AVR32760: AVR32 UC3 USB DFU Bootloader
Protocol

1. Introduction

This application note describes the USB DFU Protocol used in the AVR®32 UC3 USB
bootloader.
In a first part of the document, it gives an overview the USB DFU class protocol and
details the Atmel DFU protocol used by the bootloader in a second part of the
document.

1.1 Intended Audience
This application note is intended for people who are interested in:

» modifying the UC3 USB DFU bootloader for instance to add specific commands.
* building their own UC3 DFU programmer tool.

1.2 Prerequisites
It is recommended to the audience to be familiar with the USB specification or at least
with the USB transfer protocol.

1.3 Supported Devices
All the AVR32 UC3 parts implementing a USB device peripheral support this USB
DFU Protocol.

1.4 Terms and Abbreviations

The meanings of some words have been stretched to suit the purposes of this docu-
ment. These definitions are intended to clarify the discussions that follow.

* DFU Device Firmware Upgrade

* Firmware Executable software stored in a write-able, nonvolatile memory
on a USB device.

» Upgrade To overwrite the firmware of a device.
(1) The act of overwriting the firmware of a device.
(2) New firmware intended to replace a device’s existing firmware.

» Download To transmit information from host to device.
* Upload To transmit information from device to host.
«IN USB transfer packet from device to host

« OUT USB transfer packet from host to device

« ZLP USB Zero Length Packet

ATMEL

Y ()

32-bit AVR'

Microcontrollers

Application Note

Rev 32131A-AVR32-09/09

ATMEL

1.5 References

* AVR32 UC3 USB DFU Bootloader datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc7745.pdf

« Universal Serial Bus Device Class Specification for Device Firmware Upgrade:
www.usb.org/developers/devclass_docs/usbdfulO.pdf

1.6 System Overview

The Atmel DFU protocol is encapsulated in some USB DFU specific requests (see section “DFU
Specific Requests” on page 3). Figure 1-1 shows the system environment.

Figure 1-1. System Environment

uc3
Bootloader
Sgg;e;r?;gr 388 USB DFU CLASS UsB USB Stack
ost DFU Protocol Device | 'USB DFU Class
DFU Protocol
2 -

32131A-AVR32-09/09

http://www.atmel.com/dyn/resources/prod_documents/doc7745.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc7745.pdf
www.usb.org/developers/devclass_docs/usbdfu10.pdf
www.usb.org/developers/devclass_docs/usbdfu10.pdf

2. Device Firmware Upgrade Class

2.1 Introduction

The Device Firmware Upgrade (DFU) is the mechanism for accomplishing the task of upgrading
the device firmware. Any class of USB device can exploit this capability by supporting the
requirements specified in this document.

Because it is impractical for a device to concurrently perform both DFU operations and its nor-
mal run-time activities, those normal activities must cease for the duration of the DFU
operations. Doing so means that the device must change its operating mode; i.e., a printer is not
a printer while it is undergoing a firmware upgrade; it is a PROM programmer. However, a
device that supports DFU is not capable of changing its mode of operation on its own. External
(human or host operating system) intervention is required.

For more information about the USB DFU Class, refer to the Universal Serial Bus Device Class
Specification for Device Firmware Upgrade specification (see section “References” on page 2).

2.2 DFU Specific Requests

In addition of the USB standard requests, 7 DFU class-specific requests are employed to
accomplish the upgrade operations as detailed in Table 2-1.

Table 2-1. DFU Class-specific Requests

bmRequestType bRequest wValue windex wLength Data
0010 0001b DFU_DETACH wTimeout Interface Zero none
0010 0001b DFU_DNLOAD wBlock Interface Length Atmel Specific®
1010 0001b DFU_UPLOAD wBlock Interface Length Atmel Specific®
1010 0001b DFU_GETSTATUS Zero Interface 6 Status
0010 0001b DFU_CLRSTATUS Zero Interface Zero none
1010 0001b DFU_GETSTATE Zero Interface 1 State
0010 0001b DFU_ABORT Zero Interface Zero none

Note: 1. Refer to section “Atmel® DFU Protocol” on page 8 for detailed protocol.

2.3 DFU Descriptors Set

The device exports the DFU descriptor set, which contains:

« A DFU device descriptor

« A single configuration descriptor

« A single interface descriptor (including descriptors for alternate settings, if present)
* A single functional descriptor

23.1 DFU Device Descriptor

32131A-AVR32-09/09

This descriptor is only present in the DFU mode descriptor set. The DFU class code is reported

in the bDeviceClass field of this descriptor.

ATMEL ;

ATMEL

Table 2-2. DFU Mode Device Descriptor

Offset Field Size | Value Description
0 bLength 1 12h Size of this descriptor, in bytes
1 bDescriptorType 1 01lh DFU FUNCTIONAL descriptor type
2 bcdUSB 2 0100h | USB specification release number in binary coded decimal
4 bDeviceClass 1 FEh | Application Specific Class Code
5 bDeviceSubClass 1 01lh Device Firmware Upgrade Code
6 bDeviceProtocol 1 00h The device does not use a class specific protocol on this interface
7 bMaxPacketSize0 1 32 Maximum packet size for endpoint zero
8 idVendor 2 @ 1vendor ID
10 idProduct 2 @ Product ID
12 bcdDevice 2 @ Device release number in binary coded decimal
14 iManufacturer 1 0 Index of string descriptor
15 iProduct 1 0 Index of string descriptor
16 iSerialNumber 1 0 Index of string descriptor
17 bNumConfigurations 1 01lh One configuration only for DFU

Note: 1. Refer to Table 2-3.

Table 2-3. Device Parameters
Field Value Description
idVendor 0x03EB Vendor ID

0x2FF8 (AT32UC3A0/1)
idProduct Ox2FF6 (AT32UC3B0/1) Product ID
Ox2FF1 (AT32UC3A3)

bcdDevice 0x1000 Release Number

2.3.2 DFU Configuration Descriptor
This descriptor is identical to the standard configuration descriptor described in the USB DFU
specification version 1.0, with the exception that the bNuminterfaces field must contain the value
01h.

2.3.3 DFU Interface Descriptor

This is the descriptor for the only interface available when operating in DFU mode. Therefore,
the value of the binterfaceNumber field is always zero.

Table 2-4. DFU Mode Interface Descriptor

Offset Field Size | Value Description
0 bLength 1 09h Size of this descriptor, in bytes
1 bDescriptorType 1 04h INTERFACE descriptor type
2 binterfaceNumber 1 00h Number of this interface
4 |

32131A-AVR32-09/09

2.3.4

2.4

24.1

Device Status

Get Status

Offset Field Size | Value Description
3 bAlternateSetting 1 00h | Alternate setting
4 bNumEndpoints 1 00h Only the control pipe is used
5 binterfaceClass 1 FEh | Application Specific Class Code
6 binterfaceSubClass 1 01h Device Firmware Upgrade Code
7 binterfaceProtocol 1 00h The device doesn'’t use a class specific protocol on this interface
8 ilnterface 1 00h Index of the String descriptor for this interface

DFU Functional Descriptor

Table 2-5. DFU Functional Descriptor
Offset Field Size | Value Description

0 bLength 1 07h Size of this descriptor, in bytes

1 bDescriptorType 1 21h DFU FUNCTIONAL descriptor type
DFU Attributes:
bit 7..3: reserved

) Bit bit 2: device is able to communicate via USB after Manifestation
2 bmAttributes 1
mask | phase 1 = yes, 0 = no, must see bus reset

bit 1: bitCanUpload: upload capable 1 = yes, 0 = no
bit 0: bitCanDnload: download capable 1 = yes, 0 = no
Time in milliseconds that the device will wait after receipt of the
DFU_DETACH request.
If this time elapses without a USB reset, the device will terminate

3 wDetachTimeOut 2 Number | the re-configuration phase and revert back to normal operation.
This represents the maximum time that the device can wait
(depending on its timers, ...). The Host may specify a shorter time-
out in the DFU_DETACH request.

5 WiransferSize 2 Number MaIX|mum number of bytes that the device can accept per control-
write transaction

The Host employs the DFU_GETSTATUS request to facilitate synchronization with the device.
This status gives information on the execution of the previous request: in progress/OK/Fail/...

bmRequestType

bRequest

wValue windex wLength Data

1010 0001b

DFU_GETSTATUS

Zero Interface 6 Status

The device responds to the DFU_GETSTATUS request with a payload packet containing the fol-

lowing data:
Table 2-6. DFU_GETSTATUS Response
Offset Field Size | Value Description
0 bStatus 1 Number An indication of the status resulting from the execution of the most
recent request.

32131A-AVR32-09/09

ATMEL

ATMEL

Offset Field Size | Value Description

Minimum time in milliseconds that the host should wait before
sending a subsequent DFU_GETSTATUS. The purpose of this field
is to allow the device to dynamically adjust the amount of time that

! bwPollTimeOut 3 Number the device expects the host to wait between the status phase of the
next DFU_DNLOAD and the subsequent solicitation of the device’s
status via DFU_GETSTATUS.

4 bState 1 Number An |nd|cat|on of _the state_ th_at the _dewce is going to enter
immediately following transmission of this response.

5 iString 1 Index | Index of status description in string table.

Table 2-7. bStatus values

Status Value |Description

OK 0x00 | No error condition is present

errTARGET 0x01 | File is not targeted for use by this device

errFILE 0x02 | File is for this device but fails some vendor-specific verification test
errWRITE 0x03 | Device id unable to write memory

errERASE 0x04 | Memory erase function failed

errCHECK_ERASED 0x05 | Memory erase check failed

errPROG 0x06 | Program memory function failed

errfVERIFY 0x07 | Programmed memory failed verification

errADDRESS 0x08 | Cannot program memory due to received address that is out of range

Received DFU_DNLOAD with wLength = 0, but device does not think it has all

errNOTDONE 0x09 the data yet,

errfFIRMWARE Ox0A | Device’s firmware is corrupted. It cannot return to run-time operations
errfVENDOR 0x0B | iString indicates a vendor-specific error

errUSBR 0x0C | Device detected unexpected USB reset signaling

errPOR 0x0D | Device detected unexpected power on reset

errtUNKNOWN OxOE | Something went wrong, but the device does not know what it was
errSTALLEDPK OxOF | Device stalled an unexpected request

Table 2-8. bState Values

State Value |Description

appIDLE 0 Device is running its normal application

appDETACH 1 Device is running _|ts normal application, has received the DFU_DETACH
request, and is waiting for a USB reset

dfulDLE 2 Device is operating in the DFU mode and is waiting for requests
Device has received a block and is waiting for the Host to solicit the status via

dfuDNLOAD-SYNC 3 DFU_GETSTATUS

dfuDNBUSY 4 Device is programming a control-write block into its non volatile memories

32131A-AVR32-09/09

State Value |Description

dfuDNLOAD-IDLE 5 Device is processing a download operation. Expecting DFU_DNLOAD requests

Device has received the final block of firmware from the Host and is waiting for
receipt of DFU_GETSTATUS to begin the Manifestation phase

dfuMANIFEST-SYNC 6 or

device has completed the Manifestation phase and is waiting for receipt of
DFU_GETSTATUS.

dfuMANIFEST 7 Device is in the Manifestation phase.
dfuMANIFEST-WAIT- 8 Device has programmed its memories and is waiting for a USB reset or a power
RESET on reset.

The device is processing an upload operation. Expecting DFU_UPLOAD

dfuUPLOAD-IDLE 9
requests.

dfuERROR 10 An error has occurred. Awaiting the DFU_CLRSTATUS request.

242 Clear Status
Any time the device detects an error and reports an error indication status to the host in the
response to a DFU_GETSTATUS request, it enters the dfuUERROR state. The device cannot
transition from the dfuUERROR state, after reporting any error status, until after it has received a
DFU_CLRSTATUS request. Upon receipt of DFU_CLRSTATUS, the device sets a status of OK
and transitions to the dfulDLE state. Only then is it able to transition to other states.

bmRequestType bRequest wValue windex wLength Data

0010 0001b DFU_CLRSTATUS Zero Interface 0 None

243 Device State
This request solicits a report about the state of the device. The state reported is the current state
of the device with no change in state upon transmission of the response. The values specified in
the bState field are identical to those reported in DFU_GETSTATUS.

bmRequestType bRequest wValue windex wLength Data

1010 0001b DFU_GETSTATE Zero Interface 1 State

244 DFU_ABORT request
The DFU_ABORT request enables the device to exit from certain states and return to the
DFU_IDLE state. The device sets the OK status on receipt of this request. For more information,
see the corresponding state transition summary.

bmRequestType bRequest wValue windex wLength Data

1010 0001b DFU_ABORT Zero Interface 0 None

ATMEL 7

32131A-AVR32-09/09

ATMEL

3. Atmel® DFU Protocol

3.1

3.1.1

3.1.11

3.1.1.2

3.1.1.3

The Atmel DFU protocol is generic and may support other physical layers than USB. For conve-
nience the following section describes the protocol in the USB DFU environment.

Selecting a Memory

Prior to any read or program operation, a memory target must be selected as well as the page
offset inside this memory.

This is achieved by sending the SELECT_MEMORY_UNIT command and the
SELECT_MEMORY_PAGE command.

Selecting Memory Unit

Command
The SELECT_MEMORY_UNIT command is 4 bytes long as detailed in Table 3-1.

Table 3-1. SELECT_MEMORY_UNIT Command Format

Command Identifier | data[0] data[1] data[2] data[3] data[4] Comment

CMD_GROUP_SELECT

CMD_SELECT_MEMORY

MEMORY_UNIT
0x00 Flash Memory
0x01 Reserved for future use
0x06
0x03 0x02 Security Memory
0x00
0x03 Configuration Memory
0x04 Bootloader Memory
0x05 Signature Memory
0x06 User Page Memory

For more information on the selected Memory content, refer to the AVR32 UC3 USB DFU Boot-
loader datasheet.

Request From Host

Figure 3-1. SELECT_MEMORY_UNIT Request

SETUP DFU_DNLOAD
ouT SELECT_MEMORY_UNIT
IN ZLP

Request Status
After sending the SELECT_MEMORY_UNIT command, the host can get the request status with
a DFU_GETSTATUS request (see “Status Handling” on page 16). Possible status are detailed
in Table 3-2:

32131A-AVR32-09/09

http://www.atmel.com/dyn/resources/prod_documents/doc7745.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc7745.pdf

Table 3-2. SELECT_MEMORY_UNIT Status Values

Status Value |[Description
OK 0x00 | Memory selected
errADDRESS 0x08 | Unsupported memory

3.1.2 Selecting Memory Page

3.1.2.1 Command

The SELECT_MEMORY_PAGE command is 5 bytes long as detailed in Table 3-3. The page

address consists of two bytes (MSB first) that give a 16-bit page address.
Table 3-3. SELECT_MEMORY_PAGE Command Format

Command Identifier

data[0]

data[1] data[2] data[3] data[4]

Comment

0x06

CMD_GROUP_SELECT

CMD_SELECT_MEMORY

0x03

MEMORY_PAGE
0x01

PP (MSB) | PP (LSB)

64 kB Memory page number

3.1.2.2 Request From Host

Figure 3-2. Select Memory Page Request

SELECT_MEMORY_PAGE

SETUP DFU_DNLOAD
ouT
IN ZLP

3.1.2.3 Request Status

After sending the SELECT_MEMORY_PAGE command, the host can get the request status
with a DFU_GETSTATUS request (see “Status Handling” on page 16). Possible status are

detailed in Table 3-4:

Table 3-4. SELECT_MEMORY_PAGE Status Values

Status Value |Description
OK 0x00 | Page selected
errADDRESS 0x08 | Page value is out of range

3.2 Programming the Selected Memory

The memory data is downloaded via control-write transfers initiated by the DFU_DNLOAD class-

specific request.

As described in the USB DFU Specification, “Data images for specific devices are, by definition,
vendor specific. It is therefore required that target addresses, record sizes, and all other informa-
tion relative to supporting an upgrade are encapsulated within the data image file. It is the
responsibility of the device manufacturer and the firmware developer to ensure that their devices

ATMEL

32131A-AVR32-09/09

3.2.1

3.2.11

3.2.1.2

3.2.1.3

3.214

10

can process these encapsulated data. With the exception of the DFU file suffix, the content of

ATMEL

the data image file is irrelevant to the host.”

The data image is composed of:

« Command

 Data payload

« DFU Suffix on 16 Bytes. This suffix is reserved for future use.

Program Start Command

Command

The PROGRAM_START command is 6 bytes long as detailed in Table 3-5.

Table 3-5.

PROGRAM_START Command Format

Command Identifier | data[0] data[1] data[2] data[3] data[4]

Comment

0x01

CMD_GROUP_DOWNLOAD

CMD_PROGRAM_START

0x00

start_address

end_address

Memory Address Range

Data Payload

In order to be in accordance with the memory write entity (page size), X non-significant bytes
may be added before the first byte to program. The X number is calculated to align the beginning

of the firmware with the memory write entity.

DFU Suffix

The DFU suffix of 16 bytes is added just after the last byte to program.lt is not used in the current

version of the bootloader.

Request From Host

Figure 3-3.

PROGRAM_START Request

ouT

DFU_DNLOAD

ouT

PROGRAM_START

ouT

X offset bytes + Data Packet 1

ouT

Data Packet 2

Data Packet n + DFU suffix

ZLP

___|]
32131A-AVR32-09/09

After this request, the host sends a DFU_DNLOAD request with Zero Length Packet (ZLP) to
indicate that it has completed transferring the data image file. This is the final payload packet of
a download operation.

Figure 3-4. End of PROGRAM_START Request

ouT DFU_DNLOAD
ouT ZLP
IN ZLP

3.2.15 Request Status

After sending the PROGRAM_START command, the host may get the request status with a
DFU_GETSTATUS request (see “Status Handling” on page 16). Possible status are detailed in
Table 3-6:

Table 3-6. PROGRAM_START Status Values

Status Value |[Description

OK 0x00 | Programming done

errWRITE 0x03 | Memory is not writable
errADDRESS 0x08 | Memory address is out of range

3.3 Reading the Selected Memory

This group of commands allows to read the content as well as checking the blank state of the
selected memory.

In case of reading, the memory data is uploaded via control-read transfers initiated by the
DFU_UPLOAD class-specific request.
3.3.1 Read Memory

This operation is performed in 2 steps:

* DFU_DNLOAD request with the GROUP_UPLOAD command (6 bytes)
* DFU_UPLOAD request which correspond to the previous command.

3.31.1 Command
The READ_MEMORY command is 6 bytes long as detailed in Table 3-7.

Table 3-7. READ_MEMORY Command Format

Command Identifier | data[0] data[1] data[2] data[3] data[4] Description

CMD_GROUP_UPLOAD

0x03 CMD_READ_MEMORY
0x00

start_address end_address Memory Address Range

ATMEL i

32131A-AVR32-09/09

ATMEL

3.3.1.2 First Request from Host
The host sends a DFU Download request with a READ_MEMORY command in the data field.

Figure 3-5. READ_MEMORY Request

SETUP DFU_DNLOAD
ouT READ_MEMORY
IN ZLP
3.3.1.3 Second Request from Host

The host sends a DFU Upload request. The device then sends the memory content from the
specified start address to the specified end address of the selected memory page.

Figure 3-6. Data Payload Request

SETUP DFU_UPLOAD
IN Data Packet 1
IN Data Packet 2
| |
| |
IN Data Packet n
ouT ZLP

3.3.14 Request Status

After sending the READ_MEMORY command, the host may get the request status with a
DFU_GETSTATUS request (see “Status Handling” on page 16). Possible status are detailed in

Table 3-8:

Table 3-8. READ_MEMORY Status Values
Status Value |Description

OK 0x00 | Reading memory done
erf'VERIFY 0x07

Memory not readable (implemented for future memory extension)

errADDRESS 0x08 | Memory address is out of range

3.3.2 Blank Check

3.3.21 Command
The BLANK_CHECK command is 6 bytes long as detailed in Table 3-9.

12

32131A-AVR32-09/09

Table 3-9. BLANK_ CHECK Command Format

Command Ildentifier | data[0] data[1] data[2] data[3] data[4] Description

CMD_GROUP_UPLOAD

0x03 CMD_BLANK_CHECK
0x01

start_address end_address Memory Address Range

3.3.2.2 Request from Host
The host sends a DFU Download request with a BLANK_CHECK command in the data field.

Figure 3-7. BLANK_CHECK Request

SETUP DFU_DNLOAD
ouT BLANK_CHECK
IN ZLP
3.3.23 Request Status

After sending the BLANK_CHECK command, the host controller needs to send a
DFU_GETSTATUS to get the request status (see “Status Handling” on page 16). Once internal
blank check has been completed, the device sends its status. Possible status are detailed in
Table 3-10:

Table 3-10. BLANK_CHECK Status Values

Status Value |Description

OK 0x00 | Memory blanked

errCHECK_ERASED 0x05 | Memory not blanked®

errADDRESS 0x08 | Memory address is out of range

Note: 1. In case the device memory is not blank. The device waits for a DFU_UPLOAD request to send
the first failed address.

3.4 FErasing the Flash
The Full Chip erase command erases the whole Flash Memory.

34.1 Chip Erase

34.1.1 Command
The ERASE command is 3 bytes long as detailed in Table 3-11.

Table 3-11. ERASE Command Format

Command Identifier | data[0] data[1] data[2] data[3] data[4] Description

CMD_GROUP_EXEC

0x04 CMD_ERASE
0x00

FFh Full chip Erase

ATMEL i

32131A-AVR32-09/09

3.4.1.2

3.4.1.3

3.5

3.5.1

3511

3.5.1.2

14

ATMEL

Request from Host
To start the erasing operation, the host sends a DFU_DNLOAD request with a CMD_ERASE
command in the data field.

Figure 3-8. ERASE Request

SETUP DFU_DNLOAD
ouT CMD_ERASE
IN ZLP

Request Status
After sending the ERASE command, the host can get the request status with a
DFU_GETSTATUS request (see “Status Handling” on page 16). Possible status are detailed in

Table 3-12:

Table 3-12. ERASE Status Values
Status Value |[Description
OK 0x00 |Erase Done

Starting the Application

The flow described below allows to start the application directly from the bootloader upon a spe-
cific command reception.

Two options are possible:

« Start the application with an internal hardware reset using watchdog.
« Start the application without reset.

Start Application with Reset
When the device receives this command the watchdog is enabled and the bootloader enters a
waiting loop until the watchdog timer expires and resets the device.

Command
The START_APPLICATION_RESET command is 3 bytes long as detailed in Table 3-13.

Table 3-13. START_APPLI_RESET Command Format

Command Identifier data[0] data[1] data[2?] data[3] data[4] Description

CMD_GROUP_EXEC

CMD_START_APPLI
0x04

0x03 START_APPLI_RESET
0x00

Hardware reset

Request From Host
To start the application, the host sends a DFU_DNLOAD request with the
START_APPLI_NO_RESET command.

___|]
32131A-AVR32-09/09

This request is immediately followed by a second DFU_DNLOAD request with no data field to
start the application.

Figure 3-9. START_APPLI_RESET Request

SETUP DFU_DNLOAD
IN START_APPLI_RESET
ouT ZLP
SETUP DFU_DNLOAD
3.5.1.3 Request Status

No status is returned after the START_APPLI_RESET command.

3.5.2 Start Application without Reset

When the device receives this command a jump at first address of the Flash memory is used to
start the application without reset.

3.5.21 Command
The START_APPLI_NO_RESET command is 3 bytes long as detailed in Table 3-14.

Table 3-14. START_APPLI_NO_RESET Command Format

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

CMD_GROUP_EXEC

CMD_START_APPLI
0x04

0x03 START_APPLI_NO_RESET
0x01

Software jump

3.5.2.2 Request From Host

To start the application, the host sends a DFU_DNLOAD request with the
START_APPLI_NO_RESET command.

This request is immediately followed by a second DFU_DNLOAD request with no data field to
start the application.

ATMEL i

32131A-AVR32-09/09

ATMEL

Figure 3-10. START_APPLI_NO_RESET Request

SETUP DFU_DNLOAD
IN START_APPLI_NO_RESET
ouT ZLP
SETUP DFU_DNLOAD

3.5.2.3 Request Status
No status is returned after the START_APPLI_NO_RESET command.

3.6 Status Handling

3.6.1 Get Status
The Host employs the DFU_GETSTATUS request (see “Device Status” on page 5) to facilitate
synchronization with the device. The reported status gives information on the execution of the
previous request. The possible status values are reported in the bStatus field of the request and
are detailed in Table 3-15.

Table 3-15. Generic Error Values

Status Value |Description
OK 0x00 | No error condition is present
errWRITE 0x03 | Device id unable to write memory

errCHECK_ERASED 0x05 | Memory erase check failed

errVERIFY 0x07 | Programmed memory failed verification
errADDRESS 0x08 | Cannot program memory due to received address that is out of range
errSTALLEDPK 0xOF | Device stalled an unsupported or unexpected request

3.6.2 Clear Status
Each time the device detects and reports an error indication status to the host in response to a
DFU_GETSTATUS request, it enters the dfuERROR state. After reporting any error status, the
device can not leave the dfuUERROR state, until it has received a DFU_CLRSTATUS request.
Upon receipt of DFU_CLRSTATUS, the device sets status to OK and move to the dfulDLE state.

16 ___|]
32131A-AVR32-09/09

4. Appendix-A

Table 4-1. Summary of DFU Bootloader Commands

Command Identifier data[0] data[1] data[2] data[3] data[4] Comment

CMD_GROUP_DOWNLOAD

0x01 CMD_PROGRAM_START

0x00
start_address end_address Memory Address Range

CMD_GROUP_UPLOAD

CMD_READ_MEMORY

0x00
0x03 start_address end_address Memory Address Range
CMD_BLANK_CHECK
0x01
start_address end_address Memory Address Range
CMD_GROUP_EXEC
CMD_ERASE
0x00
FFh Full chip Erase
CMD_START_APPLI
0x04
START APPLI RESET
0x00
0x03 Hardware reset
START APPLI NO RESET
0x01
Software jump
CMD_GROUP_SELECT
CMD_SELECT_MEMORY
MEMORY UNIT
0x00 Flash Memory
0x01 Reserved for future use
0x02 Security Memory
0x06 0x00
0x03 0x03 Configuration Memory
0x04 Bootloader Memory
0x05 Signature Memory
0x06 User Page Memory
MEMORY PAGE
0x01
PP (MSB) | PP (LSB) 64 kB Memory page number

ATMEL

32131A-AVR32-09/09

AIMEL

Y (5

Headquarters

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131

International

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

USA 418 Kwun Tong Road BP 309 Chuo-ku, Tokyo 104-0033

Tel: 1(408) 441-0311 Kwun Tong, Kowloon 78054 Saint-Quentin-en- Japan

Fax: 1(408) 487-2600 Hong Kong Yvelines Cedex Tel: (81) 3-3523-3551
Tel: (852) 2245-6100 France Fax: (81) 3-3523-7581

Fax: (852) 2722-1369 Tel: (33) 1-30-60-70-00

Fax: (33) 1-30-60-71-11

Product Contact

Sales Contact
www.atmel.com/contacts

Web Site Technical Support
www.atmel.com avr32@atmel.com

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo and others, are registered trade-
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

32131A-AVR32-09/09

	1. Introduction
	1.1 Intended Audience
	1.2 Prerequisites
	1.3 Supported Devices
	1.4 Terms and Abbreviations
	1.5 References
	1.6 System Overview

	2. Device Firmware Upgrade Class
	2.1 Introduction
	2.2 DFU Specific Requests
	2.3 DFU Descriptors Set
	2.4 Device Status

	3. Atmel® DFU Protocol
	3.1 Selecting a Memory
	3.2 Programming the Selected Memory
	3.3 Reading the Selected Memory
	3.4 Erasing the Flash
	3.5 Starting the Application
	3.6 Status Handling

	4. Appendix-A

