set. */
while ((PMC->PMC SR & PMC SR MCKRDY) == 0);

/* Restore default PCK and MCK */
pmc_set custom pck mck(&clock test setting[0]);
_restore console();

/* Restore IOs and USB transceivers */
PMC->PMC PCERO read reg[0]
PMC->PMC_PCER1 read reg[1]
PMC->PMC_SCER = read reg[2]
PMC->CKGR_UCKR = read_reg[3]

’
’
’
’

// Switch VDDBU power on backup areato VDDANA decreasing the power consumption on VDDBU

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 16

424

43

4.3.1

4.3.2

AN2896

Bare Metal Software Implementation

battery
SFRBU->SFRBU PSWBUCTRL = SFRBU PSWBUCTRL WPKEY PASSWD | SFRBU PSWBUCTRL SSWCTRL;

How to Exit ULP1 Mode
The method to exit ULP1 mode is similar to the method described for ULPO mode.

In the above sample code, the RTC is used as the wake-up source.

The software resumes by executing the instruction following the WFE instruction. Hence, in the previous
sample code, the first piece of code executed is “pmc_set_custom_pck_mck” to make sure that the DDR
memory is clocked at the correct frequency. The PMC registers are configured as they were before
entering ULP1 mode, then Self-refresh mode is disabled and the code can continue and access the DDR
in normal mode.

Idle Mode

As the purpose of Idle mode is to save the device power consumption, all power supplies operate within
their specified range.

Power consumption in this mode is application-dependent, but it can be reduced by enabling the Dynamic
Clock Gating in the L2 Cache Controller (set L2CC_POWCR.DCKGATEN = 1).

How to Enter Idle Mode
To enter Idle mode, disable PCK and execute the Wait for Interrupt (WFI) instruction.

Sample code:

//Disable PCK

PMC->PMC_SCDR = PMC_SCDR_PCK;
//Enter Idle mode

asm(“wfi”) ;

How to Exit Idle Mode

The processor can be awakened from Idle mode by an interrupt. The system resumes where it was
before entering WFI mode.

Sample code:

static void configure buttons (void)

{
int 1 = 0;
for (i = 0; i < ARRAY SIZE (button pins); ++i) {
//Configure PIOs as inputs.
pio_configure (sbutton pins[i], 1);
//Adjust PIO debounce filter parameters, here we have set a 10 Hz filter,
//this is an example..
pio_set debounce filter (&¢button pins[i], 10);
//Initialize PIOs interrupt with its handlers,
//see PIO definition in board.h.
pio configure it (&button pins([i]);
pio_add handler to group(button pins[i].group,
button pins[i].mask, pio handler);
//Enable PIO line interrupts.
pio_enable it (button pins);
}

}

In the above sample code, Push Button BP1 is used as the wake-up source, so, before entering Idle
mode, the corresponding PIO must be configured as an interrupt source.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 17

5.1

5.1.1

AN2896

Linux Software Implementation

Linux Software Implementation
The following section is based on Linux4SAM version 5.7. Refer to http://www.linux4sam.org.

The Linux Power Management (PM) framework provides multiple ways of saving power. Some of the
methods used to reduce power consumption are:

* Using a tickless kernel

* Adjusting system clocks at run time

* Putting devices to sleep based on their usage

* Suspending system to memory

« Putting the system in Hibernate mode

The Linux power management options are split in two main categories:

* Runtime power management
* System sleep model

Runtime power management refers to switching devices to sleep states (by disabling clocks or switching
to advanced power management hardware-related states).

The system sleep power management model refers to executing system-related power management
routines by putting the whole system in a power saving state.

The power management options discussed in Section 5.2 are part of the system sleep power
management model. The system with a SAMA5D2-based SoC running Linux operating system can
switch to a low-power mode and save various amounts of power depending on the mode chosen.

This application note describes only the system sleep model, since this is the one related to the low-
power modes described in Section 1.1.

Linux Power Management Core (System Sleep Model)

The power management core implementation offers the infrastructure to allow systems to be switched
from an active running mode to a low-power mode (Suspend operation), and from a low-power mode to
an active mode (Resume operation) without affecting system functionality.

Standard Linux implementation provides four ways to save power. The Linux sleep states are:

* Suspend-to-ldle

* Power-On Suspend
* Suspend-to-RAM

* Suspend-to-Disk

This section describes the Power-On Suspend and Suspend-to-RAM power saving modes.

File System Interfaces

Linux file system interfaces enable the user to switch to the required power management state, to set
power management parameters and to retrieve statistics.

The main Linux file system interfaces for power management are:

/sys/power
/sys/kernel/debug/sleep time
/sys/kernel/debug/suspend stats

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 18

http://www.linux4sam.org

AN2896

Linux Software Implementation

/sys/kernel/debug/wakeup sources
/sys/devices/.../power/wakeup

/sys/power
is the main interface used to control switching to a low-power sleep state. The options are:

1s -1 /sys/power/
-rw-r--r-- 1 root root 4096 Jan 12 17:37 pm_async

-rw-r--r-- 1 root root 4096 Jan 12 17:37 pm freeze timeout
-rw-r--r-- 1 root root 4096 Jan 12 17:37 pm print times
-rw-r--r-- 1 root root 4096 Jan 12 17:37 pm_test
-r—--r--r-- 1 root root 4096 Jan 12 17:37 pm wakeup irqg
-rw-r--r-- 1 root root 4096 Jan 12 17:37 state

-rw-r--r-- 1 root root 4096 Jan 12 17:37 wakeup count

The /sys/power/state interface is the principal power management file system interface and triggers
the transition to a power saving state. On SAMA5D2 Linux based systems, the supported sleep states
are:

cat /sys/power/state
freeze standby mem

To switch to one of these states, write the string corresponding to the required state into the /sys/
power/state file, as indicated in Table 5-1.

Table 5-1. Linux Sleep States and Commands

Linux Sleep States Command to Enter Sleep State

Suspend-to-ldle echo freeze > /sys/power/state

Power-On Suspend or Standby echo standby > /sys/power/state
Suspend-to-RAM echo mem > /sys/power/state

Suspend-to-Disk or Hibernation NA as string “disk” not presentin /sys/power/state

For an overview of the Linux sleep states, check the Documentation section on https://www.kernel.org.
A brief description of the file system interfaces is as follows:
*+ /sys/power/pm async: allows suspend and resume callbacks of some devices to be executed
in parallel with each other and in parallel with the main suspend thread
*+ /sys/power/pm freeze timeout: specifies how long it will take to freeze all freezable
processes
*+ /sys/power/pm print times: used to print the time taken by devices to execute suspend and
resume operations
. /sys/power/pm_test: used to test power management options
. /sys/power/pm_wakeup irqg: prints the wake-up IRQ
*+ /sys/power/wakeup count: reading returns the number of wake-up events and writing aborts
the current transition to a sleep state
For debugging purposes, files are provided in the debugfs file system:

*+ /sys/kernel/debug/sleep time prints the time (in seconds) spent by the Sleep operation.
* /sys/kernel/debug/suspend stats prints Suspend statistics.
* /sys/kernel/debug/wakeup sources prints the current registered wake-up sources.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 19

https://www.kernel.org

AN2896

Linux Software Implementation

Resuming from a low-power state is performed based on events received from devices or external pins.
Devices can be set up to act as wake-up sources. The Linux file system offers an interface to enable
setting the wake-up capability for devices:

+ /sys/devices/.../power/wakeup files can be set by writing “enabled” or “disabled” strings so
that the device acts or not as a wake-up source.

Core Implementation
The following figure summarizes the main elements of Linux power management implementation.

Figure 5-1. Linux Power Management Architecture Overview

Driver SubSystems
PM CORE

Platform

Hardware

Terms used in the above figure are defined as follows, in a Linux context:

» Driver: a computer program used to control the hardware (IP/MCU/MPU)

+ Subsystem: a code shared by drivers of the same type. Ex.: I2C drivers share a common code that
forms the Linux I2C subsystem and implements common algorithms specific to 12C devices

» Platform: code that implements platform-specific algorithms (e.g. SAMAS5D2 implements its own
platform code that controls SAMA5D2-specific features, e.g. Backup and Self-refresh features)

* PM core: power management code that implements common power management algorithms and
activates subsystems, drivers and platform power management logic

» Hardware: the IPMCU/MPU which is affected by the actions taken by drivers, subsystem, platform
and PM core

The PM core contains generic power management code that is executed when entering/leaving a power
saving state. The Freeze or Suspend-To-ldle state freezes the user space processes and leaves
hardware in a working state. The other power saving states switch hardware to more power saving
modes.

As shown in Figure 5-1, to enable switching to more advanced power saving states, three elements must
provide PM hooks that will be accessed by the PM core in suspend/resume operations:

* device drivers
* subsystems where device drivers were registered
» platform code

The hardware must provide support for advanced power saving modes.

In the platform initialization phase of Linux, the platform code must register the platform-specific power
suspend/resume code to the PM core. This is done by providing a structure such as the following to the
PM core:

struct platform suspend ops {
int (*valid) (suspend state t state);

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 20

AN2896

Linux Software Implementation

int (*begin) (suspend state t state);
int (*prepare) (void);

int (*prepare late) (void);

int (*enter) (suspend state t state);
void (*wake) (void) ;

void (*finish) (void) ;

bool (*suspend again) (void);

void (*end) (void);

void (*recover) (void) ;

}i

The platform PM related code is executed in the final step of the suspend operation and in the first step of
the resume operation. Depending on the power saving mode, the platform code puts the CPUs in
different power saving modes.

The Linux kernel device model introduces devices, classes and buses. The PM core makes use of these
notions to choose and apply the correct PM policies. In addition, the notions of parent and child devices
are very useful in the suspend/resume procedure to suspend/resume the devices in the right order. In
Linux, drivers implement a structure of type struct devices, and subsystems implement a structure of
type struct classor struct bus_type. Every structure from the device driver model implements a
structure of type struct dev_pm ops as follows:

struct dev _pm ops {

int (*prepare) (struct device *dev);

void (*complete) (struct device *dev);

int (*suspend) (struct device *dev);

int (*resume) (struct device *dev):;

int (*freeze) (struct device *dev);

int (*thaw) (struct device *dev);

int (*poweroff) (struct device *dev);

int (*restore) (struct device *dev);

int (*suspend late) (struct device *dev);
int (*resume early) (struct device *dev);
int (*freeze late) (struct device *dev);
int (*thaw early) (struct device *dev);

int (*poweroff late) (struct device *dev);
int (*restore early) (struct device *dev);
int (*suspend noirq) (struct device *dev);
int (*resume noirq) (struct device *dev);
int (*freeze noirq) (struct device *dev);
int (*thaw noirq) (struct device *dev);

int (*poweroff noirq) (struct device *dev);
int (*restore noirq) (struct device *dev);
int (*runtime suspend) (struct device *dev);
int (*runtime resume) (struct device *dev);
int (*runtime idle) (struct device *dev);

}i

With drivers and subsystems implementing structures of type struct dev_pm os, the PM core
executes the correct hardware-related settings in order to switch peripherals to advanced power saving
modes. Every subsystem or driver provides suspend/resume functionality via this structure to the PM core
(Figure 5-2), allowing the PM core to switch peripherals to the right power state. Note that old platform
drivers are only providing suspend and resume functions to the PM core via struct

platform driver. The PM code executes them.

In addition to the Linux device driver model, the PM core introduces the concept of power domain. A
power domain contains one or more devices sharing reference clocks or power resources. Devices can
be part of a power domain and power domains can be nested. Power domains also offer PM
functionalities to the PM core via the struct dev pm ops structure (Figure 5-2).

Figure 5-2 shows that drivers and subsystems register PM operations to the PM core, and that also
platform-related PM operations are registered to the PM core if specific power saving modes need to be
implemented.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 21

AN2896

Linux Software Implementation

Figure 5-2. Linux Power Management Implementation Overview

Driver

register()

4 N

SubSystems PM CORE

platform_|suspend_ops

pm_domain Platform

- J

As shown in Figure 5-2, and depending on the Linux device driver model, more than one PM operation
can be registered for a device from:

* the device power domain,

» the device class,

* the device bus,

* the device driver.
At suspend/resume, the PM core checks the registered PM operations in the order specified above, and
executes the first PM operations matched. The registered PM operations are mutually exclusive, which

means that only the PM operations for the device's power domain, class, bus or driver, is executed by the
PM core in a suspend/resume sequence.

General suspend/resume steps are described in Figure 5-3.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 22

AN2896

Linux Software Implementation

Figure 5-3. Suspend/Resume General Phases
Suspend request

1 - PM notifiers

2 - Freeze/unfreeze processes

3 - Suspend/resume drivers

4 - Suspend/resume platform

Hardware v

As specified in Figure 5-3, the suspend request is initialized from the user space. Applications can
register PM-related notifiers that are called in the first suspend phase. After this, the kernel freezes all
processes (kernel and user space) and suspends devices and then the platform. The resume goes
through the states described in Figure 5-3, but in reverse order.

Figure 5-4 details the suspend and resume of devices and platform specified in Figure 5-3. The figure
shows the order of execution for platform PM operations (see struct platform suspend ops)and
device PM operations (see struct dev_pm_ops) specified in platform initialization code and drivers'
probe functions.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 23

5.2

5.21

5.2.2

AN2896

Linux Software Implementation

Figure 5-4. Suspend/Resume Detailed Phases

Running state

| Suspend event

platform devices devices

Suspend phase
Resume phase

Suspended state

Power Management Implementation on SAMAS5D2

Supported Modes
The Linux power management modes supported by SAMA5D2 SoCs are as follows:

* ldle
« ULPO
+ ULP1

« Backup Self-refresh (BSR)
Idle mode puts the CPU core in Wait-For-Interrupt (WFI) state.
BSR, ULPO and ULP1 modes are described in Section 4.1 and Section 4.2.
This section describes the implementation for BSR and ULPO/ULP1 modes.

AT91Bootstrap Support

In BSR mode, the CPU core (except the backup area) is shut down. To enable resuming the system,
AT91Bootstrap support has been added. This support is based on the fact that the backup area is the
only part that remains active while the system is suspended (except the DDR memory, which remains in
Self-refresh mode). Linux and AT91Bootstrap communicate via the backup area (SECURAM).

The following figure shows how AT91Bootstrap and Linux interact with each other in the process of
suspend and resume in BSR mode.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 24

5.2.3

AN2896

Linux Software Implementation

Figure 5-5. Linux and AT91Bootstrap Communication for Suspend/Resume for BSR Mode
Linux AT91Bootstrap

Backup area

SECURAM

I
(1) init —}l (2) save cpu_resume function

(3) suspend ——p|
| (4) save suspend status

, @

(5) system suspended
(6) wake
(7) read SECURAM content |«
(8) execute resume !
g |
= |
[
2 |
3
@ A 9") cold reset
Linux execute cpu_reset | [
1
| v
(9) system is resumed |

Figure 5-5 describes a standard suspend/resume sequence for BSR mode. As shown, when a suspend
request is initialized, Linux saves the resume code and suspend status in SECURAM, and the core's
power is turned off. When a wake-up event is detected, AT91Bootstrap starts and checks the suspend
status and whether the memory content has changed. Depending on the suspend status read from
SECURAM, AT91Bootstrap jumps to Linux execution, leading to executing the resume code. If
AT91Bootstrap detects errors in the resume procedure, a cold reset is performed.

|

v P | |
@« - | execute cpu_resume

|

|

Linux Kernel Parameter

Previous sections explained that the Linux four sleep states and the four SAMA5D2 power management
modes cannot be matched one to one. The SAMA5D2 SoC power management modes can be
considered as slight variations of the same Linux “Power-On Suspend” sleep mode.

A technique has been developed to allow the user to choose which SAMA5D2 power management mode
to map to one particular Linux sleep mode. This mapping is done statically at system initialization by
using Linux kernel command line parameters. Those parameters, like any other kernel parameters, can
be passed while starting Linux by the bootloader.

U-Boot is used in the Linux4SAM reference distribution and the new parameter is appended to the
bootargs U-Boot variable.

The new kernel parameter, atmel.pm modes, requires two arguments for the two SAMAS5D2 low-power
modes chosen.

The atmel.pm _modes format is as follows:

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 25

5.24

5.2.5

AN2896

Linux Software Implementation

Figure 5-6. “atmel.pm_modes” Command Format

Activated by running:
echo standby > /sys/power/state

!

atmel.pom_modes =

standby
(Normal Linux standby
mode)

ulp0

ulp1

backup
(BSR mode)

Activated by running:
echo mem > /sys/power/state

!

standby

mode)

(Normal Linux standby

ulp0

ulp1

backup
(BSR mode)

For example, to initialize the system with normal Linux standby and SAMA5D2 BSR mode, use the
following value for atmel.pm_modes:

atmel.pm modes=standby, backup

The value of atmel.pm modes can be retrieved from a running Linux system by using the following

command:

cat /proc/cmdline

This way, the user can check from Linux the mapping between Linux sleep states (Power-On Suspend,
Suspend-to-RAM) and SAMAS5D2 power management modes (Idle, ULPO, ULP1, BSR).

Linux Support

Implementation of the modes listed in Section 5.3.1 was done by adding suspend/resume support for
both the driver's code and the platform's code (see Figure 5-1 and Figure 5-2). On drivers, structures of
type struct dev pm ops were implemented. On platforms, a structure of type struct

platform suspend ops was implemented.

Drivers Implementation

As explained in 5.1.2 Core Implementation, Linux power management suspends and resumes SoC
peripherals by calling the functions provided by drivers in objects of type struct dev pm ops (or
platform driver for old device drivers). To implement the Linux system sleep model, drivers must
implement the suspend and resume members in objects of type struct dev pm ops (or struct

platform driver).

© 2018 Microchip Technology Inc.

Application Note

DS00002896A-page 26

5.2.6

AN2896

Linux Software Implementation

As the CPU power is cut off in Backup and Self-refresh modes, the peripheral state (register contents)
must be saved. Because memory remains in Self-refresh mode, its content is preserved, and the
peripheral state can be saved. In the resume part of the driver, this state is restored from memory.

The UART driver is an example. As explained in 5.1.2 Core Implementation, the driver must provide to
the PM core suspend and resume functions. In Linux kernel source code, the UART driver is located at
drivers/tty/serial/atmel serial.c and the suspend and resume functions are

atmel serial suspendand atmel serial suspend. These functions are provided to the Linux
PM core via an object of type struct platform driver, as shown below:

static struct platform driver atmel serial driver = {
.probe = atmel serial probe,
.remove = atmel serial remove,
.suspend = atmel serial suspend,
.resume = atmel serial resume,
.driver = { - -
.name = “atmel usart”,

.of match table = of match ptr(atmel serial dt ids),
}l
}i

in the probe phase of the UART driver (see probe function, atmel serial probe) via the following line
of code:

ret = platform driver register(&atmel serial driver);

Since in BSR mode, the CPU power is turned off and the DDR is kept in Self-refresh mode, the IP's state
is saved in the DDR memory. The UART driver saves IP's state with the following code in the
atmel serial suspend function:

if (atmel is console port (port) && !console suspend enabled) ({
/* Cache register values as we won't get a full shutdown/startup
* cycle*/

atmel port->cache.mr = atmel uart readl (port, ATMEL US MR);
atmel port->cache.imr = atmel uart readl (port, ATMEL US IMR);
atmel port->cache.brgr = atmel uart readl (port, ATMEL US BRGR);
atmel port->cache.rtor = atmel uart_readl (port,atmel port->rtor);
atmel port->cache.ttgr = atmel uart readl (port, ATMEL US TTGR);
atmel port->cache.fmr = atmel uart readl (port, ATMEL US FMR);
atmel port->cache.fimr = atmel uart readl (port, ATMEL US FIMR);
}

In the resume phase, this state is restored as can be seen in the atmel serial resume function:

if (atmel is console port(port) && !console suspend enabled) ({
/* Cache register values as we won't get a full shutdown/startup
* cycle*/

atmel port->cache.mr = atmel uart readl (port, ATMEL US MR);
atmel port->cache.imr = atmel uart readl (port, ATMEL US IMR);
atmel port->cache.brgr = atmel uart readl (port, ATMEL US BRGR);
atmel port->cache.rtor = atmel uart_ readl (port,atmel port->rtor);
atmel port->cache.ttgr = atmel uart readl (port, ATMEL US TTGR);
atmel port->cache.fmr = atmel uart readl (port, ATMEL US FMR);
atmel port->cache.fimr = atmel uart readl (port, ATMEL US FIMR);
}

Platform Implementation

On the platform side, code has been added to deal with the modes specified in Section 5.3.1 (mainly for
BSR and ULPO/ULP1 modes).

During the Linux initialization phase, the command line parameter is read to check if the platform code
needs to deal with those modes.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 27

AN2896

Linux Software Implementation

The power management platform initialization code checks the device tree for:

* Shutdown Controller (SHDWC)

* Special Function Registers Backup (SFRBU)
+ SECURAM

DRAM controller

* Power Management Controller (PMC)

and memory maps these devices. The memory-mapped regions are used in the suspend/resume
procedure (see at91 pm suspend in sram function).

During the platform-related PM initialization phase, SECURAM is written with the suspend status and
address of the resume function. During the resume process, AT91Bootstrap uses this information to
resume Linux as required (see Figure 5-5).

After the initialization phase, the platform is ready for suspend/resume operations. The platform suspend/
resume is the last/first phase of suspend/resume (see platform enter () state and platform end()
state in Figure 5-4).

The last suspend phase is executed from the internal SRAM. The corresponding code is copied to SRAM
at platform initialization and after each resume operation.

Depending on the suspend mode (BSR or ULPO/ULP1 modes), different levels of power saving are
implemented in the last suspend phase.

The last/first phase of the suspend/resume procedure is written in assembly code because this phase will
be executed from SRAM as the main memory (DDR) will be in Self-refresh mode while executing power
management instructions. The main entry point to the last suspend phase is the

at91 pm suspend in sram() function. The argument received by this function is an object of type
struct at9l pm data (initialized in platform initialization code) that keeps all data necessary in the
process of last/first phase of suspend/resume.

struct at9l pm data {
void iomem *pmc;
void _ iomem *ramc[2];
unsigned long uhp udp mask;
unsigned int memctrl;
unsigned int mode;
void iomem *shdwc;
void _ iomem *sfrbu;
unsigned int standby mode;
unsigned int suspend mode;

}i

The last phase of the suspend procedure are detailed in the steps below (as seen in the
at91 pm suspend in sram() function):
» Save registers on stack
» Store the content of the object of type struct at91 pm data on the corresponding registers
* Activate DDR Self-refresh mode
» Switch to the selected power management mode

Depending on the selected power management mode, further settings will be done as follows:

1. Idle mode: CPU switches to WFI.
2. ULPO/ULP1 modes:
— Master clock settings are saved.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 28

AN2896

Linux Software Implementation

— Master clock source is switched to slow clock.
— PLLA settings are saved, then PLLA is disabled.

2.1. ULPO mode:
» Crystal oscillator is turned off.
* CPU switches to WFI.

2.2. ULP1 mode:
* Main clock source is switched to 12 MHz RC oscillator.
» Crystal oscillator is disabled.
» Master clock source is switched to main clock.
+ Enter ULP1 mode: CKGR_MOR.WAITMODE=1.

3. BSR mode:
— Shut down the CPU.

Figure 5-7. Last Suspend Phase
DDR CPU Internal SRAM

| Execute instructions from DDR | |
|4 Pl |
PM start
| | Copy suspend code to internal SRAM>|
| | |
suspend —p
| 47 |
|
|
I
|
|

Stop executing instructions from DDR + Execute suspend instruction

and switch DDR to Self-refresh A >|4 from internal SRAM >
| . |
| v | |
|
| 4------ P device/subsystem suspend
| D R— P platform suspend

In BSR mode, the CPU core is powered off (that is why the CPU and internal SRAM timelines are
interrupted after platform suspend in Figure 5-7). For ULPO/ULP1 modes, processor power is kept, so the
CPU and internal SRAM timelines continue after the platform suspend code was executed.

The resume phase performs the settings in reverse order compared to the suspend phase. Depending on
the suspend mode:
1. Idle mode: the memory Self-refresh mode is deactivated and stack is restored.
2. ULPO/ULP1 modes:
2.1. ULPO mode:

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 29

AN2896

Linux Software Implementation

» Crystal oscillator is turned on.
2.2. ULP1 mode:

« Crystal oscillator is turned on.

* Master clock source is switched to slow clock.

* Main clock source is switched to crystal oscillator.

» Master clock source is switched to main clock.
2.3. ULPO/ULP1 modes:

* PLLA settings are restored.

» Master clock settings are restored.

3. Backup mode: cpu_resume function loads the stack saved by the suspend process and the
execution continues from the point where it was before suspend.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 30

AN2896

Measurement Results

6. Measurement Results
This section describes how to perform measurements to evaluate consumption in the different modes.
The described measurements were performed at room temperature.

Power consumption measurement is based on the SAMA5D2 Xplained board. On the SAMA5D2
Xplained board, all SAMASD2 power rails are supplied by a power management IC ACT8945AQJ405
(refer to the ACT8945A datasheet). Figure 2-3 is the PMIC part schematic (refer to the Schematics
section in SAMASD2 Xplained Ultra Evaluation Kit User's Guide).

6.1 Conditions

6.1.1 Board Setup for Measurement
To perform the different measurements on the SAMA5D2 Xplained board, the bare metal or Linux
application clock settings were set to:
e 498 MHz for the CPU clock
* 166 MHz for the peripherals/master clock

The board offers several points of measurement, all of them feeding a specific power rail. Figure 6-1 is a
top view of the SAMA5D2 Xplained board and shows the jumper to access all these power rails. The
board was modified to enable access to two power rails that are not connected to jumpers on the board.
See Table 6-1 and Figure 6-2. In addition, only one type of DDR memory was used on this board. Custom
bare metal application and Linux OS were used and configured according to the board.

Figure 6-1. Power Jumpers on SAMA5D2 Xplained Board

e — ry -
| = = '“;] VWA ATMEL . COM
L o g ag =
- o o o .
UD:]] £ b e gh BOOT_DIS
- = B - - -
ﬁn-n 3 5 = W m R MO TUE e ®m®ea - - Ji
o L3 r e A r . - y
g = |z [] v s
] O o O o000 =—
L ?3 oOE EI] g EI = E‘ é g . i
s EE wEgSEP o i,
5 mire D26 Dz7
- O - 4 L D28 Dz
3 B ® 5 4
il H: Dao D&
=
e & z H: Dz D33
2 a HE D34 D3s
- © w 1R
1O\ % : o D36 D7
=] D& D38 =
= - T
Lok L - {' D40 Dd - %
=] = &
[1 B = @) bez D43 8 8
2 g E- [=] TP [=FL] E E "=‘:‘-"j-v
L = M= & D45 D47 — £ —
DaE D49]
EDBG-ITAG AS-ITAG =5 1 _
— Dso =531 s =
=

5 L HEEE e = —
VEAT 1_ A L ===z DESUG DIS FEIFEC] PB USER =

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 31

AN2896

Measurement Results

Figure 6-2. VDD_1V2 and VDD_1V35 Power Rail Access

ACTS245A0J405-T el JP4 JPR4
VIS SV Header 142 Jumper
2 VDDCORE
VSYS1 |7
vSYS2 55— l l l —|e
VP |5 c163 C164 o C176 _|_ C167
VP2 g 10uF 10uF 10uF T 100nF VDDPLLA
VP2 L12_ 10uH_150mA
L g ' R120, 4 4 2R2 vy
ot VS DN w VDDUTMIC
neTaT 28 Rat ;«'\ 1EIEIR 1% D RED 1 . ; _|_
1)

L1
wi | o VBAT : 34 5
— DI "
oL -1 ; = et m MP{Header 1X2 2.00MM) e 1600hm % 100MHz VDDHSIC
2 8 | 47F Hea:er X2 Jumper o "|'
TH Bl o~ 1H0 5
= \.’DD 1v3s an 1v35 VDDIODDR T
o ‘|’ 180chm at 100MHz
swi 318 2l
om PP l il l o lc o Fo DDR2 For MPU
1DuF 100F T 100nF
vDD_1v2
swz 3218 2l
gui2 Lo l o ool g
10uF = 10uF T 100nF
vDD_3v3
ek }g L1y 2.2uH T
SoLE Lo l"z Lo
10uF T 10uF T 100nF
VDDFUSE
VDD_2V5 i VDD_3v3 LP
ouTa |4 L R327,, 1 s OR _3V3.|
5 vDD _3v3 VDD_LED
ouTS
VDD _3v3 VDDSDHC1VE
8 , , ous® = R330, -\.-\';—E'RLS 2
< oo vDDO_1v8 \
ggg%ouw? - ‘,/'2
il ol 1B0chm 3t 100MHz
=188 C17_ LC173 L3
uF

3
Y
14
a1

TuF TuF =4 JuF

Table 6-1 gives a correspondence between jumpers and power rails, as well as a description of the
different power rails connected to these jumpers.

Table 6-1. Power Rail Measurement Access and Feeding

VDDBU JP6 Backup area

VDDCORE JP4 VDDCORE rail

VDD_1V2 N/AM VDDCORE, VDDPLLA, VDDUTMIC & VDDHCSIC
VDD_5V_IN JP8 Main power of the PMIC

VDDIODDR JP7 VDDIODDR rail

VDD_1V35 N/A(T) DDR memory

VDD_3V3_LP JP3 VDDOSC, VDDUTMII, VDDANA & VDDAUDIOPLL
VDD_3V3 JP5 VDDIOPO, VDDIOP1, VDDIOP2 & VDDISC

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 32

6.2

6.2.1

6.2.2

AN2896

Measurement Results

Note:
1. Before performing those measurements, a SAMA5D2 Xplained board was modified to enable
independent access to:

— The VDDCORE power consumption and the VDD_1V2 power consumption (VDDCORE,
VDDPLLA, VDDUTMIC and VDDHCSIC)

— The DDR memory power consumption powered by VDD_1V35 and the VDDIODDR power
rail power consumption (VDD _1V35 was taken directly on the memory)
In addition to jumpers for measurement purpose, the following jumpers must be left open:

+ JP1 (Disable EDBG)
* JP2 (Disable Debug)

+ JP9 (Disable CS of SPI/QSPI memory) when the application is not stored in an SDMMC or in an
eMMC

For more information on the SAMASD2 Xplained board, refer to the SAMA5D2 Xplained Ultra Evaluation
Kit User's Guide (see Reference Documents).

Linux-Specific Code Changes

The measurements were performed with a SAMA5D2 Xplained board while monitoring PB5 pin toggling.
The Linux SD card image from the file linux4sam-poky-sama5d2_xplained-5.7.img.bz2(Y) was patched
with the GIT patch given in Appendix A (see Appendix A. Linux Code Patch for Time Measurement).

Note:
1. Available on ftp://www.at91.com/pub/demo/linux4dsam_5.7.

Suspend/Wake-up Time Measurement

This section specifies the suspend/wake-up times for SAMA5D2 Low-Power modes.

Measurement Conditions

To measure suspend times, a pin was toggled before the suspend instruction and after the suspend was
finished. The same principle was used to measure wake-up time: the pin was toggled at the instant of
resume start and after resume was finished.

In bare metal applications, suspend measurements were started at the beginning of each bare metal
sample code in this application note (see sections 4.1.1, 4.1.3, 4.2.1 and 4.2.3) and finished just before
entering Low-Power mode. Wake-up time measurements were started immediately after the instruction to
enter the Low-Power mode until the end of the sample code.

Measured Values

Tests were done on bare metal and Linux operating systems. Five series of five measurements each
were performed, and the board was rebooted every five measurements.

Main test differences:

* Linux OS tests:
— Applications corresponding to Linux4sam version 5.7 were executing a simple embedded
distribution running from a root filesystem in SD Card.
— Most of the peripheral device states were saved and restored in suspend and resume
processes.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 33

ftp://www.at91.com/pub/demo/linux4sam_5.7

6.3

6.3.1

AN2896

Measurement Results

* Bare metal OS tests:
— Only one application (LED blink) was running.
— Peripheral devices were not treated in suspend and resume processes.

The following table summarizes results.

Table 6-2. Bare Metal and Linux Suspend and Wake-Up Time Measurements

m Operating System Time to Enter Low-power Mode Wake-up Time

Bare metal <10 usM <1 usM
Idle

Linux N/A NA

Bare metal 5.6 ms 4 ms
ULPO

Linux 184 ms 246 ms

Bare metal 350 ps 15 us
ULP1

Linux 201 ms 238 ms

Bare metal 1.4 ms 600 ps
BSR

Linux 175 ms 2123 ms@
Note:

1. Indicative timings. Actual timings (ns range) cannot be measured by the sample code given in this
application note.

2. Starting from AT91Bootstrap version 3.8.12, the wake-up time for BSR is decreased to approx. 800
ms.

Note: To wake up the system from Low-Power modes, the 5V power supply on the SAMAS5D2 Xplained
board must be kept connected.

In the Linux world, timing is strongly dependent on the save and restore processes of the peripheral
states. These results could be significantly improved by removing some of these unnecessary actions, as
the major part of the context is maintained in ULPO/ULP1/IDLE modes.

Consumption Measurement

This section describes results of the SAMA5D2 Xplained board power consumption tests using a bare
metal application and a Linux application.

Measured Values

Table 6-3 gives power consumption on each rail when the application is in Running mode.

For Linux, the Linux4SAM 5.7 distribution is started, the Root filesystem is in SD Card and the kernel runs
with a few daemons.

Table 6-3. Applications in Running Mode

Linux
VDD_1V35 18 mA The DDR is powered.
Bare metal

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 34

AN2896

Measurement Results

........... continued

Linux
VDDIODDR

Bare metal

Linux
VDDCORE

Bare metal

Linux
VDDBU

Bare metal

Linux
VDD3V3

Bare metal

Linux
VDD3V3LP

Bare metal

Linux
VDD5V

Bare metal

8 mA

65 mA
86 mA

1.5 A

1.5 mA

220 pA

30 mA

1.7 mA

120 mA
98 mA

The VDDIODDR rail is powered so that it can communicate
with the DDR.

This difference shows that the Linux scheduler uses Idle
mode to reduce its power consumption.

SFRBU_PSWBUCTRL is set to the power backup area with
VDDANA instead of VDDBU and saves battery life time.

On the Linux side, a real application is running, so there is
activity on Ethernet PHY and mass storage.

As this is a bare metal application, there is no activity on the
GPIO. Power consumption is at the minimum.

On the Linux side, the peripherals powered by VDDUTMI,
VDDAUDIOPLL and VDDANA (UTMI transceiver, audio
PLL, analog, etc.) are enabled, whereas they are disabled
on the bare metal devices.

The application on the Linux side is much more complex
than on the bare metal side.

Table 6-4 gives the different power consumptions on each rail when the application is in Idle mode.

For Linux, the Idle mode is selected by using the following command line parameter:

atmel.pm modes=standby,ulp0

and running the following command:

echo standby > /sys/power/state

Table 6-4. Applications in Idle Mode

Linux
VDD _1V35

Bare metal

Linux
VDDIODDR

Bare metal

Linux
VDDCORE

Bare metal

Linux
VDDBU

Bare metal

18 mA

8 mA

46 mA
35 mA

1.5 A

The DDR is powered.

The VDDIODDR rail is powered so that it can communicate
with the DDR.

SFRBU_PSWBUCTRL is set to the power backup area with
VDDANA instead of VDDBU and saves battery life time.

© 2018 Microchip Technology Inc.

Application Note DS00002896A-page 35

AN2896

Measurement Results

........... continued
Linux 1.1 mA
VDD3V3
Bare metal 2.3 mA -
Linux 6.4 mA -
VDD3V3LP
Bare metal 1.7 mA -
Linux 68 mA The core is powered but not clocked. Peripherals are
powered and clocked.
VDD5V On the Linux side, proper management of external
Bare metal 78 mA components (Standby mode of Ethernet PHY) leads to a

reduced total power consumption.

Table 6-5 gives the different power consumptions on each rail when the application is in ULPO mode.
For Linux, the ULPO mode is selected by using the following command line parameter:

atmel.pm modes=standby,ulp0

and running the following command:

echo mem > /sys/power/state

Table 6-5. Applications in ULP0 Mode

Linux
VDD_1V35 1 mA DDR power is maintained so that the code remains loaded
Bare metal before jumping to ULPO mode.
Linux The VDDIODDR rail is maintained powered to be able to
VDDIODDR 190 pA restart code execution as soon as the SAMASD2 device
Bare metal exits ULPO mode.
Linux
VDDCORE 250 pA The core is powered and clocked at 512 Hz.
Bare metal
VDDBU Linux 15 UA SFRBU_PSWBUCTRL is set to the power backup area with
Bare metal = VDDANA instead of VDDBU and saves battery life time.
Linux -
VDD3V3 1.2 mA
Bare metal -
Linux -
VDD3V3LP 340 pA
Bare metal -
Linux 39 mA The core is powered but not clocked. Peripherals are
powered and clocked at 512 Hz.
VDD5V On the Linux side, a proper management of external
Bare metal 67 mA components (Standby mode of Ethernet PHY) leads to a

reduced power consumption.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 36

AN2896

Measurement Results

Table 6-6 gives the different power consumptions on each rail when the application is in ULP1 mode.
For Linux, the ULP1 mode is selected by using the following command line parameter:

atmel.pm modes=standby,ulpl

and running the following command:

echo mem > /sys/power/state

Table 6-6. Application in ULP1 Mode

Linux : intai i
VDD_1V35 1 mA DDR pc.>wer.|s maintained so that the code remains loaded
Bare metal before jumping to ULP1 mode.
Linux The VDDIODDR rail is maintained powered to be able to
VDDIODDR 190 pA restart code execution as soon as the SAMA5D2 device
Bare metal exits ULP1 mode
Linux
VDDCORE 250 pA The core is powered but not clocked.
Bare metal
Linux SFRBU_PSWBUCTRL configures the power backup area so
VDDBU 1.5 uA that it is fed with VDDANA instead of VDDBU to save battery
Bare metal life time.
Linux -
VDD3V3 1.2 mA
Bare metal -
Linux -
VDD3V3LP 340 pA
Bare metal -
Linux 39 mA Core and peripherals are powered but not clocked.

On the Linux side, a proper management of external
components (Standby mode of Ethernet PHY) leads to a
reduced power consumption.

VDD5V
Bare metal 67 mA

Table 6-7 gives the different power consumptions on each rail when the application is in BSR mode.
For Linux, the BSR mode is selected by using the following command-line parameter:

atmel.pm modes=standby, backup

and running the following command:

echo mem > /sys/power/state

Table 6-7. Applications in Backup Self-Refresh (BSR) Mode

Linux i Atz
VDD_1V35 1 mA The DDR power |§ malhtalne.d to be able to keep the code
Bare metal loaded in DDR prior to jump in BSR mode.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 37

AN2896

Measurement Results

........... continued

Linux
VDDIODDR

Bare metal

Linux
VDD5V

Bare metal

Linux
VDDBU

Bare metal

VDDCORE, | Linux
VDD3V3, Bare metal
VDD3V3LP

190 pA

52 mA

3.8 A

The VDDIODDR rail is maintained powered to be able to
restart as soon as the main power is applied to the
SAMA5D2.

Only the backup area of the SAMAS5D2 device is powered,
the DDR is in BSR, the PMIC is powered.

Only VDDBU is powering the backup area.

These power inputs are not supplied in Backup and BSR
modes.

Whatever the application, bare metal or Linux, only the VDDBU and the VDD_1V35 are powered
(VDDIODDR is taken from the VDD_1V35), so the power consumption is exactly the same for each

application.

© 2018 Microchip Technology Inc.

Application Note DS00002896A-page 38

AN2896

Conclusion

Conclusion

In any modern system, power consumption aspects cannot be ignored. One way to optimize an
application power performance is to enable periods of time when the system can be set to a low-power
mode. The SAMA5D2 device features several low-power modes with specific power consumption levels
and associated suspend/wake-up times to serve this need.

This application note demonstrates these low-power modes for a specific configuration (SAMA5D2
Xplained board with DDR3L memory). Note that significantly different results can be obtained with
different memory types.

The following table gives an estimation of the power consumption for two memory types and three low-
power modes. The values given are at 85°C, as provided in the memory data sheets. Values at 25°C are
expected to be 3 times to 5 times lower.

Table 7-1. Power Consumption Estimations

SAMA5D2 Low-power Modes(") Memory®

Total@
3 mwW - 6.1 mW
ULPO mode 3.1 mW
- 16 mW 19.1 mW
3 mwW - 59 mW
ULP1 mode 2.9 mW
- 16 mW 18.9 mW
3 mwW - 3 mW
BSR mode 0
- 16 mW 16 mW

Note:
1. All values are taken from the SAMA5D2 Series data sheet at 85°C.
2. The total power consumption includes DDR power + VDDCORE. The real total power consumption
depends on the efficiency of the power supply.
3. Itis assumed that the self-refresh power consumption at 85°C is approximately 16 mW for a
DDR3L memory and 3 mW for a LPDDR2 memory. These are the data sheet values available at
the time this application note is written.

This table shows mainly that:

» for a system equipped with a DDR3L memory, very little benefit is obtained in terms of power
consumption when using BSR mode instead of ULP0/1,

+ for a system equipped with an LPDDR2 memory, about 50% of power consumption is saved by
using BSR mode.

Finally, this application note shows significant differences for suspend and wake-up times in ULP1 mode
between a complex operating system such as Linux (that saves and restores the full context, which is
more than needed) and a simple bare metal application. Thus, specific improvements are needed for a
complex OS to leverage the full ULP1 performance.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 39

AN2896

Appendix A. Linux Code Patch for Time Measur...

8. Appendix A. Linux Code Patch for Time Measurement

This is the patch to be applied in addition to Linux4SAM 5.7 in order to measure suspend and wake-up
times. The process consists basically in toggling a GPIO.

diff --git a/arch/arm/boot/dts/at91-sama5d2 xplained common.dtsi b/arch/arm/boot/dts/at91-
sama5d2 xplained common.dtsi

index aSbf487feb2l1..85b909c9b875 100644

--- a/arch/arm/boot/dts/at91-sama5d2 xplained common.dtsi

+++ b/arch/arm/boot/dts/at91-sama5d2 xplained common.dtsi

@@ -734,7 +734,7 Q@

compatible = "gpio-leds";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl led gpio default>;
= status = "okay"; /* conflict with pwm0O */
status = "disabled"; /* conflict with pwm0 */
red {
label = "red";

diff --git a/arch/arm/mach-at91/pm.c b/arch/arm/mach-at91/pm.c
index e756bc71ffce..aald8e65cl7e 100644
-—- a/arch/arm/mach-at91/pm.c
+++ b/arch/arm/mach-at91/pm.c
@@ -489,6 +489,12 @@ static void init at9l pm backup init (void)
struct device node *np;
struct platform device *pdev = NULL;

+ np = of find compatible node (NULL, NULL, "atmel,sama5d2-pinctrl");
+ if (!'np)
+ return;
+ pm _data.gpioc = of iomap(np, 0);
+ of node put (np) ;
+
if ((pm_data.standby mode != AT91 PM BACKUP) &&
(pm_data.suspend mode != AT91 PM BACKUP))
return;

diff --git a/arch/arm/mach-at91/pm.h b/arch/arm/mach-at9l/pm.h
index £39679b39d5c..9%9ef80del01d2 100644
-—-- a/arch/arm/mach-at91/pm.h
+++ b/arch/arm/mach-at91/pm.h
@@ -35,6 +35,7 @@ struct at9l pm data {
unsigned int mode;

void _ iomem *shdwc;
void iomem *sfrbu;
+ void iomem *gpioc;

unsigned int standby mode;
unsigned int suspend mode;
}i
diff --git a/arch/arm/mach-at91/pm data-offsets.c b/arch/arm/mach-at91/pm data-offsets.c
index c0a73e62b725..dc98d3be399 100644
--- a/arch/arm/mach-at91/pm data-offsets.c
+++ b/arch/arm/mach-at91/pm data-offsets.c
@@ -11,6 +11,7 @@ int main(void)

DEFINE (PM_DATA MODE, offsetof (struct at91l pm data, mode));
DEFINE (PM_DATA SHDWC, offsetof (struct at91l pm data, shdwc));
DEFINE (PM DATA SFRBU, offsetof (struct at91l pm data, sfrbu));

+ DEFINE (PM DATA GPIOC, offsetof (struct at9l pm data, gpioc));
return 0;

}
diff --git a/arch/arm/mach-at91/pm suspend.S b/arch/arm/mach-at91/pm suspend.S
index 0£639102f4ef..81ldldab5able 100644
--- a/arch/arm/mach-at91/pm suspend.S
+++ b/arch/arm/mach-at91/pm suspend.S
@R -18,10 +18,32 @@

#define SRAMC_ SELF FRESH ACTIVE 0x01
#define SRAMC_SELF FRESH EXIT 0x00
+#define ATMEL PIO PB5 SODR 0x50
+#define ATMEL PIO PB5 CODR 0x54
i I = _

pmc .req r0

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 40

AN2896

Appendix A. Linux Code Patch for Time Measur...

tmpl .req r4d
tmp2 .req r5
+gpio .req r6
+
+/*
+ * Turn off green led
=)
A .macro turn off led
+ 1ldr gpio, .gpioc
4 mov tmp2, #32
+ str tmp2, [gpio, #ATMEL PIO PB5 SODR]
+ .endm
+
+/*
+ * Turn on green led
=y
Sz .macro turn_on_ led
+ ldr gpio, .gpioc
4 mov tmp2, #32
+ str tmp2, [gpio, #ATMEL PIO PB5 CODR]
+ .endm
/*
* Wait until master clock is ready (after switching master clock source)
@@ -68,9 +90,14 @Q tmp2 .req r5
mov tmpl, #AT91 PMC PCK
str tmpl, [pmc, #AT91 PMC SCDR]
+ turn off led
N - —
dsb
wfi @ Wait For Interrupt
+
+ turn_on_led
N _om_
#else
mcr pl5, 0, tmpl, c7, cO, 4
#endif

@@ -116,6 +143,11 @@ ENTRY (at91 pm suspend in_sram)
cmp tmpl, #0

ldrne tmp2, [tmpl, #0x10]

+ 1ldr tmpl, [r0, #PM DATA GPIOC]

+ str tmpl, .gpioc

4 cmp tmpl, #0

+ ldrne tmp2, [tmpl, #0x12]

+
/* Active the self-refresh mode */
mov r0, #SRAMC SELF FRESH ACTIVE
bl at91 sramc_self refresh

@@ -283,6 +315,9 @@ ENTRY (at91 backup mode)
1dr r0, .shdwc
mov tmpl, #0xA5000000
add tmpl, tmpl, #0x1

+

+ turn off led

+

str tmpl, [r0, #0]
ENDPROC (at91 backup_mode)

@@ -343,8 +378,13 @@ ENDPROC (at91 backup mode)
orr tmpl, tmpl, #AT91 PMC WAITMODE

bic tmpl, tmpl, #AT91 PMC KEY MASK
orr tmpl, tmpl, #AT91 PMC KEY

i turn_off led

: str tmpl, [pmc, #AT91 CKGR_MOR]

+ turn on led

wait_mckrdy

/* Enable the crystal oscillator */
@@ -451,6 +491,8 @@ ENDPROC (at91 ulp mode)

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 41

AN2896

Appendix A. Linux Code Patch for Time Measur...

.word 0
o BIEE]
.word O
+.gpioc:
+ .word O
.memtype:
.word 0
.pm_mode:

diff --git a/kernel/power/main.c b/kernel/power/main.c
index 281a697£d458..544dc29a085c 100644
-—- a/kernel/power/main.c
+++ b/kernel/power/main.c
@@ -15,6 +15,7 @@
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <linux/seq file.h>
+#include <linux/gpio.h>

#include "power.h"

@@ -358,6 +359,8 @@ static ssize t state store(struct kobject *kobj, struct kobj attribute
*attr,

suspend state t state;

int error;

+ gpio_direction output (37, 0);

error = pm autosleep lock();
if (error) -
return error;
@@ -377,6 +380,9 Q@ static ssize t state store(struct kobject *kobj, struct kobj attribute
*attr,

out:
pm_autosleep unlock();
+
& gpio_direction output (37, 1);
+
return error ? error : n;
}
2.7.4

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 42

AN2896

Revision History

9. Revision History

9.1 Rev. A -12/2018

First issue.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 43

AN2896

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

* Product Support — Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

* General Technical Support — Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative
* Local Sales Office
* Field Application Engineer (FAE)
» Technical Support
Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.

Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

* Microchip products meet the specification contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is one of the most secure families of its kind on the
market today, when used in the intended manner and under normal conditions.

» There are dishonest and possibly illegal methods used to breach the code protection feature. All of
these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

* Microchip is willing to work with the customer who is concerned about the integrity of their code.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 44

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

AN2896

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeelLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/0, SMART-L.S., SQI, SuperSwitcher, SuperSwitcher I, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 45

AN2896

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-3947-9

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile
are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®
DSCs, KEELOQ® code hopping devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

© 2018 Microchip Technology Inc. Application Note DS00002896A-page 46

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC m

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2018 Microchip Technology Inc.

Application Note

DS00002896A-page 47

	Scope
	Reference Documents
	Table of Contents
	1. SAMA5D2 Low Power Modes Overview
	1.1. SAMA5D2 Low-Power Consumption Modes
	1.1.1. Backup Mode
	1.1.2. Backup Self-Refresh (BSR) Mode
	1.1.3. ULP0, ULP1 and Idle Modes

	2. Power Supply Implementation for SAMA5D2 Low-Power Modes
	2.1. Introduction to Hardware Implementations
	2.2. Hardware Implementation of BSR Mode Using a PMIC
	2.3. Hardware Implementation of BSR Mode Using Discrete Components

	3. Generic Recommendations to Set the System to Low-Power Modes
	4. Bare Metal Software Implementation
	4.1. Backup and Backup Self-Refresh Modes
	4.1.1. How to Enter Backup Mode
	4.1.2. How to Exit Backup Mode
	4.1.3. How to Enter Backup Self-Refresh (BSR) Mode
	4.1.4. How to Exit BSR Mode

	4.2. Ultra Low-Power Mode
	4.2.1. How to Enter ULP0 Mode
	4.2.2. How to Exit ULP0 Mode
	4.2.3. How to Enter ULP1 Mode
	4.2.4. How to Exit ULP1 Mode

	4.3. Idle Mode
	4.3.1. How to Enter Idle Mode
	4.3.2. How to Exit Idle Mode

	5. Linux Software Implementation
	5.1. Linux Power Management Core (System Sleep Model)
	5.1.1. File System Interfaces
	5.1.2. Core Implementation

	5.2. Power Management Implementation on SAMA5D2
	5.2.1. Supported Modes
	5.2.2. AT91Bootstrap Support
	5.2.3. Linux Kernel Parameter
	5.2.4. Linux Support
	5.2.5. Drivers Implementation
	5.2.6. Platform Implementation

	6. Measurement Results
	6.1. Conditions
	6.1.1. Board Setup for Measurement
	6.1.2. Linux-Specific Code Changes

	6.2. Suspend/Wake-up Time Measurement
	6.2.1. Measurement Conditions
	6.2.2. Measured Values

	6.3. Consumption Measurement
	6.3.1. Measured Values

	7. Conclusion
	8. Appendix A. Linux Code Patch for Time Measurement
	9. Revision History
	9.1. Rev. A - 12/2018

	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

