
Flash
Microcontrollers
AT89S8253 Primer

Application Note

 3655B–MICRO–3/07
AT89S8253 Primer

1. Introduction
The Atmel® AT89S8253 microcontroller is a low-power, high-performance device fea-
turing 12K bytes of Flash memory, 2K bytes of EEPROM, and a Serial Peripheral
Interface (SPI). The Flash and EEPROM memories may be reprogrammed in-system
via the SPI. The EEPROM provides applications with re-writable, nonvolatile data
storage. These features, and others, are described in this application note. Code sam-
ples are provided. Additional information on the AT89S8253 microcontroller can be
found in the datasheet. The AT89S8253 device is meant as a replacement for the
AT89S8252 and AT89S53 devices.

2. Memory Organization

2.1 Program Memory
The AT89S8253 has separate address spaces for program memory and data mem-
ory. Figure 2-1 shows two alternate maps of program memory.

Program memory is read-only: the microcontroller generates no write signals for pro-
gram memory. Depending on the state of the EA pin, program memory may consist of
12K bytes of internal Flash memory supplemented by up to 52K bytes of external
memory, or may consist entirely of up to 64K bytes of external memory. The 12K
bytes of internal Flash memory are accessed at addresses 0000H - 2FFFH. Program
memory accesses at addresses 3000H - FFFFH always access external memory.

Figure 2-1. AT89S8253 Program Memory

52K BYTES

EXTERNAL

64K BYTES

EXTERNAL

AND

12K BYTES

INTERNAL

(EA PIN HIGH)

FFFF

3000

2FFF

0000 0000

FFFF

OR

(EA PIN LOW)

2.2 Data Memory
Figure 2-2 shows a map of AT89S8253 data memory, which consists of 256 bytes of internal
RAM, the Special Function Registers (SFRs), 2K bytes of on-chip EEPROM and, optionally, up
to 64K bytes of external memory.

To the left in Figure 2-2 are shown the 256 bytes of internal RAM and the SFRs, which shadow
the upper 128 bytes of internal RAM. The lower 128 bytes (00H - 7FH) of internal RAM are
accessible by both direct and indirect addressing, while the upper 128 bytes (80H - FFH) are
accessible by indirect addressing only. The SFRs (80H - FFH) are accessible by direct address-
ing only. The addressing mode of an instruction distinguishes accesses to the upper 128 bytes
of internal RAM from accesses to the overlapping SFRs.

The stack, which grows upward, may reside anywhere in the 256 bytes of internal RAM.

To the right in Figure 2-2 are shown the 2K bytes of on-chip EEPROM and the optional 64K
bytes of external data memory. Although the EEPROM is internal, it is shown in the diagram
shadowing the lower 2K bytes of external data memory because some of the same instructions
are used to access EEPROM as are used to access external data memory.

Figure 2-2. AT89S8253 Data Memory

3. EEPROM
The AT89S8253 includes 2K bytes of on-chip EEPROM for nonvolatile data storage. EEPROM
and external data memory are accessible by indirect addressing only, utilizing the MOVX
instructions, which come in two modes: 8-bit and 16-bit. Only the 16-bit MOVX instructions
(those utilizing DPTR) may be used to access internal EEPROM. The 2K bytes of EEPROM are
accessed at addresses 000H - 7FFH.

Accesses to EEPROM are distinguished from accesses to external data memory by the state of
the EEMEN bit in SFR EECON (96H). To access EEPROM, EEMEN is set; to access external
data memory, EEMEN is cleared. Reset clears EEMEN. To enable write accesses to EEPROM,
bit EEMWE in SFR EECON must also be set. Reset clears this bit, disabling EEPROM writes. It
is not necessary to explicitly erase any portion of EEPROM before writing new data.

Sample code showing EEPROM reads and writes is presented in Section 3.3.

FF

INTERNAL

INDIRECT
ADDRESSING

ONLY

64K BYTES
EXTERNAL

SFRs
DIRECT

ADDRESSING ONLY
80H TO FFH

DIRECT

EEPROM (MOVX
INDIRECT ADDRESSING)

AND INDIRECT
ADDRESSING

FF

80

80

7F

00

000

7FF

0000

FFFF

AND
2
3655B–MICRO–3/07

AT89S8253 Primer Application Note

AT89S8253 Primer Application Note
3.1 Page vs. Byte Programming
The EEPROM on the AT89S8253 allows for page-based programming. One or more bytes in a
page, up to 32 bytes total, may be written at one time. This feature reduces the amount of time
required to write multiple bytes to the EEPROM. The EELD bit in EECON allows multiple data
bytes to be loaded to a temporary page buffer. While EELD = 1, MOVX @DPTR,A instructions
will load data to the page buffer, but will not start a write sequence. Note that a previously loaded
byte must not be reloaded prior to the write sequence. To write the page into the memory, EELD
must first be cleared and then a MOVX @DPTR,A with the final data byte is issued. The address
of the final MOVX determines which page will be written. Figures 3-1 and 3-2 show the differ-
ence between byte writes and page writes.

Figure 3-1. EEPROM Byte Write

Figure 3-2. EEPROM Page Write

3.2 EEPROM Status
A write to a location in EEPROM triggers an internal programming cycle, which is guaranteed to
last no longer than 10 milliseconds. The completion of an EEPROM programming cycle may be
determined by monitoring the RDY/BSY bit in SFR EECON. The RDY/BSY low indicates that
programming is in progress; RDY/BSY high indicates that programming is complete. It may take
several microseconds for RDY/BSY to go low after a programming cycle is initiated. Polling of
the RDY/BSY bit should always check for both the low and high condition. When programming is
complete, the contents of the written location may be read back and verified.

Table 3-1. EECON–EEPROM Control Register

Bit 7 6 5 4 3 2 1 0

96h – – EELD EEMWE EEMEN DPS RDY/BSY WRTINH EECON

Reset
Value

X X 0 0 0 0 X X

EEWEN

EEMEN

tWC

EELD

RDY/BSY

MOVX

tWC

EEWEN

EEMEN

tWC

EELD

RDY/BSY

MOVX
3
3655B–MICRO–3/07

3.2.1 DATA Polling
The end of an EEPROM programming cycle may also be determined utilizing the DATA Polling
method, in which the location written is read repeatedly. During programming, the most signifi-
cant bit of the data read is the complement of the data bit written. When programming is
complete, true data is returned. The return of true data also serves as verification of the write
operation.

3.2.2 Low-Voltage Write Inhibit
An EEPROM write sequence will not occur if the supply voltage is not sufficiently high enough
for programming to be successful. The AT89S8253 includes a Low-Voltage Detector that inhibits
writing of the EEPROM when the supply voltage drops below a predefined threshold. The user
should check the write inhibit status by reading the WRTINH bit in EECON. WRTINH is driven
low by hardware when VCC drops below the write voltage threshold. WRTINH will be set high
approximately 2 ms after VCC is restored to a safe level. The EEPROM can always be read
regardless of the state of WRTINH.

3.3 Listing 1: EEPROM Read/Write Examples
; The EECON register is not bit-addressable, so Boolean operations are used
; to control functions and test bits.

EECON DATA 96H ; watchdog and memory control register
EEMEN EQU 00001000B ; EEPROM access enable bit
EEMWE EQU 00010000B ; EEPROM write enable bit
EELD EQU 00100000B ; EEPROM page load enable bit
WRTINH EQU 00000001B ; EEPROM WRTINH bit
RDY EQU 00000010B ; EEPROM RDY/BSY bit

; EEPROM read example.

orl EECON, #EEMEN ; enable EEPROM accesses
mov dptr, #ADDRESS ; address to read
movx a, @dptr ; read EEPROM
xrl EECON, #EEMEN ; disable EEPROM accesses

; EEPROM byte write example, utilizing fixed delay for write cycle.
; Delay is worst case (10 ms). Code for delay is not shown.
; Write is preceded by a write inhibit check, but code to handle an
; inhibit condition is not shown. Write is followed by verify
; (read and compare), but code to handle verification failure
; is not shown.

orl EECON, #EEMEN ; enable EEPROM accesses
orl EECON, #EEMWE ; enable EEPROM writes

mov a, EECON ; get EEPROM status
anl a, #WRTINH ; check WRTINH
jz ERROR ; jump if inhibited

mov dptr, #ADDRESS ; address to write
mov a, #DATA ; data to write
movx @dptr, a ; write EEPROM
4
3655B–MICRO–3/07

AT89S8253 Primer Application Note

AT89S8253 Primer Application Note
call DELAY_10_MS ; wait 10 ms

movx a, @dptr ; read EEPROM
cjne a, #DATA, ERROR; jump if data compare fails

xrl EECON, #EEMWE ; disable EEPROM writes
xrl EECON, #EEMEN ; disable EEPROM accesses

; EEPROM byte write example, utilizing RDY/BSY to determine the end of
; the write cycle. Write is preceded by a write inhibit check, but code
; to handle an inhibit condition is not shown. Write is followed by verify
; (read and compare), but code to handle verification failure is not shown.
; Needs timeout to prevent write error from causing an infinite loop.

orl EECON, #EEMEN ; enable EEPROM accesses
orl EECON, #EEMWE ; enable EEPROM writes

mov a, EECON ; get EEPROM status
anl a, #WRTINH ; check WRTINH
jz ERROR ; jump if inhibited

mov dptr, #ADDRESS ; address to write
mov a, #DATA ; data to write
movx @dptr, a ; write EEPROM

loop1:

mov a, EECON ; get EEPROM write status
anl a, #RDY ; check RDY/BSY
jnz loop1 ; jump if not busy yet

loop2:

mov a, EECON ; get EEPROM write status
anl a, #RDY ; check RDY/BSY
jz loop2 ; jump if busy
movx a, @dptr ; read EEPROM
cjne a, #DATA, ERROR; jump if data compare fails

xrl EECON, #EEMWE ; disable EEPROM writes
xrl EECON, #EEMEN ; disable EEPROM accesses

; EEPROM byte write example, utilizing DATA Polling to determine the end of
; the write cycle. Write is preceded by a write inhibit check, but code to
; handle an inhibit condition is not shown. After data is loaded, the code
; loops on read until data is returned true. Write verification is implicit
; in this method. Needs timeout to prevent write error from causing an
; infinite loop.

orl EECON, #EEMEN ; enable EEPROM accesses
orl EECON, #EEMWE ; enable EEPROM writes

mov a, EECON ; get EEPROM status
anl a, #WRTINH ; check WRTINH
jz ERROR ; jump if inhibited
5
3655B–MICRO–3/07

mov dptr, #ADDRESS ; address to write
mov a, #DATA ; data to write
movx @dptr, a ; write EEPROM

loop:

movx a, @dptr ; read EEPROM
cjne a, #DATA, loop ; jump if data compare fails (busy)

xrl EECON, #EEMWE ; disable EEPROM writes
xrl EECON, #EEMEN ; disable EEPROM accesses

; EEPROM page write example, utilizing RDY/BSY to determine the end of
; the write cycle. Write is preceded by a write inhibit check, but code
; to handle an inhibit condition is not shown. Data is copied from the
; internal RAM into a single page of the EEPROM.
; Needs timeout to prevent write error from causing an infinite loop.

orl EECON, #EEMEN ; enable EEPROM accesses
orl EECON, #EEMWE ; enable EEPROM writes

mov a, EECON ; get EEPROM status
anl a, #WRTINH ; check WRTINH
jz ERROR ; jump if inhibited

mov dptr, #ADDRESS ; starting address to write
mov r0, #DATA ; starting address of data to write
mov r1, #(PAGESIZE-1); amount of data to write

orl EECON, #EELD ; set EELD

loop0:

mov a, @r0 ; get data
inc r0 ; next source address
movx @dptr, a ; load EEPROM
inc dptr ; next destination address
djnz r1, loop0 ; jump if not done yet

xrl EECON, #EELD ; clear EELD

mov a, @r0 ; get last data
movx @dptr, a ; write EEPROM

loop1:

mov a, EECON ; get EEPROM write status
anl a, #RDY ; check RDY/BSY
jnz loop1 ; jump if not busy yet

loop2:

mov a, EECON ; get EEPROM write status
anl a, #RDY ; check RDY/BSY
jz loop2 ; jump if busy
movx a, @dptr ; read EEPROM
cjne a, #DATA, ERROR; jump if data compare fails

xrl EECON, #EEMWE ; disable EEPROM writes
xrl EECON, #EEMEN ; disable EEPROM accesses
6
3655B–MICRO–3/07

AT89S8253 Primer Application Note

AT89S8253 Primer Application Note
4. Dual Data Pointers
The AT89S8253 features two 16-bit data pointers (DP0 and DP1) for accessing data in program
memory, external data memory, and on-chip EEPROM. The low and high bytes of DP0 are
stored in SFRs DP0L (82H) and DP0H (83H), respectively. The low and high bytes of DP1 are
stored in SFRs DP1L (84H) and DP1H (85H), respectively. Note that DP0 occupies the same
SFRs as the single data pointer in conventional 8051 microcontrollers.

In the AT89S8253, the DPS bit in SFR EECON (96H) selects the active data pointer (DP0 or
DP1). All instructions which reference DPTR utilize the data pointer which is currently selected.
To select DP0, DPS is cleared; to select DP1, DPS is set. Reset clears DPS. Note that DP0 is
always accessed at SFRs DP0L (82H) and DP0H (83H) and DP1 is always accessed at SFRs
DP1L (84H) and DP1H (85H), regardless of the state of DPS. This behavior is the same as
AT89S52, but is different than AT89S8252.

The two data pointers may be used to expedite the transfer of data between program memory,
external data memory, and on-chip EEPROM, as shown in Section 4.1.

4.1 Listing 2: Dual Data Pointer Examples
; The EECON register is not bit-addressable, so Boolean operations are used.

EECON DATA 96H ; Watchdog and memory control register
EEMEN EQU 00001000B ; EEPROM access enable bit
EEMWE EQU 00010000B ; EEPROM write enable bit
RDY EQU 00000010B ; EEPROM RDY/BSY bit
DPS EQU 00000100B ; data pointer select bit

; Copy block from program memory to external data memory.

mov r7, #COUNT ; block byte count
mov dptr, #PGM_ADDR; pointer to program memory
xrl EECON, #DPS ; switch data pointers
mov dptr, #XD_ADDR ; pointer to external data memory

loop:

xrl EECON, #DPS ; switch data pointers
clr a ; read program memory
movc a, @a+dptr ;
inc dptr ; advance program memory pointer
xrl EECON, #DPS ; switch data pointers
movx @dptr, a ; write external data memory
inc dptr ; advance external data memory pointer
djnz r7, loop ; continue until done

; Copy block from external data memory to on-chip EEPROM.
; Utilizes RDY/BSY to determine the end of the EEPROM write cycle.
; The code could be made more efficient through use of page programming.
; Needs timeout to prevent write error from causing an infinite loop.

orl EECON, #EEMEN ; enable EEPROM accesses
orl EECON, #EEMWE ; enable EEPROM writes

mov r7, #COUNT ; block byte count
mov dptr, #EE_ADDR ; pointer to EEPROM
xrl EECON, #DPS ; switch data pointers
mov dptr, #XD_ADDR ; pointer to external data memory
7
3655B–MICRO–3/07

copy:

movx a, @dptr ; read external data memory

inc dptr ; advance external data memory pointer
xrl EECON, #DPS ; switch data pointers
movx @dptr, a ; write EEPROM
inc dptr ; advance EEPROM pointer
xrl EECON, #DPS ; switch data pointers

wait1:

mov a, EECON ; get EEPROM write status
anl a, #RDY ; check RDY/BSY
jnz wait1 ; jump if not busy

wait2:

mov a, EECON ; get EEPROM write status
anl a, #RDY ; check RDY/BSY
jz wait2 ; jump if busy
djnz r7, copy ; continue until done

xrl EECON, #EEMWE; disable EEPROM writes
xrl EECON, #EEMEN; disable EEPROM accesses

5. Four-level Interrupt Controller
The AT89S8253 includes an enhanced interrupt controller with support for four priority levels.
The additional priority levels allow greater control over the interrupt response sequence in multi-
ple interrupt systems. Four priority levels require two priority bits per interrupt. The lower order
bits are stored in the existing IP (B8H) Sfr. The higher order bits are stored in the additional IPH
(B7H) SFR. The priority bits for individual interrupts share the same position in both IP and IPH.
The polling order for interrupts of the same priority remains the same as previous devices. The
following example configures the interrupts with different priority levels.

5.1 Listing 3: Interrupt Priority Example
; The IPH register is not bit-addressable, so Boolean operations are used.

IP DATA B8H ; low priority register
IPH DATA B7H ; high priority register
PX0H EQU 00000001B ; external interrupt 0
PT0H EQU 00000010B ; timer 0 overflow
PX1H EQU 00000100B ; external interrupt 1
PT1H EQU 00001000B ; timer 1 overflow
PSH EQU 00010000B ; serial interrupts
PT2H EQU 00100000B ; timer 2 interrupt

; Set up priority between interrupts
; priority 3: Timer 2 (Highest)
; priority 2: INT1, Timer 0
; priority 1: Serial
; priority 0: INT0, Timer 1(Lowest)

setb ps ; serial = level 1
orl IPH, #PX1H ; INT1 = level 2
orl IPH, #PT0H ; timer 0 = level 2
setb pt2 ; timer 2 = level 1
orl IPH, #PT2H ; timer 2 = level 3
8
3655B–MICRO–3/07

AT89S8253 Primer Application Note

AT89S8253 Primer Application Note
6. Watchdog Timer
The AT89S8253 features a watchdog timer which allows control of the microcontroller to be
regained, should it be lost. When enabled, the timer will reset the microcontroller after a speci-
fied period has elapsed, unless prevented from doing so by the intervention of the firmware. The
AT89S8253 watchdog has two operating modes: software mode (from AT89S8252 and
AT89S53) and hardware mode (from AT89S52). Note that the watchdog on AT89S8253 is con-
trolled by SFR WDTCON at address A7H as compared with WMCON (96H) on AT89S8252 and
AT89S53.

To enable the watchdog timer in software mode, the WDTEN bit in SFR WDTCON (A7H) must
be set and the HWDT bit must be cleared; to disable the timer, WDTEN should be cleared. Once
the timer is enabled, the firmware must set the WSWRST bit in SFR WDTCON (or disable the
timer) before the reset period elapses to prevent the timer from resetting the microcontroller.
Each time WSWRST is set, a new reset period begins, requiring another response from the firm-
ware. The firmware does not need to clear WSWRST after setting it; WSWRST is automatically
cleared by the microcontroller.

To enable the watchdog timer in hardware mode, the HWDT bit in WDTCON must be set and
the sequence 1EH/E1H must be written to SFR WDTRST (A6H). In hardware mode, the watch-
dog can only be disabled by a device reset. The WDTEN bit will be forced high when the
hardware watchdog mode is enabled. Once the hardware watchdog timer is enabled, the firm-
ware must write the 1Eh/E1h sequence to WDTRST before the reset period elapses to prevent
the timer from resetting the microcontroller. Each time WDTRST is written with the correct
sequence, a new reset period begins, requiring another response from the firmware.

The watchdog timer reset period varies from 16K to 2048K system clock cycles, as specified by
bits PS0, PS1 and PS2 in WDTCON. Refer to the AT89S8253 datasheet for the nominal reset
periods corresponding to the bit settings. The timer reset period of the AT89S8253 depends on
the frequency of the clock source driving the microcontroller. If the watchdog timer times out, it
will generate a reset pulse lasting 96 clock periods. The RST pin will also be pulled high for the
duration of the reset, unless the DISRTO bit in WDTCON was set prior to the time-out. Reset
(including reset generated by the watchdog timer) clears WDTEN, WSWRST, HWDT, WDIDLE,
DISRTO, SP0, SP1 and SP2, disabling the watchdog timer.

When WDIDLE = 0, the watchdog timer continues to operate even when the microcontroller is in
Idle mode. To prevent the watchdog from timing out during Idle, an interrupt such as a timer
overflow must be used to wake up the device periodically and reset the watchdog, or the WDI-
DLE bit may be set to disable the watchdog during Idle. The watchdog is always disabled during
Power-down mode. To prevent the watchdog from timing out immediately upon exit from
Power-down (or Idle with WDIDLE set), the watchdog should be reset just before entering
Power-down (or Idle).

A typical application of the watchdog timer is outlined in Section 6.1.

Table 6-1. WDTCON– Watchdog Control Register

Bit 7 6 5 4 3 2 1 0

A7H PS2 PS1 PS0 WDIDLE DISRTO HWDT WSWRST WDTEN

Reset
Value

0 0 0 0 0 0 0 0
9
3655B–MICRO–3/07

6.1 Listing 4: Watchdog Timer Example
; Use the software watchdog timer to regain control of the microcontroller
; if an operation takes longer than expected. The details of the operation
; are not shown. The operation is expected to take less than 20 ms to
; complete and the reset period chosen is 32 ms. Adequate margin must be
; allowed between the desired reset period and the selected period to allow
; for the slop present in the timer.
; The EECON register is not bit-addressable, so Boolean operations are used.

WDTCON DATA A7H ; watchdog control register
WDTRST DATA A6H ; watchdog reset register
WDTEN EQU 00000001B ; watchdog timer enable bit
WSWRST EQU 00000010B ; watchdog timer software reset bit
HWDT EQU 00000100B ; watchdog timer hardware mode bit
PS0 EQU 00100000B ; watchdog timer period select bits
PS1 EQU 01000000B ;
PS2 EQU 10000000B ;

orl WDTCON, #PS0 ; select 32-ms period at 12MHz
orl WDTCON, #WDTEN; enable watchdog

loop:

; Do something which normally takes less than 20 ms.
.
.
.

orl WDTCON, #WSWRST ; keep watchdog at bay
jmp loop

; Use the hardware watchdog timer to regain control of the microcontroller
; if an operation takes longer than expected. The details of the operation
; are not shown. The operation is expected to take less than 20 ms to
; complete and the reset period chosen is 32 ms. Adequate margin must be
; allowed between the desired reset period and the selected period to allow
; for the slop present in the timer.
; The EECON register is not bit-addressable, so Boolean operations are used.

orl WDTCON, #PS0 ; select 32-ms period at 12MHz
orl WDTCON, #HWDT ; enable hardware watchdog
mov WDTRST, #01EH ; enable watchdog sequence 1
mov WDTRST, #0E1H ; enable watchdog sequence 2

loop:

; Do something which normally takes less than 20 ms.
.
.
.

; keep watchdog at bay
mov WDTRST, #01EH ; feed watchdog sequence 1
mov WDTRST, #0E1H ; feed watchdog sequence 2
jmp loop
10
3655B–MICRO–3/07

AT89S8253 Primer Application Note

AT89S8253 Primer Application Note
7. Power Off Flag
The Power Off Flag (POF) indicates that power has been removed from the AT89S8253. This
allows the firmware to differentiate between reset due to the application of power and reset due
to the watchdog timer, or a logic high on the RST pin. POF is set when power is applied to the
microcontroller and is not affected by the watchdog timer or by activity on RST. POF is located at
bit four in SFR PCON (87H), and may be read, set, or cleared by firmware. Note that PCON is
not bit-addressable.

A typical application of the Power Off Flag is outlined in Section 7.1.

7.1 Listing 5. Power Off Flag Example
; After reset, the microcontroller begins executing code at program memory
; address 0000H. POF is tested to determine if the controller was reset
; by the application of power (cold start) or by the watchdog timer or a
; high on RST (warm start).
; Code for the cold start and warm start routines is not shown.

POF EQU 00010000B ; Power Off Flag bit

CSEG ; code segment

ORG 0000H ; location of reset vector

jmp xreset ; vector

.

.

.

xreset: ; code for responding to reset

.

.

.
mov a, PCON ; get Power Control register

anl a, #POF ; test Power Off Flag

jz WARM_START ; POF=0 indicates reset from

; watchdog timer or RST

xrl PCON, #POF ; clear POF for next time

jmp COLD_START ; POF=1 indicates reset from power

8. Enhanced UART
The serial port (UART) of the AT89S8253 includes the enhanced features of framing error
detection and automatic address recognition.

8.1 Framing Error Detection
Invalid stop bits can flag errors in the serial communication stream of the UART. The UART
looks for missing stop bits in the communication. A missing stop bit will set the FE bit in the
SCON register. The FE bit shares the SCON.7 bit position with SM0 and the function of SCON.7
is determined by SMOD0 (PCON.6). SCON.7 functions as SM0 when SMOD0 is cleared. If
SMOD0 is set then SCON.7 functions as FE. FE will be set by missing stop bits regardless of the
state of SMOD0. FE can only be cleared by software, i.e. a framing error will be remembered,
even if subsequent communication is valid, until the FE bit is cleared by the software.
11
3655B–MICRO–3/07

To use framing error detection with Modes 2 or 3, first set SM0 while SMOD0 = 0 and then set
SMOD0 to map FE into SCON.

8.2 Automatic Address Recognition
Automatic Address Recognition is a feature which allows the UART to recognize certain
addresses in the serial bit stream by using hardware to make the comparisons. This feature
saves a great deal of software overhead by eliminating the need for the software to examine
every serial address which passes by the serial port. This feature is enabled by default when
setting the SM2 bit in SCON to use multiprocessor communication mode. In the 9-bit UART
modes, Mode 2 and Mode 3, the Receive Interrupt flag (RI) will be automatically set when the
received byte contains either the “Given” address or the “Broadcast” address. The 9-bit mode
requires that the 9th information bit is a 1 to indicate that the received information is an address
and not data.

In 8-bit Mode 1 the RI flag will be set if SM2 is enabled and the information received has a valid
stop bit following the 8 address bits and the information is either a Given or Broadcast address.

Using the Automatic Address Recognition feature allows a master to selectively communicate
with one or more slaves by invoking the given slave address or addresses. All of the slaves may
be contacted by using the Broadcast address. Two special function registers are used to define
the slave’s address, SADDR (A9H), and the address mask, SADEN (B9H). SADEN is used to
define which bits in SADDR are to be used and which bits are “don’t care”. The SADEN mask
can be logically ANDed with the SADDR to create the “Given” address which the master will use
for addressing each of the slaves. Use of the Given address allows multiple slaves to be recog-
nized while excluding others. The following examples will help to show the versatility of this
scheme:

Slave 0: SADDR = 1100 0000
SADEN = 1111 1101
Given = 1100 00X0

Slave 1: SADDR = 1100 0000
SADEN = 1111 1110
Given = 1100 000X

In the previous example SADDR is the same and the SADEN data is used to differentiate
between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores bit 1. Slave 1 requires a 0 in
bit 1 and bit 0 is ignored. A unique address for slave 0 would be 1100 0010 since slave 1
requires a 0 in bit 1. A unique address for slave 1 would be 1100 0001 since a 1 in bit 0 will
exclude slave 0. Both slaves can be selected at the same time by an address which has bit 0 = 0
(for slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed with 1100 0000.

In a more complex system the following could be used to select slaves 1 and 2 while excluding
slave 0:

Slave 0: SADDR = 1100 0000
SADEN = 1111 1001
Given = 1100 0XX0

Slave 1: SADDR = 1110 0000
SADEN = 1111 1010
Given = 1110 0X0X
12
3655B–MICRO–3/07

AT89S8253 Primer Application Note

AT89S8253 Primer Application Note
Slave 2: SADDR = 1110 0000
SADEN = 1111 1100
Given = 1110 00XX

In the previous example the differentiation among the 3 slaves is in the lower 3 address bits.
Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 1110 0110. Slave 1 requires
that bit 1 = 0 and it can be uniquely addressed by 1110 and 0101. Slave 2 requires that bit 2 = 0
and its unique address is 1110 0011. To select Slaves 0 and 1 and exclude Slave 2, use
address 1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the logical OR of SADDR and
SADEN. Zeros in this result are trended as don’t-cares. In most cases, interpreting the don’t-
cares as ones, the broadcast address will be FFH.

Upon reset SADDR and SADEN are loaded with 0s. This produces a given address of all “don’t
cares” as well as a Broadcast address of all “don’t cares”. This effectively disables the Automatic
Addressing mode and allows the microcontroller to use standard 80C51-type UART drivers
which do not make use of this feature.

9. Serial Peripheral Interface
The Serial Peripheral Interface (SPI) permits compatible devices to communicate serially over a
high-speed, synchronous bus. Devices resident on the bus act as masters or slaves, with only
one master and one slave active at any one time. Data transfers are always initiated by a mas-
ter, and are actually data exchanges, with data flowing from the master to the slave and from the
slave to the master simultaneously.

SPI-compatible devices have four pins in common: SCK, MOSI, MISO, and SS. All devices in a
system have their SCK, MOSI, and MISO pins tied together. Data flows from master to slave via
MOSI (Master Out Slave In) and from slave to master via MISO (Master In Slave Out). Data
transfers are synchronized to a clock generated by the master and output on its SCK pin. SCK is
an input for devices configured as slaves. A master device will always drive its SCK and MOSI
pins, even when not currently transmitting. Inactive masters must be reconfigured as slaves to
prevent them from driving their SCK and MOSI pins.

The SS (Slave Select) pins on the devices in the system are not bused. Each slave is connected
to its master by a select line from its SS input to a general-purpose output on the master. If a
slave has multiple masters, the multiple select lines must be gated to its SS input. Masters do
not utilize their SS pins during SPI data transfers, freeing them for use as general-purpose
outputs.

To initiate an SPI data transfer, the active master selects a slave by applying a logic low to the
slave’s SS input. The master starts the serial clock, which it outputs on its SCK pin, and shifts
out a byte on its MOSI pin, synchronized to the clock. Simultaneously, the slave shifts out a byte
on its MISO pin, synchronized to the clock. When the master and slave have exchanged data,
the transfer is complete. The master stops the serial clock and may deselect the slave. Slaves
which are not selected ignore their SCK inputs and float their MISO outputs to avoid contention
with the active output of the selected slave.

In the AT89S8253, the SPI is configured via SFR SPCR (D5H), the SPI Control Register. The
frequency of the serial clock, the ordering of the serial data, and the relationship between the
clock and the shifting and sampling of data are all programmable, as described below.
13
3655B–MICRO–3/07

To enable the SPI feature, the SPE bit in SFR SPCR must be set; to disable the SPI, SPE is
cleared. When the SPI is enabled, microcontroller pins P1.4, P1.5, P1.6 and P1.7 become SS,
MOSI, MISO, and SCK, respectively. The SPI may not operate correctly unless pins P1.4 - P1.7
are first programmed high. Reset sets pins P1.4 - P1.7 high and clears SPE, disabling the SPI.
Note that because P1.7 starts high, enabling the SPI in master mode with CPOL = 0 will result in
a falling edge on SCK and clearing either MSTR or SPE will generate a rising edge on SCK. To
prevent the slaves from being clocked by these edges, all slaves should be disabled with either
SS = 1 or SPE = 0 when enabling/disabling the master.

The MSTR bit in SFR SPCR configures the microcontroller as a SPI master when set, and as a
slave when cleared. Reset clears MSTR. When the microcontroller is configured as a SPI mas-
ter, SS (P1.4) is not utilized and may be used as a general-purpose, programmable output.

When the microcontroller is configured as a SPI master, the frequency of the serial clock is
determined by bits SPR0 and SPR1 in SFR SPCR. The frequency of the serial clock is the fre-
quency of the microcontroller’s clock source divided by the selected divisor. The divisor must be
selected to produce a serial clock frequency which is compatible with the master’s slaves. Refer
to the AT89S8253 datasheet for the divisors corresponding to the settings of bits SPR0 and
SPR1.

The DORD bit in SFR SPCR determines the order in which the bits in the serial data are trans-
ferred. Data is transferred least-significant bit (LSB) first when DORD is set; most-significant bit
(MSB) first when DORD is cleared. Reset clears DORD. Note that only MSB-first data transfers
are shown in the diagrams in the AT89S8253 datasheet.

The polarity of the SPI serial clock is determined by the CPOL bit in SFR SPCR. Setting CPOL
specifies serial clock high when idle; clearing CPOL specifies serial clock low when idle. Reset
clears CPOL.

The CPHA bit in SFR SPCR controls the phase of the SPI serial clock, which defines the rela-
tionship between the clock and the shifting and sampling of serial data. Setting CPHA specifies
that data is to be shifted on the leading edge of the clock and sampled on the trailing edge.
Clearing CPHA specifies that data is to be sampled on the leading edge of the clock and shifted
on the trailing edge. Reset sets CPHA. Examples of SPI serial clock phase and polarity are
shown in the diagrams in the AT89S8253 datasheet.

Only an AT89S8253 configured as an SPI master may initiate a data transfer. A data transfer is
triggered by a byte written to SFR SPDR (86H), the SPI Data Register. As data is shifted out of
the master, data from the selected slave is simultaneously shifted in, replacing the data in
SPDR. When a data transfer is complete, the SPIF bit is set in SFR SPSR (AAH), the SPI Status
Register. The data received from the slave may then be read from SPDR. Writing SPDR during
a data transfer sets the Write Collision bit (WCOL) in SPSR. The progress of the data transfer is
not affected by a collision. The SPIF and WCOL bits cannot be cleared directly by software. To
clear bits SPIF and WCOL, first read SPSR and then read or write SPDR. This operation gener-
ally occurs within the normal operation of the SPI routine, e.g., polling the status of SPIF reads
the SPSR register and then reading the received value from SPDR or sending the next value by
writing SPDR automatically clears the flags.

An interrupt may be generated as an alternative to polling SPIF to determine the end of a SPI
data transfer. To enable the SPI interrupt, three bits must be set. The first is the SPIE bit in
SPCR, which causes an interrupt to be generated when SPIF is set. The second and third are
the EA and ES bits in SFR IE (A8H). EA is the global interrupt enable bit. The SPI shares an
interrupt vector with the UART, so the UART enable ES must also be set. When an SPI interrupt
occurs, the SPI/UART interrupt service routine must determine the source of the interrupt. An
SPI interrupt is indicated when the SPIF bit in SPSR is set.
14
3655B–MICRO–3/07

AT89S8253 Primer Application Note

AT89S8253 Primer Application Note
9.1 Buffered Mode
The SPI data register is normally double-buffered in the read direction but only single-buffered in
the write direction. This means that received data from the previous transfer can be read while
the current transfer is in progress, but the next byte to transmit cannot be queued while the cur-
rent transfer is in progress. The AT89S8253 has the ability to also double-buffer SPDR in the
write direction by setting the ENH bit in SPSR. Double-buffered mode is referred to as Enhanced
Mode.

In enhanced mode, the Serial Peripheral Interface (SPI) on the AT89S8253 uses a double-buff-
ered transmitter with WCOL as the buffer full flag. When data is written to SPDR, the transmit
buffer is loaded with the data and the WCOL flag is set to show that the buffer is full. If the shift
register is empty, as is the case for the first byte in a sequence, the contents of the buffer are
transferred immediately to the shift register and WCOL is cleared low to flag buffer empty. After-
wards the user may queue data bytes in the transmit buffer by writing to SPDR while WCOL is
low. WCOL is set high when SPDR is written, but the data is not transferred to the shift register.
When the current byte transfer completes, the queued data in the buffer is moved to the shift
register, WCOL is cleared, and the next transfer starts immediately. If a byte transfer completes
with the buffer empty, the transmission halts until data is written to SPDR.

If the user waits until SPIF is set before loading the next data byte, gaps may occur between
byte transfers. For higher utilization of the bus, the user may poll the status of WCOL to deter-
mine when to load the next data byte and thereby keep the transmitter full occupied.

The AT89S8253 includes the LDEN bit in SPSR to flag the first four bit slots of a transfer. The
LDEN signal is not required for SPI operation. However, the LDEN signal may be used on slave
devices to determine when an SPI transfer starts.

Figure 9-1. SPI in Enhanced Mode

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

SS

SCK

MOSI

MISO

7 06 5 4 3 2 17 06 5 4 3 2 1

7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1 7 06 5 4 3 2 1

Write
SPDR

WCOL

LDEN

Read
SPDR

SPIF
15
3655B–MICRO–3/07

9.2 Listing 6: SPI Example
In the application shown below, the AT89S8253 is configured as an SPI master and interfaces to
an Atmel AT25040 SPI-compatible EEPROM. The EEPROM provides 512 bytes of re-writable,
nonvolatile storage while requiring only a four-pin interface to the microcontroller. The microcon-
troller and EEPROM are wired as shown in Figure 9-2. Note that the microcontroller’s SS pin is
used as a slave select, since it is unused when the microcontroller is configured as a SPI mas-
ter. Additional EEPROMs may be connected to the microcontroller’s SCK, MISO and MOSI pins,
but each device must have its own select line.

Sample code for the application is shown in Section 9.2. A SPI master must be configured to
meet the requirements of its slaves. The AT25040 datasheet states that the maximum clock rate
for the device is 2 MHz. The microcontroller’s clock source is a 24-MHz crystal (Figure 9-2), so a
SPI serial clock divisor of 16 was chosen to produce a serial clock of 1.5 MHz. As shown in the
AT25040 datasheet, the device’s chip select (CS) input must remain active (low) for the duration
of an operation, which may include multiple data transfers. Also, the serial clock must be low
when idle and data is transferred most-significant bit first. Therefore, CPHA = 1, CPOL = 0 and
DORD = 0. In the example, SPI interrupts are not used.

Figure 9-2. AT89S8253 as an SPI Master

AT89S8253
AT25040

10

39

21
11

38

22
12

37

23
13

36

24
14

35

25

33

27

29

16

15

34

26

32

28

30

17

1

5

3

7

2

6

4

8

EA/VPP

XTAL1

XTAL2

RST

P3.0/RXD
P3.1/TXD
P3.2/INT0
P3.3/INT1
P3.4/T0
P3.5/T1

P1.0/T2
P1.1/T2EX
P1.2
P1.3
P1.4/SS
P1.5/MOSI
P1.6/MISO
P1.7/SCK

CS
SCK

SI
SO

HOLD
WP

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

PSEN
ALE/PROG

P3.6/WR
P3.7/RD

31

U1

U2

7
3

2

1
6
5

VCC

VCC

SPI Master Mode

VCC

19

18

C2

C1
1 uF

C3

Y1
24 MHz

5 pF

5 pF 9

+

16
3655B–MICRO–3/07

AT89S8253 Primer Application Note

AT89S8253 Primer Application Note
; Write/Read AT25C040 EEPROM via the Serial Peripheral Interface (SPI).
; Completion of AT25C040 programming is determined by polling the device.
; SPI interrupt is not used. ; Works with a microcontroller clock of 24 MHz
; (or slower).
;

; The AT25040 routines (“read_status”, “enable_write”, “read_byte”,
; “write_byte”) are excerpted from code previously made available by Atmel
; for use with the AT89Cx051 microcontrollers. In that code, access to the
; AT25040 was via “bit banging”. The two routines which shifted the serial
; data in/out have been replaced by the single SPI routine “masterIO”.

; Microcontroller registers and bit definitions.

SPCR DATA 0d5H ; SPI control register
SPSR DATA 0aaH ; SPI status register
SPIF EQU 10000000B ; interrupt flag
SPDR DATA 86H ; SPI data register

; Microcontroller connections to AT25040.

CS_ BIT p1.4 ; AT25040 slave select
MOSI BIT p1.5 ; SPI
MISO BIT p1.6 ; SPI
SCK BIT p1.7 ; SPI

; AT25040 device command and bit definitions.

RDSR EQU 05H ; Read Status Register
WRSR EQU 01H ; Write Status Register
READ EQU 03H ; Read Data from Memory
WRITE EQU 02H ; Write Data to Memory
WREN EQU 06H ; Write Enable
WRDI EQU 04H ; Write Disable

A8 BIT acc.3 ; MSB of address
NRDY BIT acc.0 ; high = write cycle in progress

main:

; SPI master mode initialization code.

setb CS_ ; deselect AT25040

setb MOSI ; initialize SPI pins
setb MISO ;
setb SCK ;

mov SPCR, #01010101B ; initialize SPI master
; interrupt disable, pin enable,
; MSB first, polarity 0, phase 1,
; clock rate /16
17
3655B–MICRO–3/07

; Write one byte to AT25040 and verify (read and compare).
; Code to handle verification failure is not shown.
; Needs timeout to prevent write error from causing an infinite loop.

call enable_write ; must precede each byte write
mov a, #DATA ; data
mov dptr, #ADDRESS ; address
call write_byte ; write

wchk:

call read_status ; check write status
jb NRDY, wchk ; loop until done

mov dptr, #ADDRESS ; address
call read_byte ; read
cjne a, #DATA, ERROR ; jump if data compare fails

.

.

.

read_status:

; Read device status.
; Returns status byte in A.

clr CS_ ; select device
mov a, #RDSR ; get command
call masterIO ; send command
call masterIO ; get status
setb CS_ ; deselect device

ret

enable_write:

; Enable write.
; Does not check for device ready before sending command.
; Returns nothing. Destroys A.

clr CS_ ; select device
mov a, #WREN ; get command
call masterIO ; send command
setb CS_ ; deselect device

ret

read_byte:

; Read one byte of data from specified address.
; Does not check for device ready before sending command.
; Called with address in DPTR.
; Returns data in A.

clr CS_ ; select device
mov a, dph ; get high byte of address
rrc a ; move LSB into carry bit
18
3655B–MICRO–3/07

AT89S8253 Primer Application Note

AT89S8253 Primer Application Note
mov a, #READ ; get command
mov A8, c ; combine command and high bit of addr
call masterIO ; send command and high bit of address
mov a, dpl ; get low byte of address
call masterIO ; send low byte of address
call masterIO ; get data
setb CS_ ; deselect device
ret

write_byte:

; Write one byte of data to specified address.
; Does not check for device ready or write enabled before sending
; command. Does not wait for write cycle to complete before returning.
; Called with address in DPTR, data in A.

; Returns nothing.

clr CS_ ; select device
push acc ; save data
mov a, dph ; get high byte of address
rrc a ; move LSB into carry bit
mov a, #WRITE ; get command
mov A8, c ; combine command and high bit of address
call masterIO ; send command and high bit of address
mov a, dpl ; get low byte of address
call masterIO ; send low byte of address
pop acc ; restore data
call masterIO ; send data
setb CS_ ; deselect device
ret

masterIO:

; Send/receive data through the SPI port.
; A byte is shifted in as a byte is shifted out,
; receiving and sending simultaneously.
; Waits for shift out/in complete before returning.
; Expects slave already selected.

; Called with data to send in A. Returns data received in A.

mov SPDR, a ; write output data

bbb:

mov a, SPSR ; get status
anl a, #SPIF ; check for done
jz bbb ; loop until done

move a, SPDR ; read input data

ret
19
3655B–MICRO–3/07

3655B–MICRO–3/07

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

Headquarters Operations
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

International

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3
France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex
France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR
Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn
Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex
France
Tel: (33) 4-76-58-47-50
Fax: (33) 4-76-58-47-60

Literature Requests
www.atmel.com/literature

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others are registered trade-
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1. Introduction
	2. Memory Organization
	2.1 Program Memory
	2.2 Data Memory

	3. EEPROM
	3.1 Page vs. Byte Programming
	3.2 EEPROM Status
	3.2.1 DATA Polling
	3.2.2 Low-Voltage Write Inhibit

	3.3 Listing 1: EEPROM Read/Write Examples

	4. Dual Data Pointers
	4.1 Listing 2: Dual Data Pointer Examples

	5. Four-level Interrupt Controller
	5.1 Listing 3: Interrupt Priority Example

	6. Watchdog Timer
	6.1 Listing 4: Watchdog Timer Example

	7. Power Off Flag
	7.1 Listing 5. Power Off Flag Example

	8. Enhanced UART
	8.1 Framing Error Detection
	8.2 Automatic Address Recognition

	9. Serial Peripheral Interface
	9.1 Buffered Mode
	9.2 Listing 6: SPI Example

