

part protected by MIC

SYNC PHY
Header

NWK
Header

Auxialiary
Security
Header

Encrypted NWK payload MIC

security information
and integrity code (MIC)

MAC
Header

AVR2027: AES Security Module

Features
• Overview of IEEE 802.15.4™, cryptography

- Security of algorithm and protocol
- Encryption modes
- Implementation issues

• Using the AES security module in IEEE 802.15.4 and other contexts
- Register description
- Random number generator usage

1 Introduction
This document briefly reviews IEEE 802.15.4 /ZigBee® cryptography and shows
how the AT86RF231’s and AT86RF212’s security modules simplify the
implementation of these features.

Figure 1-1. Format of an encrypted network layer frame

8-bit
Microcontrollers

Application Note

Rev. 8260A-AVR-09/09

2

8260A-AVR-09/09
AVR2027

2 Overview of IEEE 802.15.4 cryptography

2.1 Scope of IEEE 802.15.4 cryptography

2.1.1 Encryption

Encryption is used to protect information to be read by some unauthorized third party,
especially if a message is send over an unsecure channel. There should be no danger
if a third party knows the implemented algorithm. The security must be based on a
secret key only. The IEEE 802.15.4 standard uses AES-128 (Advanced Encryption
Standard) with a 128 bit key length encryption. To the best knowledge of cryptographic
research, this algorithm satisfies all modern security requirements; see [1], [2], [3].

However, the wrong application of a good algorithm may destroy security nevertheless.
This can be avoided by so-called encryption modes, i.e. how a cryptographic algorithm
is applied. Details are explained in 2.2.2.

2.1.2 Integrity protection

Encryption is a defense against passive attacks, i.e. against eavesdroppers. But it is
often more important to protect yourself against active attackers who send faked or
maliciously modified messages. So it is usually no secret whether a window is open or
closed, i.e. such a message needs not to be encrypted. However, it is very important
that no attacker can send a notification "window is closed" to an alarm system when the
window is just open. All this especially applies to wireless sensor networks, since radio
messages are easy to fake.

Cryptography can help to detect unauthorized sent or modified messages by appending
cryptographic checksums, so-called MACs (Message Authentication Code), in this
context named MICs (Message Integrity Check). They can only be computed with the
knowledge of a secret key as is shown in Figure 2-1: The sender computes the MIC
and sends it together with the message. The receiver re-computes the MIC from the
received message and compares it with the MIC in the message. If computed and
received MIC coincide, the sender must have known the secret key. An attacker not
knowing this key would not be able to modify the message and to compute a valid MIC.
Thus the MIC guarantees that the message was generated by the sender and not by
some attacker, provided that the secret key was not leaked.

There is an important difference between MICs and CRC checksums which are widely
used in hardware: A CRC protects against unintended modifications during
transmission, but not against active attackers. CRC checksums do not use keys and
are easier to compute than MICs.

Figure 2-1. A MIC detects modifications

message MIC

hashsum

key

message MIC

hashsum

key

MIC1

compare

message and MIC sent together

 3

8260A-AVR-09/09

AVR2027

The IEEE 802.15.4 selects the so-called CCM* encryption mode which also allows to
enable integrity protection.

Integrity protection has some important consequences:

• The message payload can not be modified by some attacker without getting noticed.
• If the sender ID is included in the MIC computation, the receiver can be sure who

sent this message, i.e. spoofing is excluded.
• When an increasing frame counter is included in the MIC computation, replay

attacks are excluded. That is, a message recorded by some listener would not be
accepted again (e.g., "window is closed").

• By the same mean, the right order of sent messages can be ensured (think of
"window open" - "window closed"). It is possible that the message order is changed
by routing problems.

For critical applications, also "delay attacks" can be avoided when time stamps are
included in the MIC computation. In such a scenario, the attacker catches a message
and disturbs the receiver at the same time. The message is then sent later.

2.2 Cryptography used in IEEE 802.15.4

2.2.1 The AES algorithm

Encryption according to the IEEE 802.15.4 standard is based on the AES algorithm.
Though security of usable algorithms has not be proven yet, AES was selected as new
encryption standard in a world-wide competition and has been investigated by the best
cryptanalysts for years, who did not find any weakness in it. So AES can be considered
as one of the best available cryptographic algorithms. It replaces the 30 year old DES
which uses a 56 bit key only. Whereas all possible 56 bit long keys can be tried by
special hardware now, the 128 bit key of AES will never guessed with hardware as we
know it today (and even the hypothetical quantum computers could not break at least
256 bit keys using recent theory) – see [5].

AES is hardware-friendly: It requires relatively few resources, and it is fast. So it is the
best choice for symmetric cryptography in low power devices.

AES can use 128, 192 and 256 bit long keys. Even 128 bit keys cannot be broken;
longer key lengths are a precaution if still unknown weaknesses of the algorithm would
be found. IEEE 802.15.4 uses AES-128, i.e. 128 bit keys.

AES is a block cipher: Encryption and decryption are done on portions of the same
length only, here 128 bit (16 byte), yielding a 128 bit result - for all key sizes. How to
deal with lengths of plain or ciphertext which are no multiples of 16, is a matter of
encryption modes (see section 2.2.2).

Moreover, AES is a so-called product cipher (see Figure 2-2):

• The first step is the key initialization: Based on the key, 10 round keys are
computed.

• After this, encryption/decryption is done in 10 almost identical steps (rounds), each
depending on the corresponding round key. Each round consists of rather simple
transformations like bytewise XOR, byte substitution and byte permutation.

In contrast to some other algorithms, the decryption procedure differs from encryption.
For IEEE 802.15.4, this does not matter since in CCM* mode, even CCM* decryption
only uses AES encryption (see section 2.2.2.6). Nevertheless, the radio transceiver

4

8260A-AVR-09/09
AVR2027

security module also offers AES decryption functionality. To this end, the last round key
must be computed before and then used as key (see section 3.6).

Figure 2-2. Structure of a product algorithm

plaintext key

round 1 round key 1

round 2 round key 2

round 3 round key 3

round 4 round key 4

ciphertext

...

...

2.2.2 Encryption modes, CBC-MAC, padding

A cryptographic algorithm can encrypt or decrypt one block only. Encryption modes
deal with how to apply a block algorithm to messages of arbitrary lengths [6]. This is not
only a technical question, but it has also great influence on security. Only topics of
importance to IEEE 802.15.4 are discussed in the following.

2.2.2.1 ECB mode

The simplest way is the ECB (electronic code book) mode: Each plain or ciphertext
block (in our case, 16 byte) is en- respectively decrypted separately with the same key,
as shown in Figure 2-3.

Figure 2-3. ECB mode
C1 C2 C3

P1 P2 P3

AES AES AES

ciphertext blocks

encryption

plaintext blocks

 5

8260A-AVR-09/09

AVR2027

This mode is simple to implement and allows parallelization. However, it does not fully
conceal the plaintext structure (e.g., a plaintext consisting of null bytes only would
encrypt to a sequence of identical 16 byte blocks). In particular, identical plaintexts yield
the same ciphertexts what can allow practical attacks: Suppose a sensor has two states
"on" and "off", i.e. generates two kinds of messages only. If the messages are
encrypted straightforward, i.e. in ECB mode, an attacker also observes two kinds of
encrypted messages (ciphertexts) only. It is usually not hard to guess from the context
which ciphertext belongs to which message. Therefore ECB is applied in special cases
only, e.g. to encrypt other (random) keys. In general, a more secure mode should be
applied, like the CBC mode explained in the following paragraph.

2.2.2.2 CBC mode

The most important mode in practice is the CBC (cipher block chaining) mode, as
shown in Figure 2-4: During encryption, the last computed ciphertext block is XOR'ed
with the actual plaintext block and then encrypted. The first block, the so-called
initialization vector (IV), is pseudo-random and XORed with the first plaintext block
before encryption.

Figure 2-4. CBC mode
C1 C2 C3

P1 P2 P3

AES AES AES

ciphertext blocks

encryption

plaintext blocks

IV

CBC completely hides information about plaintext (with exception of the length, of
course), even the fact two ciphertexts belong to the same plaintext - provided that
different initialization vectors are used for different encrypted messages.

2.2.2.3 CBC-MAC

The CBC mode can be used for MAC computation: Since the last computed ciphertext
depends on all plaintext blocks, it is suitable as cryptographic checksum (MAC) which
can be computed only if the secret key is known. Usually, the initialization vector is 0 in
this case. For fixed length messages, the CBC-MAC is secure.

IEEE 802.15.4 uses the CCM* mode, and this computes CBC-MACs of variable length
messages. However, the first message block is a so-called nonce containing the
message length what implies that the computed CBC-MAC (called MIC in CCM*) is also
secure.

2.2.2.4 The counter mode

The counter mode (CTR) works as shown in Figure 2-5: A sequence of nonces (unique
blocks of known contents) is usually constructed by reserving some portion of a fixed
nonce and filling this part with an increasing sequence of numbers. This stream of

6

8260A-AVR-09/09
AVR2027

nonces is encrypted block by block, and the resulting ciphertext stream is bitwise
XORed with the plaintext giving the ciphertext.

Figure 2-5. Counter mode (CTR)
C1 C2 C3

P1 P2 P3

AES AES AES

ciphertext blocks

XOR-encryption

plaintext blocks

nonce 1 nonce 2 nonce 3 nonce sequence with
counters

In spite of its simple construction, the CTR mode is secure if integrity protection applies,
and if no combination of nonce with counter is repeated for the same key. The mode
offers some useful features:

• It can be parallelized.
• Decryption is exactly the same operation as encryption.
• No padding is required (see below).
• Ciphertexts depend on nonces, i.e. identical messages can be encrypted to different

ciphertexts.
The counter mode acts like any stream cipher where a bit stream is simply XOR’ed with
the plain respectively ciphertext. For such stream ciphers, there is some important
pitfall:

• Messages can be modified by an active attacker, even if he cannot decrypt them.
This must be prevented by included integrity protection, what is sometimes
overseen.

2.2.2.5 Padding

All modes explained up to here apply to messages with multiples of block length (for
AES-128: 16 byte) only. There are different methods to circumvent this problem (see
[4], 9.1 and 9.3, and [5], 5.1.2). For the purpose of this document, the simplest method
will suffice: Padding, i.e. appending as many (possibly none) bytes to the message until
a multiple of the block length is reached. Usually, null bytes are taken. In general,
decryption will then not be unique if the last byte of the plaintext can be a null byte
(since the end of the plaintext cannot be determined in a unique way). The CCM* mode
described in IEEE 802.15.4 contains the message length in the nonce (which is
contained in the first authenticated message block) and thus solves this problem.

2.2.2.6 The CCM and CCM* modes

The CCM mode is a combination of CBC-MAC and CTR mode to combine a cleartext
header with an encrypted payload where header and payload together should be
integrity protected. It was published as NIST standard and as RFC3610 [7], [8], [9]. The
security can be proven for any block cipher supposed that the block cipher is secure.

CCM* differs from CCM in that encryption only and authentication only are allowed.

 7

8260A-AVR-09/09

AVR2027

The CBC-MAC used in CCM/CCM* can have reduced length and is called MIC there.

A CCM securing as used in IEEE 802.15.4 is done as follows (see also Figure 2-6):

• A nonce is constructed containing lengths of cleartext header and payload and
prepended to the message. A nonce is a part of an AES block which contents must
be unique over all messages secured with the same key (this step is not shown in
the figure).

• After this, cleartext header (containing the nonce) and payload are padded with null
bytes separately and concatenated.

• Then a CBC-MAC (MIC) is computed over the whole message with initialization
vector 0 and appended to the concatenation.

• Then the nonce used for the CBC-MAC (MIC) computation is changed.
• Then payload and MIC are encrypted in CTR mode with the new nonce where the

counter for the MIC encryption is 0, and the counters for payload encryption start
with 1.

• Finally, the MIC can be reduced in length. MIC lengths of 0, 32, 64 or 128 bit are
allowed (0 bit length means: no authentication, the MIC is not computed).

Figure 2-6. CCM mode

header padding payload padding MIC

payload

payload

MIC

encr.
MIC

CTR encryption

CBC-MAC

header

For technical details, see [8], [9] and certainly the IEEE 802.15.4 standard [11].

2.3 Pros and cons of IEEE 802.15.4 cryptography
Pros:

1. Only symmetric cryptography is used which is much faster, far easier to implement
and easier to handle than asymmetric cryptography (public key cryptography).

2. Because of CCM* mode, only AES encryption is used, no AES decryption is
necessary. This allows simpler (and smaller) software and reduced encryption
hardware. (In the case of Atmel radio transceivers, AES decryption hardware is
available, but it requires extra operations what plays no role if only CCM* is used.)

3. The same key is used for authentication as well for encryption, without
compromising security (see [18]). Thus key initialization is rare, firmware becomes
smaller and faster. Even in the ZigBee commercial mode (which is not in the scope

8

8260A-AVR-09/09
AVR2027

of this application note - see [12]), no key has to be re-initialized as long as a device
communicates with a fixed partner.

4. The cryptography part of the standard is rather simple. This is not only nice for
firmware development but also for security: Good security must be compact and
easy to review.

5. Algorithm and encryption mode are both free of patents.

Cons:

1. Key transfer is risky: To transfer a secret key over air, there is no other way than to
encrypt it by a master key which has to be distributed during initialization by out-of-
band means. If this master key is compromised (e.g. since a device was stolen and
analyzed), most security might be lost.

2. CCM* allows encryption without authentication. This mode should never be used
since it is insecure. It should have been excluded in CCM*. At least, ZigBee does not
recommend it.

3. To compute a MIC and encrypt a message, the message has to be encrypted twice:
once for the MIC computation, and once for the encryption itself (and the MIC
encryption requires one more block to be encrypted).
There are almost twice faster modes to combine message authentication with
payload encryption, but they are not patent-free [16].

4. MIC encryption is not necessary - because of the nonce structure, a listener can
neither gain information about possibly identical payloads, nor are so-called collision
attacks feasible. This was also criticized in [13].

5. Generally, CCM* is considered to be bad designed, other modes like the EAX mode
are said to more elegant (for details, see [10], [13]).

Remarks:

1. Implement the standard:
The mentioned drawbacks are not as dramatic as it seems. The implementation of
CCM* is, once done, quite compact and easy to check with the help of test vectors.
The only theoretical obstacle could be item 1. of the "cons" list, i.e. the performance.
For the Atmel radio transceivers however, this may not matter, dependent on the
application: Since sending one AES block over air requires about 500 µs in the 250
Kbit/s mode, the time of 130 µs needed for two encryptions and two SPI transfers
(see section 3.8) is marginal.

The win of a slightly shorter and/or more elegant code does not outweigh the high
price of incompatibility with a standard. So it is recommended to implement the
CCM* mode (without the encryption only option) as described in IEEE 802.15.4.

2. Comparison to public key cryptography (PKC):
The problem of secure key transfer is most securely solved by asymmetric
cryptography, i.e. using public and private keys. However, the price for this can be
quite high:

• In software, symmetric cryptography can be faster than asymmetric one e.g.
by a factor of 1000. So PKC is suited for rare key exchanges only.

• To achieve reasonable response times, specialized and expensive hardware
is required when PKC implemented in software is too slow. Effective
algorithms based on ECC (elliptic curve cryptography) - and not the well-

 9

8260A-AVR-09/09

AVR2027

known RSA or Diffie-Hellman algorithms - are patented if they are fast in
hardware. The implementation requires a sound theoretical background.

• A PKI (public key infrastructure) requires a lot of resources (especially
RAM).

• Symmetric cryptography has to be implemented anyway since it is the
"workhorse" for securing package transfer.

PKC would only be needed for secure key transfer what is a rare event in most
networks. However, even the simple CCM* mode using the same fixed key for all
devices is not implemented or not active by default in many recent systems.
Moreover, there are other more important problems like secure routing, or the fact
that e.g. ZigBee requires in the simple residential mode (all devices using the same
key) a complete unsecuring and securing of each package during each hop.

3 Using the radio transceiver security module
Much of the chapters 3.1 - 3.6. is also contained in the AT86RF231 [14] and
AT86RF212 data sheets [15].

3.1 Overview

3.1.1 Functionality

The radio transceiver contains a standalone AES encryption and decryption unit. The
following operations are possible:

• Initialize an AES key which is stored locally in the AES unit.
• Choose between encryption and decryption.
• Choose between hardware support for ECB or CBC mode (see section 2.2.2).
• Transfer a plain or ciphertext block to the AES unit.
• Start the encryption/decryption.
• Test whether the encryption/decryption was finished.
• Obtain an en- respectively decrypted block from the AES unit.
• Read the last generated AES round key from the AES unit (needed for decryption).
• Test whether an error occurred in the AES module.
To support full CBC mode or CCM* mode, additional software is required (see sections
3.4, 3.7).

3.1.2 Prerequisites

Controlling the security block is implemented as a fast SRAM access over SPI to
address space 0x82 to 0x94. A Fast SRAM access mode allows simultaneously writing
new data and reading data from previously processed data within the same SPI transfer
and thus reduces overhead in ECB mode (see section 2.2.2.1). In addition, the security
module contains another 128-bit register to store the initial key used for security
operations. This initial key is not modified by the security module. All registers and
commands are explained in chapter 4.1.

The AES unit can only work if the clock module CLKM is activated (subregister
CLKM_CTRL != 0 in register 0x03).

10

8260A-AVR-09/09
AVR2027

3.2 Initialize the key
Key initialization must be the first operation. To set the key, write the value "KEY" (i.e.,
1) to the subregister AES_MODE of register AES_CTRL mode and then the 16 byte
key to the AES_KEY space (addresses 0x84 - 0x93).

The operation is finished when all data is written. No time for round key generation is
needed. As long as the device does not sleep and is not reset, the key is kept in the
AES unit and can be used for consecutive encryptions.

3.3 Encryption in ECB mode
To encrypt one block, the following steps are required:

1. The key has to be initialized (see section 3.2).
2. Choose encryption and select ECB encryption mode. To this end, set the subregister

AES_DIR of register AES_CTRL to encryption and subregister AES_MODE of
register AES_CTRL to ECB.

3. After this, write the input data (the plaintext) to the AES_STATE address space
(addresses 0x84 - 0x93). The AES module is still idle in this moment.

4. Start the AES operation: Set the subregister AES_REQUEST of register AES_CTRL
to 1. Round keys are computed within this cycle.

5. Either wait 24 µs until the AES block has finished, or poll the subregister
AES_DONE of register AES_STATUS until it is 1.

6. Read the result (the ciphertext) from the AES_STATE address space (addresses
0x84 - 0x93).

In practice, steps 2 - 6 can be simplified:

The register AES_CTRL_MIRROR has the same function as AES_CTRL. So the data
of AES_CTRL in step 2, the AES block, and AES_CTRL_MIRROR (with the
AES_REQUEST bit set) can be concatenated to one 18 byte block and written within
one SPI access to the AES unit. Moreover, reading and writing of the SPI interface are
done simultaneously using the so-called Fast SRAM access for the registers used here
(0x82 to 0x94).

Thus the operation reduces to 5 steps (see Figure 3-1):

1. Initialize the key.
2. For the first block, write in one SPI read/write access the following 18 byte, starting

with address of AES_CTRL (0x83):
a. register AES_CTRL as described in step 2 above,
b. the first block of plaintext (16 byte),
c. register AES_CTRL_MIRROR with the same contents as register

AES_CTRL but additionally subregister AES_REQUEST set to 1.
3. Wait for the result (see step 5 above).
4. From the second block, only write data and AES_CTRL_MIRROR, then goto step 3.
5. After the last block, read the last ciphertext.

 11

8260A-AVR-09/09

AVR2027

Figure 3-1. ECB encryption with the AES unit

AES_CTRL
(0x83)

AES_KEY
(0x84 – 0x93)

AES_MODE = ECB
AES_DIR = encrypt 16 byte plaintext - write AES_REQUEST = 1

AES_MODE = KEY
AES_DIR = encrypt 16 byte key - write

16 byte plain/ciphertext – write+read AES_REQUEST = 1

16 byte ciphertext - read

AES_CTRL
(0x83)

AES_STATE
(0x84 – 0x93)

AES_CTRL_MIRROR
(0x94)

AES_STATE
(0x84 – 0x93)

AES_CTRL_MIRROR
(0x94)

AES_STATE
(0x84 – 0x93)

1. Initialization

2. First block

3. Wait 24 µs or poll on AES_DONE in AES_STATUS

4. All following blocks

5. Last step

3.4 Encryption in CBC mode
If the AES unit runs in CBC mode, the plaintext is bitwise XORed with the result of the
last encryption. So to compute a CBC MIC, the following steps are required:

1. Compute the bitwise XOR of the initialization vector IV (nonce) with the first plaintext.
2. Write it to the AES unit and encrypt it in ECB mode.
3. All following blocks are encrypted in CBC mode of the AES unit.
4. Read the last block from the AES unit. This is the MIC.
In the case of CCM* in IEEE 802.15.4, step 1 is omitted since the initialization vector is
0, so XORing it with the first block changes nothing and is skipped (see Figure 3-2).

12

8260A-AVR-09/09
AVR2027

Figure 3-2. CBC-MIC computation with the AES unit (see also Figure 3-1)

AES_CTRL
(0x83)

AES_KEY
(0x84 – 0x93)

AES_MODE = ECB
AES_DIR = encrypt 16 byte plaintext XOR nonce - write AES_REQUEST = 1

AES_MODE = KEY
AES_DIR = encrypt 16 byte key - write

16 byte plain/ciphertext – write+read AES_REQUEST = 1

16 byte MIC - read

AES_CTRL
(0x83)

AES_DATA
(0x84 – 0x93)

AES_CTRL_MIRROR
(0x94)

AES_DATA
(0x84 – 0x93)

AES_CTRL_MIRROR
(0x94)

AES_DATA
(0x84 – 0x93)

1. Initialization

2. First block

4. All following blocks

5. Last step

AES_MODE = CBC
AES_DIR = encrypt 16 byte plaintext - write AES_REQUEST = 1

AES_CTRL
(0x83)

AES_DATA
(0x84 – 0x93)

AES_CTRL_MIRROR
(0x94)

3. Second block

Remark: For simplicity, padding is not regarded here.

Remark: For CBC decryption, the XOR operation has to be done after encryption with
the last ciphertext and thus must be done in software using the ECB mode (the CBC
operation mode does the XOR before encryption).

3.5 Implementing CTR mode
Encryption in CTR mode has partially to be done in software, i.e. the nonce computing
and the bitwise XOR with the plaintext. For CCM* encryption in IEEE 802.15.4, the
counter part of the nonce can have values of 0 ... 7 only, since a message is maximally

 13

8260A-AVR-09/09

AVR2027

127 byte long. Thus the message consists of at most 8 AES blocks, and increasing the
counter means changing one byte in the nonce only. The sequence of nonces has to be
encrypted in ECB mode (see section 2.2.2.1).

3.6 Decryption (example for ECB mode)
The AES algorithm requires different keys for encryption and decryption. The decryption
key (what is the last generated round key) can be read from the AES_KEY space after
any encryption.

Hence to decrypt an ECB encrypted message, the following steps are required:

1. Initialize the AES unit with the original key (see section 3.2).
2. Start a dummy encryption by setting the subregister AES_REQUEST of register

AES_CTRL to 1.
3. Read the AES_KEY registers.
4. Initialize the AES unit with this key.
5. Set the encryption mode to ECB (subregister AES_MODE of register AES_CTRL)

and AES operation direction to "decryption" (subregister AES_DIR of register
AES_CTRL).

6. Write the ciphertext to AES_STATE registers.
7. Start the encryption by setting subregister AES_REQUEST of register AES_CTRL to

1.
8. Wait 24 µs or poll the subregister AES_DONE of register AES_STATUS until it is

set.
9. Read the result from the AES_STATE registers.
10. If necessary, go to step 6.

As in the case of ECB encryption, several steps can be joined in one SPI write
operation (see section 3.3).

The decryption in CTR mode is identical to the encryption and thus does not require
any precaution.

3.7 Implementing CCM*
Hardware support for CCM* encryption is limited to the CBC and CTR encryption as
described in 3.4 and 3.5. Assembling the nonce has to be done in software anyway, as
well as padding and extending the payload by security header and appending the MIC.

Details can be found in [11], Appendix B.4.

3.8 Timing

3.8.1 CCM mode timing estimation

Using an SPI clock of 4 MHz, the Fast SRAM access to encrypt one AES block lasts
about 40 µs (18 byte for data and control - see section 3.3 -, and 2 byte for SPI control).
The encryption itself lasts 24 µs. The bytewise XOR of two AES blocks for an 8 MHz
AVR clock lasts about 30 µs.

A full CCM* encryption of a message of n AES blocks length and with maximal MIC size
(i.e., 16 byte) takes at least the following time:

14

8260A-AVR-09/09
AVR2027

MIC computation:

• (n+1)*40 µs for the SPI transfer of nonce and message blocks
• (n+1)*24 µs for encrypting nonce and message blocks
• additional 40 µs for reading the MIC from the AES unit
CTR encryption:

• (n+1)*40 µs for the SPI transfer of counter blocks, one for each message block and
one for the MIC (because of fast SRAM access, for most blocks read and write
operations are done simultaneously)

• (n+1)*24 µs for the encryption of the nonces
• additional 40 µs for reading the last encrypted nonce
• about (n+1)*30 µs for bitwise XOR of encrypted nonce with message block

respectively MIC.

Thus, at least ((n+1)*158 + 80) µs are required for this operation or about 1 ms for a five
block message (80 bytes). This is just a lower bound. In practice, overhead for radio
transmission and software (as composing the nonce, padding, assembling the frame)
has to be regarded.

Figure 3-3. Estimated timing for encryption of one block in CCM mode

nonce P1 Pn MIC...

SPI

AES

SPI

nonce 1 nonce 2 nonce n nonce0 (!)...

AES

SPI

P1

C1

P2

C2

Pn

Cn

MIC

MIC encr.

MIC computation

CTR encryption

fast SRAM access

plaintext blocks

ciphertext blocks

24 µs 24 µs 24 µs

40 µs 40 µs 40 µs 40 µs

40 µs 40 µs 40 µs 40 µs

24 µs 24 µs 24 µs24 µs

30 µs 30 µs 30 µs 30 µs

40 µs

...

3.8.2 Parallelization: polling vs. waiting in CCM* mode

Since the subregister AES_DONE of register AES_STATUS can be polled to see
whether the AES block has finished, encryption can be done in background, i.e. in
parallel. It depends on the application whether this makes sense since sending and
receiving frames are already done in background.

Parallelization of CCM* encryption requires that all needed data like AES block
sequence, loop variables, nonce etc. are kept local and that the radio transceiver is
neither reset nor put in sleep mode meanwhile.

 15

8260A-AVR-09/09

AVR2027

For the radio transceiver, waiting 24 µs for the AES unit is normally better than polling
because of minimal time win. Moreover, polling causes many SPI accesses and hence
an increased power consumption.

3.8.3 Delay for decryption

An entity sending CCM* encrypted packages must regard the time which the receiver
node needs to decrypt the message. This is not necessary if the frames have the same
length since radio transmission is done in the background, and sending/receiving one
block takes about 500 µs in 250 Kbit/s mode compared with about 130 µs for CMM*
encryption (see section 3.8.1), but it does matter when a short message follows a long
message.

3.9 Notes

3.9.1 Loosing key after sleep and reset

All AES registers values and in particular the key are lost if the radio transceiver goes to
sleep mode (as well as on reset). So if the device periodically sleeps to save power, the
key must be stored in the AVR RAM, and the AES unit must be re-initialized after each
wake up.

3.9.2 SPI read after write

After a write to SPI, the first read may occur after at least 500 ns only (see [14],
12.4/12.4.11), as well as between consecutive fast SRAM accesses (i.e. write and read
at the same time) to avoid undefined states.

This is important for encryption/decryption since there are many consecutive SPI
operations.

4 AES register description, random number generator

4.1 AES registers
The registers and operations are described in detail in the data sheets of AT86RF231
[14], section 11.1, respectively of AT86RF212 [15], section 9.1. The following is an
overview of this chapter only.

4.1.1 Register overview

How to use the registers to encrypt respectively decrypt one block has been described
in detail in chapters 3.3 and 3.6.

All registers are placed in the SRAM addresses 0x82 ... 0x94:

Table 4-1. Register overview
Address Name Description Subregister

0x82 AES_STATUS AES status AES_ER, AES_DONE

0x83 AES_CTRL Security module control AES_REQUEST,
AES_MODE, AES_DIR

16

8260A-AVR-09/09
AVR2027

Address Name Description Subregister

0x84 –
0x93

AES_KEY/
AES_STATE

Depends on AES_MODE
setting:
AES_MODE = 1:

Contains AES_KEY
(key)

AES_MODE = 0 | 2:
Contains
AES_STATE (plain
or ciphertext)

0x94 AES_CTRL_MIRROR Mirror of register 0x83
(AES_CTRL)

same as AES_CTRL

The AES_CTRL_MIRROR register is used to do an encryption in one SPI access only,
see section 3.3.

4.1.2 Subregisters

Register AES_STATUS (0x82):

• AES_DONE (bit 0):
This bit is set by the AES unit if the unit has finished its work. The bit can be used for
polling.

• AES_ER (bit 7):
This bit is set by the AES unit if the unit failed (e.g., after a read access to
AES_CTRL while the unit is running, or after reading less than 16 byte from
AES_STATE).

Register AES_CTRL: (0x83)

• AES_DIR (bit 3):
This bit must be set to 1 for encryption and to 0 for decryption (see also section 3.6).

• AES_MODE (bits 4...6):
Three values are allowed:
0 - ECB mode (see section 2.2.2.1)
2 - CBC mode (see section 2.2.2.2)
1 - initialize key (see section 3.2)

• AES_REQUEST (bit 7):
This bit must be set to 1 to start the operation.

Register AES_CTRL_MIRROR: (0x94)

This register contains the same subregisters as AES_CTRL which allows to combine all
commands and data transfers required for one encryption/decryption operation in one
SPI access (see section 3.3).

4.2 Hardware random number generator
The hardware random number generator (HRNG) is required for generating
cryptographically secure random value, especially keys. If the radio transceiver is in
basic operating mode receive state (RX_ON), the generator feeds the subregister
RND_VALUE (bits 5 and 6) of the TRX register PHY_RSSI (offset 0x06) every
microsecond (see data sheet [14], 11.2, and [15], 9.2).

 17

8260A-AVR-09/09

AVR2027

"Cryptographically secure" means that it must be impossible to forecast the sequence in
the future, even if members in the past are known. This is not the case for so-called
pseudo random number generators (PRNGs) which are common and implemented in
software. Being unpredictable is more important than having good statistical properties
what can easily be reached by encrypting or hashing the values.

The main problem of HRNGs is to detect a malfunction. The radio transceiver contains
a HRNG which does not fail as long as the radio receiver works, i.e. its malfunction can
be detected as is demonstrated in the following.

Since key generation is a rare process, performance is less important. A careful
approach to produce secure random keys could look as follows (see Figure 4-1):

1. Reserve some 16 byte buffer as "random pool" and initialize it with some weak
random value (e.g. time in microseconds).

2. Check that the radio is in basic receive mode and perform some heuristic test that
the receiver works correctly (e.g., that a frame with valid CRC was received within
the last few milliseconds, no jammer is blocking).

3. Collect 128 bit from the HRNG waiting more than 1 microsecond between
consecutive accesses.

4. Perform a bitwise XOR of the collected bits with the pool.
5. Encrypt the pool with the key with which the AES unit is actually initialized (the

former initialization must be guaranteed by the context). Neither direction
(encryption/decryption) nor encryption mode (ECB/CBC) do matter here: This step
does not improve security but statistical properties of the generated keys.

6. Repeat step 2 within a short timeout (few milliseconds). If not, go to step 2.
7. Take the pool contents as actual key.
The next key generation repeats steps 2 - 7. Then the generated key is no more stored
in the pool (after encrypting and distributing it).

18

8260A-AVR-09/09
AVR2027

Figure 4-1. Generating cryptographically secure random numbers in a 128 bit random
pool

seed (initial value),
e.g. time in µs

wait until a valid frame is received

HRNG

AES

something received within
timeout?

wait for request
random

key

128 bit
XOR

no

yes

The additional check that some valid frame is received a short time after this procedure
is a good heuristic test that the receiver worked during random number generation, i.e.
that there was no malfunction. If this can not be excluded, steps 2 - 7. should be
repeated. All this can also be done as a precaution in regular intervals to collect
maximal entropy.

In ZigBee networks in residential mode, only the trust center has to generate keys (and
only before the change of the network key, what is rare). In professional mode, keys
can also be generated by devices, so the radio transceiver is also well-suited for this
purpose.

5 Glossary
AES: Advanced encryption standard, one of the best and most secure encryption
algorithms, see section 2.2.1.

Asymmetric encryption: → PKC

 19

8260A-AVR-09/09

AVR2027

Authentication: Proof that the sender of some message is really the one who pretends
to be it. Authentication is achieved by including the sender ID in the computation of a
cryptographic hashsum, hence with → integrity protection.

Block cipher: An encryption algorithm where plaintext is split in blocks of equal length
(128 bit in the case of →AES) and encrypted block by block, in contrast to →stream
ciphers. Block ciphers are better analyzed and considered as more secure than stream
ciphers, at least in the public research. Block ciphers are mostly product ciphers, i.e.
very similar smaller operations (rounds) are repeated with different round keys which
are generated from the encryption key.

CBC: Cipher block chaining, an →encryption mode of →block ciphers, see section
2.2.2.2. In CBC mode, identical messages do not produce identical ciphertexts, and an
error in some ciphertext block causes this and all following blocks producing
meaningless plaintexts after decryption.

CCM, CCM*: CCM means "counter with CBC-MAC", an encryption mode combining
→CTR mode and →CBC-MAC integrity protection such that only a part of the message
is encrypted but the whole message is integrity protected, see section 2.2.2.6. CCM* is
CCM with optionally deactivated encryption respectively integrity protection and is used
in IEEE 802.15.4 and ZigBee.

Cleartext: Unprocessed data, not compressed or encoded; in contrast to → plaintext,
which is input to encryptions and needs not be cleartext.

Ciphertext: The output of an encryption.

CTR: Counter mode, an →encryption mode of →block ciphers, see section 2.2.2.4. The
CTR mode is simple and secure, provided a unique →nonce is used and →integrity
protection is applied.

DES: Data encryption standard, the old default encryption standard from 1977. The key
length of 56 bit is now too short to withstand modern hardware. The algorithm was
replaced by → AES in 2000.

ECB: Electronic code book mode, the simplest →encryption mode of →block ciphers
where each plaintext block is separately encrypted, independent of other blocks. It is
unsecure for longer messages; in particular, it produces identical ciphertexts for
identical plaintexts. ECB mode is usually applied to encrypt random session keys. See
section 2.2.2.1.

Encryption mode: The way a →block algorithm is applied, e.g. whether each block is
encrypted straightforward, or with the help of other data. Examples here: →ECB,
→CBC, →CTR.

Frame counter: A frame number contained in the header which must be unique at
least as long the same key is applied. In ZigBee, frame counters are 32 bit long and
start with 0. Frame counters protect against →replay attacks.

HRNG: Hardware random number generator, a device generating random using
physical sources. In contrast to →PRNGs, they should yield cryptographically secure
random which cannot be guessed knowing the past numbers. In high security
applications, HRNGs are often mixed with PRNGs.

Integrity protection: A cryptographic protocol that allows to detect unauthorized
modification of a message. Integrity protection is often incorrectly called →
authentication.

Key initialization: Before encryption keys are used, they are often transformed. E.g.,
for product ciphers (→block ciphers), round keys are generated from the key. This is

20

8260A-AVR-09/09
AVR2027

called key initialization. In the AES unit of the radio transceiver, key initialization is done
internally during encryption.

MAC: Message authentication code, a cryptographic hashsum providing →integrity
protection. To compute a MAC or to check its correctness, a secret key must be known
(in contrast to digital signatures).

MIC: Message integrity code, the →MAC used in IEEE 802.15.4 and ZigBee. According
to Wikipedia [17], MICs can be computed without secret keys and have to be encrypted.
So the ZigBee MIC is essentially an encrypted MAC.

Nonce: Derived from number used once, in the context of this note an AES block which
is never repeated and used for CBC-MAC computation and CTR encryption. The IEEE
802.15.4/ZigBee nonce contains →frame counter, sender ID, key number and other
parameters.

Padding: To apply a block cipher, plain respectively ciphertext must have lengths
which are multiples of the block length. This must be done by padding, where bytes
(usually 0) are appended at the plaintext. There are several methods to do this, see [4],
9.1 and 9.3, and [5], 5.1.2. In IEEE 802.15.4, header and payload are padded
separately; the lengths can be seen from the header.

PKC: Public key cryptography which uses a publicly known key to encrypt a message
but requires a secret (private) key to decrypt it. It is used for secure transmission of
random session keys used for →symmetric key algorithms and for digital signatures. In
contrast so symmetric key cryptography, PKC is hard to implement and requires much
computing power respectively special hardware.

Plaintext: An unencrypted text.

PRNG: Pseudo random number generators.

Product cipher: →block cipher

Replay attack: An attacker sends an already sent message

Round key: →block cipher

RNG: Random number generator, see →HRNG and →PRNG

Stream cipher: In contrast to →block ciphers, a key-dependent bit stream is
generated. Encryption and decryption are the same operation: bitwise XOR of key
stream with the plaintext. Stream ciphers require →integrity protection because of bit
flip attacks.

Symmetric key algorithm: The "usual" cryptographic algorithm, where the same
secret key is used for encrypt and decryption.

6 References
[1] www.nist.gov/aes (AES development, historical site)
[2] http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf (AES standard and test

vectors)
[3] http://csrc.nist.gov/groups/ST/toolkit/block_ciphers.html (overview over block

ciphers, key handling and test vectors)
[4] Schneier, B.: Applied Cryptography, 2nd ed., Wiley1996
[5] Wobst, R.: Cryptology Unlocked, Wiley 2007
[6] http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
[7] http://en.wikipedia.org/wiki/CCM_mode

 21

8260A-AVR-09/09

AVR2027

[8] http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-
July20_2007.pdf

[9] http://tools.ietf.org/html/rfc3610
[10] http://en.wikipedia.org/wiki/EAX_mode
[11] IEEE 802.15.4 standard: http://standards.ieee.org/getieee802/download/802.15.4-

2006.pdf
[12] ZigBee standard: http://www.zigbee.org
[13] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-

Drafts/CCM/RW_CCM_comments.pdf
[14] AT86RF231 data sheet:

http://www.atmel.com/dyn/resources/prod_documents/doc8111.pdf,
[15] AT86RF212 data sheet:

http://www.atmel.com/dyn/resources/prod_documents/doc8168.pdf
[16] http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
[17] http://en.wikipedia.org/wiki/Message_authentication_code
[18] J. Jonsson, On the Security of CTR + CBC-MAC, in Proceedings of Selected Areas

in Cryptography – SAC, 2002, K. Nyberg, H. Heys, Eds., Lecture Notes in
Computer Science, Vol. 2595, pp. 76-93, Berlin: Springer, 2002

7 Table of Contents
AVR2027: AES Security Module ...1
Features..1
1 Introduction...1
2 Overview of IEEE 802.15.4 cryptography..2

2.1 Scope of IEEE 802.15.4 cryptography ... 2
2.1.1 Encryption ... 2
2.1.2 Integrity protection... 2

2.2 Cryptography used in IEEE 802.15.4... 3
2.2.1 The AES algorithm ..3
2.2.2 Encryption modes, CBC-MAC, padding .. 4

2.3 Pros and cons of IEEE 802.15.4 cryptography .. 7
3 Using the radio transceiver security module9

3.1 Overview... 9
3.1.1 Functionality .. 9
3.1.2 Prerequisites ... 9

3.2 Initialize the key.. 10
3.3 Encryption in ECB mode .. 10
3.4 Encryption in CBC mode .. 11
3.5 Implementing CTR mode ... 12
3.6 Decryption (example for ECB mode) ... 13
3.7 Implementing CCM* ... 13
3.8 Timing... 13

3.8.1 CCM mode timing estimation .. 13

22

8260A-AVR-09/09
AVR2027

3.8.2 Parallelization: polling vs. waiting in CCM* mode.. 14
3.8.3 Delay for decryption...15

3.9 Notes .. 15
3.9.1 Loosing key after sleep and reset.. 15
3.9.2 SPI read after write.. 15

4 AES register description, random number generator15
4.1 AES registers.. 15

4.1.1 Register overview..15
4.1.2 Subregisters .. 16

4.2 Hardware random number generator... 16
5 Glossary...18
6 References...20
7 Table of Contents..21

Disclaimer

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo and others, are the
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Overview of IEEE 802.15.4 cryptography
	2.1 Scope of IEEE 802.15.4 cryptography
	2.1.1 Encryption
	2.1.2 Integrity protection

	2.2 Cryptography used in IEEE 802.15.4
	2.2.1 The AES algorithm
	2.2.2 Encryption modes, CBC-MAC, padding

	2.3 Pros and cons of IEEE 802.15.4 cryptography

	3 Using the radio transceiver security module
	3.1 Overview
	3.1.1 Functionality
	3.1.2 Prerequisites

	3.2 Initialize the key
	3.3 Encryption in ECB mode
	3.4 Encryption in CBC mode
	3.5 Implementing CTR mode
	3.6 Decryption (example for ECB mode)
	3.7 Implementing CCM*
	3.8 Timing
	3.8.1 CCM mode timing estimation
	3.8.2 Parallelization: polling vs. waiting in CCM* mode
	3.8.3 Delay for decryption

	3.9 Notes
	3.9.1 Loosing key after sleep and reset
	3.9.2 SPI read after write

	4 AES register description, random number generator
	4.1 AES registers
	4.1.1 Register overview
	4.1.2 Subregisters

	4.2 Hardware random number generator

	5 Glossary
	6 References
	7 Table of Contents

