

PIC16(L)F191XX Memory Programming Specification

1.0 OVERVIEW

This programming specification describes an SPI-compatible programming method for the PIC16(L)F191XX family of microcontrollers. Section 3.0 "Programming Algorithms" describes the programming commands, programming algorithms and electrical specifications which are used in that particular programming method. Appendix B: "PIC16(L)F191XX Device ID, Checksums and Pinout Descriptions" contains individual part numbers, device identification and checksum values, pinout and packaging information, and Configuration Words.

Note: To enter LVP mode, the MSb of the Most Significant nibble must be shifted in first. This differs from entering the key sequence on some other device families.

1.1 Programming Data Flow

Nonvolatile Memory (NVM) programming data can be supplied by either the high-voltage In-Circuit Serial Programming™ (ICSP™) interface or the low-voltage In-Circuit Serial Programming (ICSP) interface. Data can be programmed into the Program Flash Memory (PFM) (EEPROM, if available), dedicated "User ID" locations and the Configuration Words.

1.2 Write and/or Erase Selection

Erasing or writing is selected according to the command used to begin operation (see Table 3-1). The terminologies used in this document related to erasing/writing to the Program Flash Memory are defined in Table 1-1 and are detailed below.

TABLE 1-1: PROGRAMMING TERMS

Term	Definition				
Programmed Cell	A memory cell with a logic '0'				
Erased Cell	A memory cell with a logic '1'				
Erase	Change memory cell from a '0' to a '1'				
Write	Change memory cell from a '1' to a '0'				
Program	Generic erase and/or write				

1.2.1 ERASING MEMORY

Program Flash Memory is erased by row or in bulk, where 'bulk' includes many subsets of the total memory space. The duration of the erase is always determined internally. Here, 'row' refers to the minimum erasable size and 'bulk' is one of the many possible subsets of all memory rows. All Bulk ICSP Erase commands have minimum VDD requirements, which are higher than the Row Erase and Write requirements. Refer to **Section 3.7 "Electrical Specifications"**.

1.2.2 WRITING MEMORY

Program Flash Memory is written one row at a time. Multiple Load Data for NVM commands are used to fill the row data latches. The duration of the write is determined either internally or externally. Refer to **Section 3.7 "Electrical Specifications"**.

1.2.3 MULTI-WORD PROGRAMMING INTERFACE

Program Flash Memory (PFM) panels include a 32-word (one row) programming interface. The row to be programmed must first be erased, either with a Bulk Erase or a Row Erase. Refer to **Section 3.7 "Electrical Specifications"**.

1.3 Hardware Requirements

1.3.1 HIGH-VOLTAGE ICSP PROGRAMMING

<u>In High</u>-Voltage ICSP mode, the device requires two programmable power supplies: one for VDD and one for the MCLR/VPP pin.

1.3.2 LOW-VOLTAGE ICSP PROGRAMMING

In Low-Voltage ICSP mode, the device can be programmed using a single VDD source in the operating range. The MCLR/VPP pin does not have to be brought to a different voltage, but can instead be left at the normal operating voltage.

1.3.2.1 Single-Supply ICSP Programming

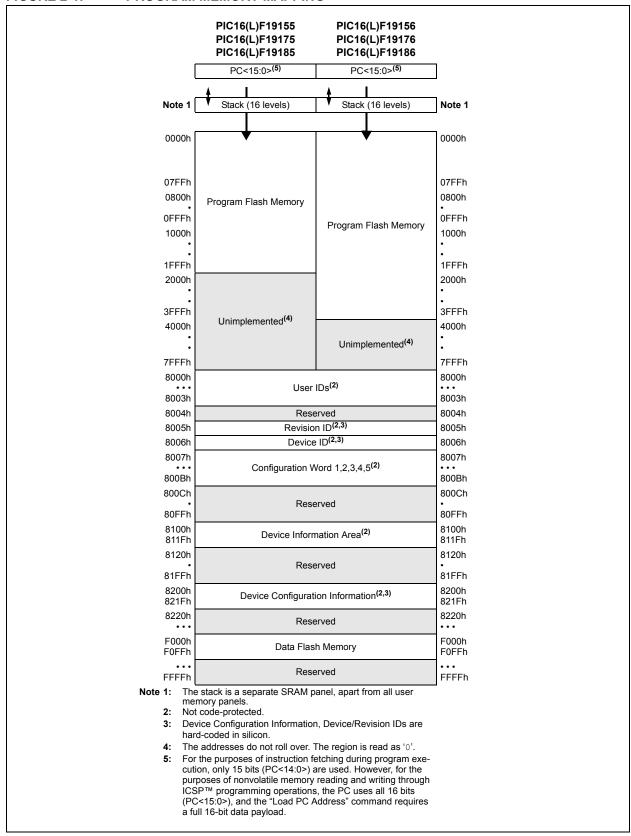
The LVP Configuration bit enables single-supply (low-voltage) ICSP programming. The LVP bit defaults to a '1' (enabled) from the factory. The LVP bit may only be programmed to '0' by entering the High-Voltage ICSP mode, where the MCLR/VPP pin is raised to VIHH. Once the LVP bit is programmed to a '0', only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

- Note 1: The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR/VPP pin.
 - 2: While in Low-Voltage ICSP mode, MCLR is always enabled, regardless of the MCLRE bit, and the port pin can no longer be used as a general purpose input.

1.4 Pin Utilization

Five pins are needed for ICSP programming. The pins are listed in Table 1-2. Refer to Table B-2 for pin locations and packaging information.

TABLE 1-2: PIN DESCRIPTIONS DURING PROGRAMMING


Pin Name	During Programming								
Fill Name	Function	Pin Type	Pin Description						
ICSPCLK	ICSPCLK	Ι	Clock Input – Schmitt Trigger Input						
ICSPDAT	ICSPDAT	I/O	Data Input/Output – Schmitt Trigger Input						
MCLR/VPP	Program/Verify mode	_[(1)	Program Mode Select						
VDD	VDD	Р	Power Supply						
Vss	Vss	Р	Ground						

Legend: I = Input, O = Output, P = Power

Note 1: The programming high voltage is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to the MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.

2.0 MEMORY MAP

FIGURE 2-1: PROGRAM MEMORY MAPPING

2.1 User ID Location

A user may store identification information (User ID) in four designated locations. The User ID locations are mapped to 8000h-8003h. Each location is 14 bits in length. Code protection has no effect on these memory locations. Each location may be read with code protection enabled or disabled.

2.2 Device/Revision ID

The 14-bit Device ID Word is located at 8006h and the 14-bit Revision ID is located at 8005h. These locations are read-only and cannot be erased or modified.

REGISTER 2-1: DEVICEID: DEVICE ID REGISTER

R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	1						DEV<1	1:0>					
bit 13													bit 0

Legend	
--------	--

R = Readable bit

'0' = Bit is cleared '1' = Bit is set x = Bit is unknown

bit 13-12 Read-Only bits

These bits are fixed with the value, '11', for all devices included in this programming specification.

bit 11-0 **DEV<11:0>:** Device ID bits

Note: Refer to Table B-1 for a list of Device ID register values for the devices covered by this programming

specification document.

REGISTER 2-2: REVISIONID: REVISION ID REGISTER

R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0		MJRREV<5:0>						MNRREV<5:0>				
bit 13													bit 0

Legend:

R = Readable bit

'0' = Bit is cleared '1' = Bit is set x = Bit is unknown

bit 13-12 Fixed Value: Read-Only bits

These bits are fixed with the value, '10', for all devices included in this programming specification.

bit 11-6 MJRREV<5:0>: Major Revision ID bits

These bits are used to identify a major revision. Major and minor revisions are assigned by Microchip.

bit 5-0 MNRREV<5:0>: Minor Revision ID bits

These bits are used to identify a minor revision.

2.3 Configuration Words

The devices have several Configuration Words starting at address, 8007h. The individual bits within these Configuration Words are critical to the correct operation of the system. Configuration bits enable or disable specific features, placing these controls outside the normal software process, and they establish configured values prior to the execution of any software.

In terms of programming, these important Configuration bits should be considered:

1. LVP: Low-Voltage Programming Enable bit

- 1 = ON Low-Voltage Programming is enabled. MCLR/VPP pin function is MCLR. MCLRE Configuration bit is ignored.
- 0 = OFF High voltage on MCLR/VPP must be used for programming.

It is important to note that the LVP bit cannot be written (to '0') while operating from the LVP programming interface. The purpose of this rule is to prevent the user from dropping out of LVP mode while programming from LVP mode, or accidentally eliminating LVP mode from the configuration state. For more information, see **Section 3.1.2 "Low-Voltage Programming (LVP) Mode"**.

2. CP: User NVM Program Memory Code Protection bit

- 1 = OFF User NVM code protection is disabled.
- 0 = ON User NVM code protection is enabled.

For more information on code protection, see Section 3.3 "Code Protection".

2.4 Device Information Area

The Device Information Area (DIA) is a dedicated region in the Program Flash Memory. The data is mapped from 8100h to 811Fh. These locations are read-only and cannot be erased or modified. The DIA holds the calibration data for the temperature indicator module and the FVR voltages, which are useful for temperature sensing applications and calibration.

2.5 Device Configuration Information

The Device Configuration Information (DCI) is a dedicated region in the Program Flash Memory, mapped from 8200h to 821Fh. The data stored in the DCI memory is hard-coded into the device during manufacturing. Refer to Table D-1 in Appendix D: "Device Configuration Information (DCI)" for the complete DCI table address and description. The DCI holds information about the device which is useful for programming and bootloaders. These locations are read-only and cannot be erased or modified. For more information, refer to the product-specific data sheet.

3.0 PROGRAMMING ALGORITHMS

3.1 Program/Verify Mode

In Program/Verify mode, the program memory and the configuration memory can be accessed and programmed in serial fashion. ICSPDAT and ICSPCLK are used for the data and the clock, respectively. All commands and data words are transmitted, Most Significant bit (MSb) first. Data changes on the rising edge of the ICSPCLK and is latched on the falling edge. In Program/Verify mode, both the ICSPDAT and ICSPCLK are Schmitt Trigger inputs. The sequence that enters the device into Program/Verify mode places all other logic into the Reset state. Upon entering Program/Verify mode, all I/Os are automatically configured as high-impedance inputs. On entering the Program/Verify mode, the address is cleared.

3.1.1 HIGH-VOLTAGE PROGRAM/VERIFY MODE ENTRY AND EXIT

There are two different methods of entering Program/Verify mode via high voltage:

- · VPP-First Entry mode
- VDD-First Entry mode

3.1.1.1 VPP-First Entry Mode

To enter Program/Verify mode via the VPP-First mode, the following sequence must be followed:

- 1. Hold ICSPCLK and ICSPDAT low. All other pins should be unpowered.
- 2. Raise the voltage on MCLR from 0V to VIHH.
- 3. Raise the voltage on VDD from 0V to the desired operating voltage.

The VPP-First entry prevents the device from executing code prior to entering Program/Verify mode. For example, when the Configuration Word has MCLR disabled (MCLRE = 0), the Power-up Timer is disabled (PWRTE = 0), the internal oscillator is selected (Fosc = 100), and ICSPDAT and ICSPCLK are driven by the user application, the device will execute code and may drive the ICSPDAT and ISCPCLK I/O pins. Since code execution may prevent first entry, VPP-First Entry mode is strongly recommended, as it prevents user code from changing EEPROM contents or driving pins to affect Test mode entry. See the timing diagram in Figure 3-2.

3.1.1.2 VDD-First Entry Mode

To enter Program/Verify mode via the VDD-First mode, the following sequence must be followed:

- Hold ICSPCLK and ICSPDAT low.
- 2. Raise the voltage on VDD from 0V to the desired operating voltage.
- 3. Raise the voltage on MCLR from VDD or below to VIHH.

The VDD-First mode is useful when programming the device when VDD is already applied, for it is not necessary to disconnect VDD to enter Program/Verify mode. During this cycle, any executing code will be interrupted and halted. See the timing diagram in Figure 3-1.

3.1.1.3 Program/Verify Mode Exit

To exit Program/Verify mode, lower MCLR from VIHH to VIL. VDD-First Entry mode should use VDD-Last Exit mode (see Figure 3-1). VPP-First Entry mode should use VPP-Last Exit mode (see Figure 3-2).

FIGURE 3-1: PROGRAMMING ENTRY AND EXIT MODES – VPP-FIRST AND LAST

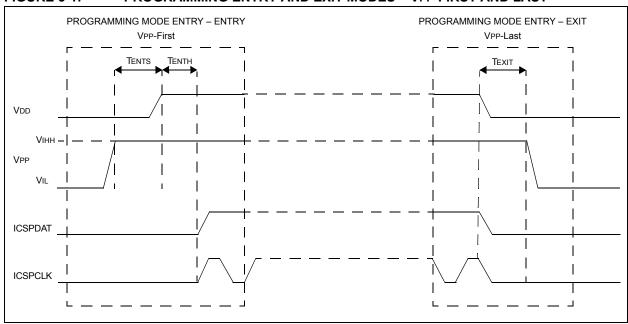
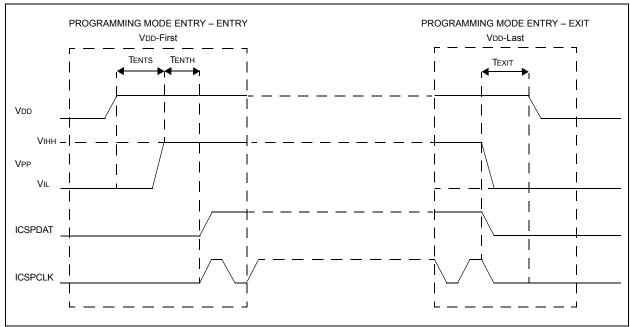



FIGURE 3-2: PROGRAMMING ENTRY AND EXIT MODES – VDD-FIRST AND LAST

3.1.2 LOW-VOLTAGE PROGRAMMING (LVP) MODE

The Low-Voltage Programming mode allows the devices to be programmed using VDD only, without high voltage. When the LVP bit of the Configuration Word 4 register is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'. This can only be done while in the High-Voltage Entry mode.

Entry into the Low-Voltage ICSP Program/Verify mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT. The LSb of the pattern is a "don't care x". The Program/Verify mode entry pattern detect hardware verifies only the first 31 bits of the sequence and the last clock is required to activate the Program/Verify mode.

The key sequence is a specific 32-bit pattern, '32' h4d434850' (more easily remembered as MCHP in ASCII). The device will enter Program/Verify mode only if the sequence is valid. The Most Significant bit of the Most Significant nibble must be shifted in first. Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be maintained. For low-voltage programming timing, see Figure 3-3 and Figure 3-4.

FIGURE 3-3: LVP ENTRY (POWERING UP)

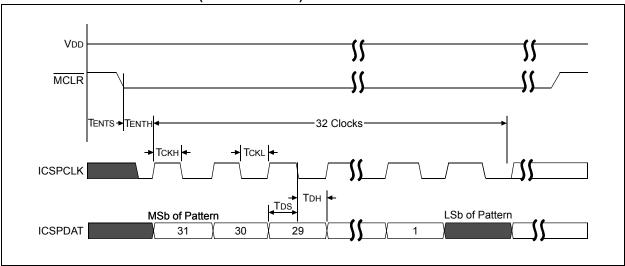
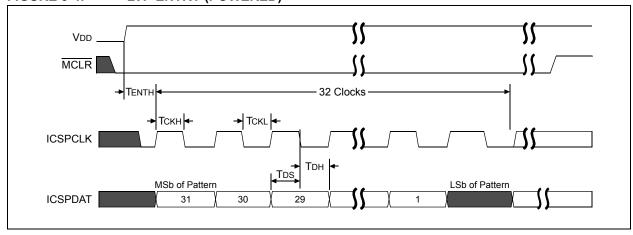



FIGURE 3-4: LVP ENTRY (POWERED)

Exiting Program/Verify mode is done by raising MCLR from below VIL to VIH level (or higher, up to VDD).

Note: To enter LVP mode, the MSb of the Most Significant nibble must be shifted in first. This differs from entering the key sequence on some other device families.

3.1.3 PROGRAM/VERIFY COMMANDS

Once a device has entered ICSP Program/Verify mode (using either high voltage or LVP entry), the programming host device may issue commands to the microcontroller, each is eight bits in length. The commands are summarized in Table 3-1. The commands are used to erase and program the device. The commands load and use the Program Counter (PC).

Some of the 8-bit commands also have a data payload associated with it (such as Load Data for NVM and Read Data from NVM).

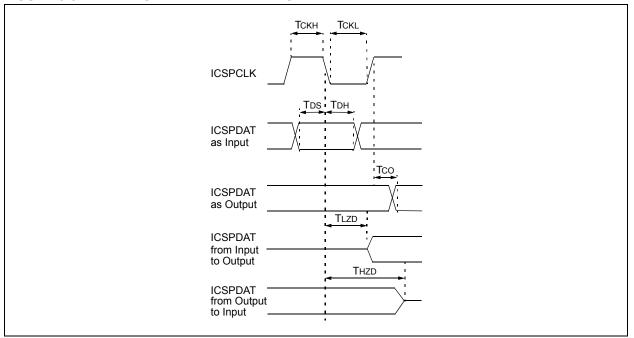
If the programming host device issues an 8-bit command byte that has a data payload associated with it, the host device is responsible for sending an additional 24 clock pulses (for example, three 8-bit bytes), in order to send or receive the payload data associated with the command.

The actual payload bits associated with a command are command-specific and will be fewer than 24 bits. However, the payload field is always padded with additional Start, Stop and Pad bits, to bring the total payload field size to 24 bits, so as to be compatible with many 8-bit SPI-based systems.

Within a 24-bit payload field, the first bit transmitted is always a Start bit, followed by a variable number of Pad bits, followed by the useful data payload bits and ending with one Stop bit. The useful data payload bits are always transmitted. Most Significant bit (MSb) first.

When the programming device issues a command that involves a host to microcontroller payload (for example, Load PC Address), the Start, Stop and Pad bits should all be driven by the programmer to '0'. When the programming host device issues a command that involves microcontroller to host payload data (for example, Read Data from NVM), the Start, Stop and Pad bits should be treated as "don't care" bits and the values should be ignored by the host.

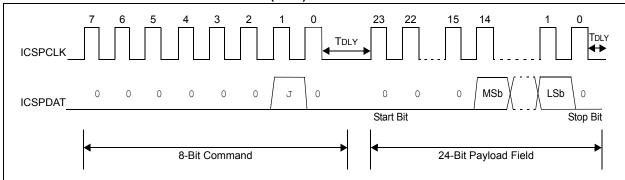
When the programming host device issues an 8-bit command byte to the microcontroller, the host should wait a minimum amount of delay (see Table 3-1) prior to sending any additional clock pulses (associated with either a 24-bit data payload field or the next command byte).

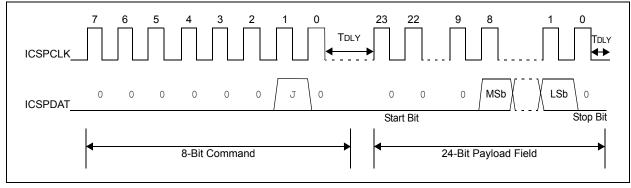

TABLE 3-1: ICSP™ COMMAND SET SUMMARY

	Command \	/alue	Payland	Doloveffor				
Command Name	Binary (MSb LSb)	Hex	Payload Expected	Delay after Command	Data/Note			
Load PC Address	1000 0000	80	Yes	TDLY	PC = payload value.			
Bulk Erase Program Memory	0001 1000	18	No	TERAB	Depending on the current value of the PC, one or more memory regions.			
Row Erase Program Memory	1111 0000	F0	No	TERAR	The row addressed by the MSbs of the PC is erased; LSbs are ignored.			
Load Data for NVM	0000 0000	00/02	Yes	TDLY	J = 1: PC = PC + 1 after writing J = 0: PC is unchanged			
Read Data from NVM	1111 11J0	FE/FC	Yes	TDLY	J = 1: PC = PC + 1 after reading J = 0: PC is unchanged			
Increment Address	1111 1000	F8	No	TDLY	PC = PC + 1			
Begin Internally Timed Programming	1110 0000	E0	No	TPINT	Commits latched data to NVM (self-timed).			
Begin Externally Timed Programming	1100 0000	C0	No	TPEXT	Commits latched data to NVM (externally timed). After TPEXT, "End Externally Timed Programming" command must be issued.			
End Externally Timed Programming	1000 0010	82	No	TDIS	Should be issued within required time delay (TPEXT) after "Begin Externally Timed Programming" command.			

Note:

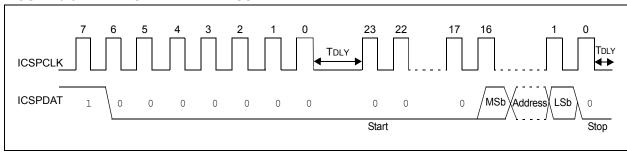
All clock pulses for both the 8-bit commands and the 24-bit payload fields are generated by the host programming device. The microcontroller does not drive the ICSPCLK line. The ICSPDAT signal is a bidirectional data line. For all commands and payload fields, except the Read Data from NVM payload, the host programming device continuously drives the ICSPDAT line. Both the host programmer device and the microcontroller should latch received ICSPDAT values on the falling edge of the ICSPCLK line. ISCPDAT timing will be met as per Figure 3-5.




3.1.3.1 Load Data for NVM

The Load Data for NVM command is used to load one programming data latch (for example, one 14-bit instruction word for program memory/configuration memory/User ID memory or one 8-bit byte for an EEPROM data memory address). The Load Data for NVM command can be used to load data for Program Flash Memory (see Figure 3-6) or the EEPROM, if available (see Figure 3-7). The word writes into program memory, after the Begin Internally Timed Programming or Begin Externally Timed Programming commands, write the entire row of data latches, not just one word. The lower five bits of the address are considered, while the other bits are ignored. Depending on the value of bit 1 of the command, the Program Counter (PC) may or may not be incremented (see Table 3-1). Refer to Section 3.1.3.9 "Row Erase Memory".

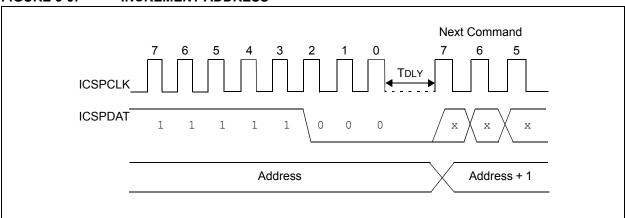
FIGURE 3-7: LOAD DATA FOR NVM (EEPROM, IF AVAILABLE)

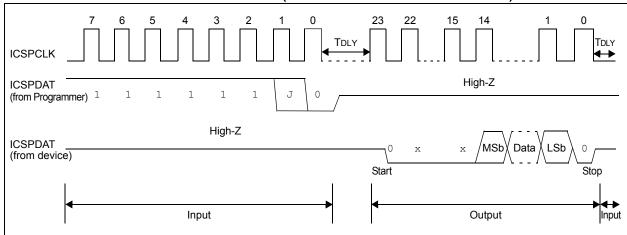

3.1.3.2 Read Data from NVM

The Read Data from NVM command will transmit data bits out of the current PC address. The ICSPDAT pin will go into Output mode on the first falling edge of ICSPCLK and it will revert to Input mode (high-impedance) after the 24th falling edge of the clock. The Start and Stop bits are only one-half of a bit time wide, and should therefore, be ignored by the host programmer device (since the latched value may be indeterminate). Additionally, the host programmer device should only consider the MSb to LSb payload bits as valid and should ignore the values of the Pad bits. If the program memory is code-protected ($\overline{CP} = 0$), the data will be read as zeros (see Figure 3-10 and Figure 3-11). Depending on the value of bit 1 of the command, the PC may or may not be incremented (see Table 3-1). The Read Data for NVM command can be used to read data for Program Flash Memory (see Figure 3-10) or the EEPROM (see Figure 3-11).

3.1.3.3 Load PC Address

The PC value is set using the supplied data. The address implies the memory panel (PFM or EEPROM) to be accessed (see Figure 3-8).


FIGURE 3-8: LOAD PC ADDRESS


3.1.3.4 Increment Address

The PC is incremented by one when this command is received. It is not possible to decrement the address. To reset this counter, the user must use the Load PC Address command. This command performs the same action as the ${\tt J}$ bit in the Load/Read commands (see Figure 3-9).

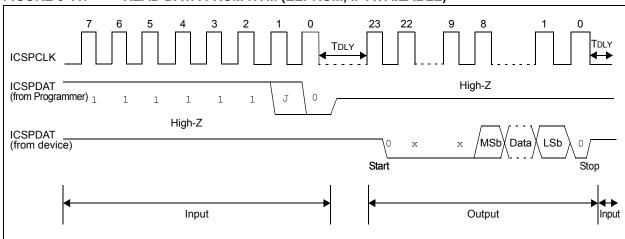
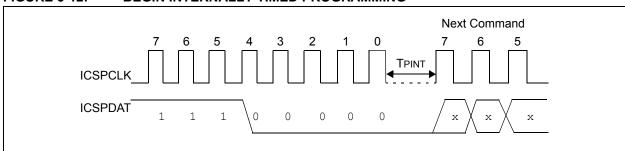

FIGURE 3-9: INCREMENT ADDRESS

FIGURE 3-10: READ DATA FROM NVM (PFM OR CONFIGURATION WORDS)

FIGURE 3-11: READ DATA FROM NVM (EEPROM, IF AVAILABLE)

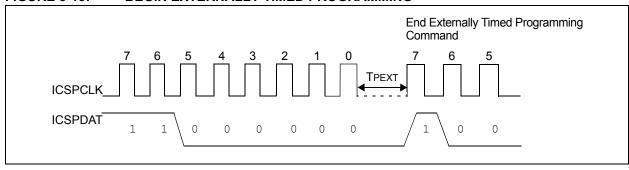


3.1.3.5 Begin Internally Timed Programming

The write programming latches must already have been loaded using the Load Data for NVM command, prior to issuing the Begin Programming command. Programming of the addressed memory row will begin after this command is received. The lower LSBs of the address are ignored. An internal timing mechanism executes the write. The user must allow for the Erase/Write cycle time, TPINT, in order for the programming to complete, prior to issuing the next command (see Figure 3-12).

After the programming cycle is complete, all the data latches are reset to '1'.

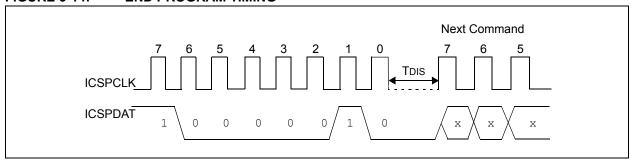
FIGURE 3-12: BEGIN INTERNALLY TIMED PROGRAMMING



3.1.3.6 Begin Externally Timed Programming

Data to be programmed must be previously loaded by the Load Data for NVM command before every Begin Programming command. To complete the programming, the End Externally Timed Programming command must be sent in the specified time window defined by TPEXT (see Figure 3-13). The lower LSBs of the address are ignored.

Externally timed writes are not supported for Configuration bits. Any externally timed write to the Configuration Word will have no effect on the targeted word.


FIGURE 3-13: BEGIN EXTERNALLY TIMED PROGRAMMING

3.1.3.7 End Externally Timed Programming

This command is required to terminate the programming sequence after a Begin Externally Timed Programming command is given. If no programming command is in progress, or if the programming cycle is internally timed, this command will execute as a No Operation (NOP); see Figure 3-14.

FIGURE 3-14: END PROGRAM TIMING

3.1.3.8 Bulk Erase Memory

The Bulk Erase Memory command performs different functions dependent on the current PC address. The Bulk Erase command affects specific portions of the memory depending on the initial value of the Program Counter. Whenever a Bulk Erase command is executed, the device will erase all bytes within the regions listed in Table 3-2. While a programming command is in progress, this command executes as a NOP.

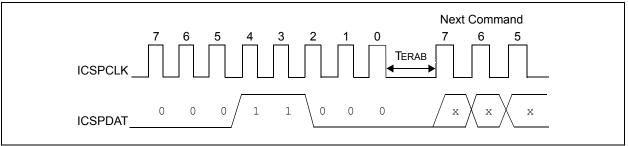
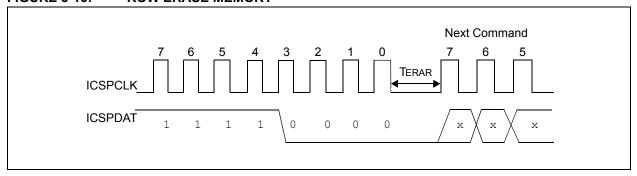

After receiving the Bulk Erase Memory command, the erase will not complete until the time interval, TERAB, has expired (see Figure 3-15). The programming host device should not issue another 8-bit command until after the TERAB interval has fully elapsed.

TABLE 3-2: BULK ERASE TABLE

Addes		Area(s) Erased								
Address	<u>CP</u> = 1	<u>CP</u> = 0								
0000h-3FFFh ⁽¹⁾	User Flash	User Flash								
0000h-3FFFh(''	Configuration Words	Configuration Words								
	User Flash	User Flash								
8000h-80FDh	Configuration Words	Configuration Words								
	User ID Words	User ID Words								
80FEh-80FFh	User Flash	User Flash								
8100h-E7FFh	No Operation	No Operation								
	User Flash	User Flash								
E800h-FFFFh	Configuration Words	Configuration Words								
	User ID Words	User ID Words								

Note 1: See Figure 2-1 for device specific program memory size and locations.

FIGURE 3-15: BULK ERASE MEMORY



3.1.3.9 Row Erase Memory

If the program memory is code-protected, the Row Erase Program Memory command will be ignored. When the address is 8000h-8004h, the Row Erase Program Memory command will only erase the User ID locations, regardless of the setting of the \overline{CP} Configuration bit. The Row Erase Memory command will erase an individual row. When write and erase operations are done on a row basis, the row size (number of 14-bit words) for the erase operation is 32 and the row size (number of 14-bit latches) for the write operation is 32.

The Flash memory row defined by the current PC will be erased. The user must wait TERAR for erasing to complete (see Figure 3-16).

FIGURE 3-16: ROW ERASE MEMORY

3.2 Programming Algorithms

The device uses internal latches to temporarily store the 14-bit words used for programming. The data latches allow the user to program a full row with a single Begin Internally Timed Programming or Begin Externally Timed Programming command. The Load Data for NVM command is used to load a single data latch. The data latch will hold the data until the Begin Internally Timed Programming or Begin Externally Timed Programming command is given.

The data latches are aligned with the LSbs of the address. The address at the time the Begin Internally Timed Programming or Begin Externally Timed Programming command is given will determine which memory row is written. Writes cannot cross a physical row boundary. For example, attempting to write from address 0002h-0021h in a 32-latch device will result in data being written to 0020h-003Fh.

If more than the maximum number of latches are written without a Begin Internally Timed Programming or Begin Externally Timed Programming command, the data in the data latches will be overwritten. Figure 3-17 through Figure 3-22 show the recommended flowcharts for programming.

Note: The F

The Program Flash Memory region is programmed one row (32 words) at a time (Figure 3-20). User ID and Configuration Words are programmed one word at a time (Figure 3-19). While the EEPROM or Data Flash Memory is programmed one byte at a time.

The value of the PC at the time of issuing the Begin Internally Timed Programming or Begin Externally Timed Programming command determines what row (of Program Flash Memory or EEPROM) or what word (of User ID or Configuration Word) will get programmed.

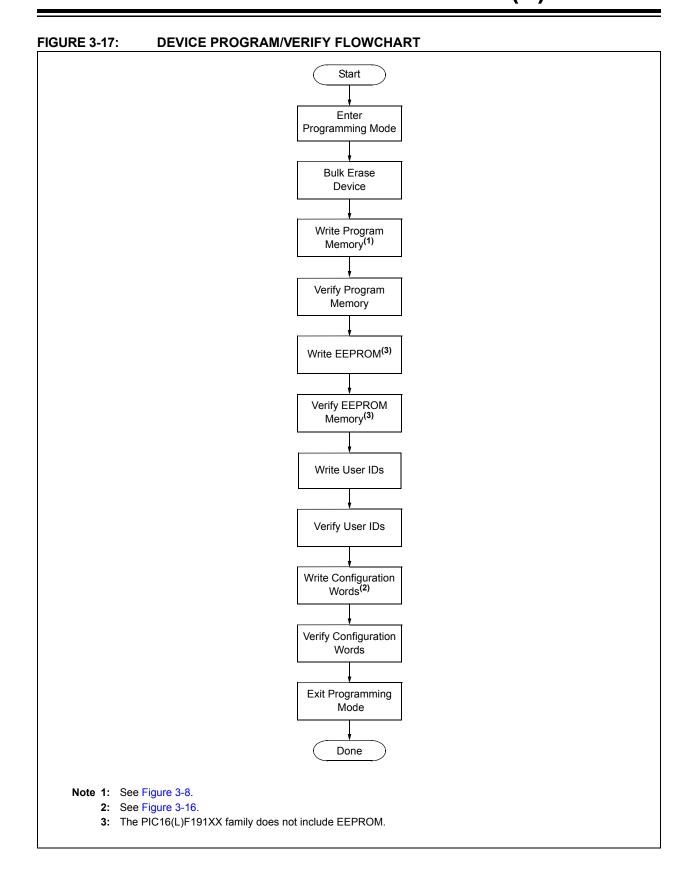


FIGURE 3-18: PROGRAM MEMORY FLOWCHART

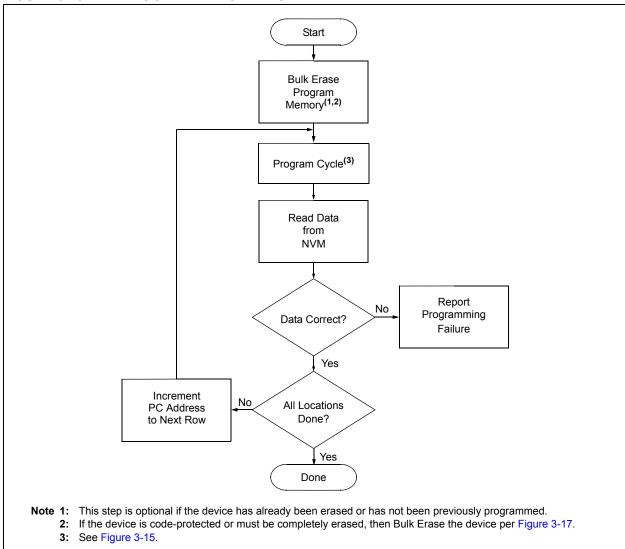
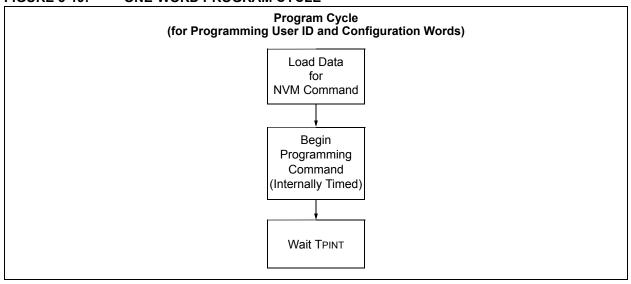



FIGURE 3-19: ONE-WORD PROGRAM CYCLE

FIGURE 3-20: MULTIPLE WORD PROGRAM CYCLE Program Cycle (for Writing to Program Flash Memory or Data Flash/EEPROM Memory) Load Data Latch 1 for NVM Increment Address Load Data Latch 2 for NVM Increment Address Load Data Latch 32 for NVM Begin Begin Programming Programming Command Command (Internally Timed) (Externally Timed) Wait TPINT Wait TPEXT End Externally Timed Programming Command

Wait Tois

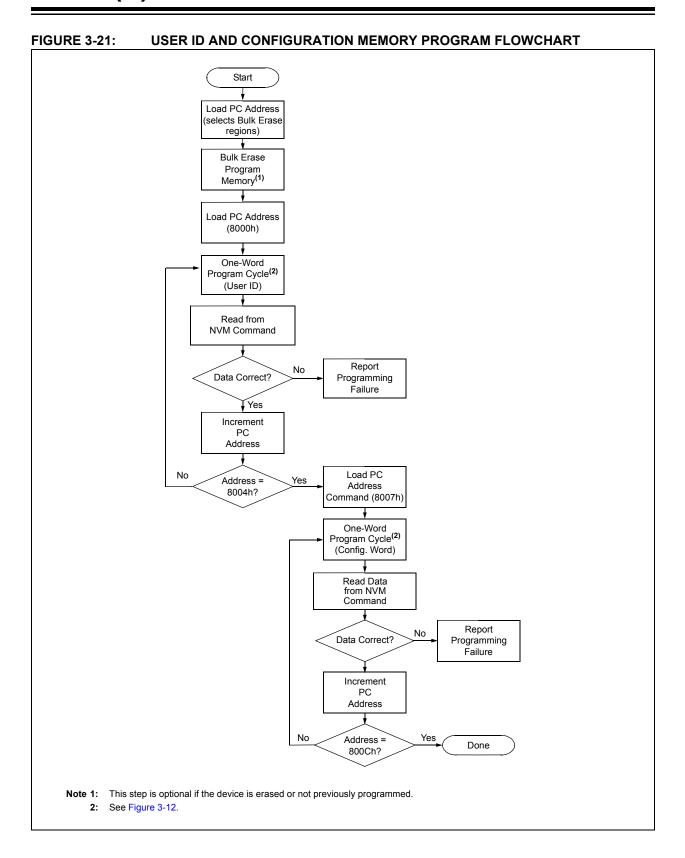
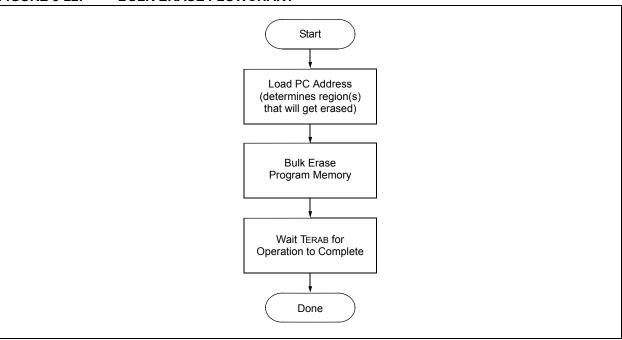



FIGURE 3-22: BULK ERASE FLOWCHART

3.3 Code Protection

Code protection is controlled using the $\overline{\text{CP}}$ bit. When code protection is enabled, all program memory locations (0000h-3FFFh) read as '0'. Further programming is disabled for the program memory (0000h-3FFFh) until the next Bulk Erase operation is performed. Program memory can still be programmed and read during program execution.

The Revision ID, Device ID, Device Information Area, Device Configuration Information, User IDs and Configuration Words can be read out, regardless of the code protection settings.

3.3.1 PROGRAM MEMORY

Code protection is enabled by programming the $\overline{\mathsf{CP}}$ bit to '0'. The only way to disable code protection is to use the Bulk Erase Memory command (with the PC set to an address so as to Bulk Erase all program Flash contents).

Note: See Figure 2-1 for device-specific program memory size and locations.

3.4 Hex File Usage

In the Hex file, there are two bytes per program word stored in the Intel[®] INHX32 Hex format. Data is stored, LSB first, MSB second. Because there are two bytes per word, the addresses in the Hex file are 2x the address in program memory. For example, if the Configuration Word 1 is stored at 8007h, in the Hex file, this will be referenced as 1000Eh-1000Fh.

3.5 Configuration Words

To allow portability of code, it is strongly recommended that the programmer is able to read the Configuration Words and User ID locations from the Hex file. If the Configuration Words information is not present in the Hex file, a simple warning message may be issued. Similarly, while saving a Hex file, Configuration Words and User ID information should be included.

3.6 Device ID

If a Device ID is present in the Hex file at 1000Ch-1000Dh (8006h on the part), the programmer should verify the Device ID against the value read from the part. On a mismatch condition, the programmer should generate a warning message.

3.6.1 PROGRAM CODE PROTECTION DISABLED CHECKSUM COMPUTATIONS

With the program code protection disabled, the checksum is computed by reading the contents of the program memory locations and summing up the program memory data, starting at address 0000h, up to the maximum user-addressable location. Any Carry bits exceeding 16 bits are ignored. Additionally, the relevant bits of the Configuration Words are added to the checksum. For PIC16 devices (14-bit program memory word), the two MSBs are taken as zero. All unimplemented Configuration bits are masked to '0' (see **Appendix B: "PIC16(L)F191XX Device ID, Checksums and Pinout Descriptions"**).

3.6.2 PROGRAM CODE PROTECTION ENABLED CHECKSUM COMPUTATIONS

When the MPLAB® X IDE check box for **Project Properties** \rightarrow **Building** \rightarrow **Insert unprotected checksum in user ID memory** is checked, then the 16-bit checksum of the equivalent unprotected device is computed and stored in the User ID. Each nibble of the unprotected checksum is stored in the Least Significant nibble of each of the four User ID locations. The Most Significant checksum nibble is stored in the User ID at location, 8000h, the second Most Significant nibble is stored at location, 8001h, and so forth for the remaining nibbles and ID locations.

The checksum of a code-protected device is computed in the following manner: the Least Significant nibble of each User ID is used to create a 16-bit value. The Least Significant nibble of User ID location, 8000h, is the Most Significant nibble of the 16-bit value. The Least Significant nibble of User ID location, 8001h, is the second Most Significant nibble, and so forth for the remaining User IDs and 16-bit value nibbles. The resulting 16-bit value is summed with the Configuration Words. All unimplemented Configuration bits are masked to '0'.

3.7 Electrical Specifications

Refer to the device-specific data sheet for absolute maximum ratings.

TABLE 3-3: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

AC/DC	CHARACTERISTICS	Standard Production		Conditions +25°C.	;					
Sym.	Characteristic	s	Min.	Тур.	Max.	Units	Conditions/Comments			
Programming Supply Voltages and Currents										
VDD	Supply Voltage	PIC16LF191XX	1.80	_	3.60	V				
	(VDDMIN ⁽¹⁾ , VDDMAX)	PIC16F191XX	2.30	_	5.50	V				
VPEW	Read/Write and Row Erase Ope	rations	VDDMIN	_	VDDMAX	V				
VBE	Bulk Erase Operations		VBOR ⁽²⁾	_	VDDMAX	V				
Iddi	Current on VDD, Idle		_	_	1.0	mA				
IDDP	Current on VDD, Programming		_	_	5.0	mA				
IPP	VPP						•			
	Current on MCLR/VPP		_	_	600	μΑ				
Vінн	High Voltage on MCLR/VPP for F	8.0	_	9.0	V					
TVHHR	MCLR Rise Time (VIL to VIHH) for Mode Entry	r Program/Verify	_	_	1.0	μS				
	I/O Pins									
VIH	(ICSPCLK, ICSPDAT, MCLR/VP	0.8 VDD	_	_	V					
VIL	(ICSPCLK, ICSPDAT, MCLR/VP	_	_	0.2 VDD	V					
Voн	ICSPDAT Output High Level		VDD - 0.7 VDD - 0.7 VDD - 0.7	_	_	V	IOH = -3.5 mA, VDD = 5V IOH = -3 mA, VDD = 3.3V IOH = -1 mA, VDD = 1.8V			
Vol	ICSPDAT Output Low Level		_	_	Vss + 0.6 Vss + 0.6 Vss + 0.6	V	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V			
		Programmin	g Mode Ent	ry and Ex	it					
TENTS	Programing Mode Entry Setup T ICSPDAT Setup Time before VD		100	_	_	ns				
TENTH	Programing Mode Entry Hold Tir ICSPDAT Hold Time after VDD o		250	_	_	μS				
		Serial	Program/V	erify						
TCKL	Clock Low Pulse Width		100	_	_	ns				
Тскн	Clock High Pulse Width		100			ns				
TDS	Data in Setup Time before Clock	1	100	_		ns				
TDH	Data in Hold Time after Clock↓		100	_	_	ns				
Tco	Clock [↑] to Data Out Valid (during Data Command)	a Read	0	_	80	ns				

- Note 1: Bulk Erased devices default to brown-out enabled, with BORV = 1 (low trip point). VDDMIN is the VBOR threshold (with BORV = 1) when performing Low-Voltage Programming on a Bulk Erased device, to ensure that the device is not held in Brown-out Reset.
 - 2: The hardware requires VDD to be above the BOR threshold, at the ~2.4V nominal setting, in order to perform Bulk Erase operations. This threshold does not depend on the BORV Configuration bit settings. The threshold is the same for both F and LF devices, even though the LF devices may not have a user configurable ~2.4V nominal BOR trip point setting. Refer to the microcontroller device data sheet specifications for min./typ./max. limits of the VBOR level (at the BORV = 0 setting of F devices).
 - **3:** Externally timed writes are not supported for Configuration bits.

TABLE 3-3: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE (CONTINUED)

	MODE (GORTINGED)										
AC/DC	CHARACTERISTICS	Standard Operating Conditions Production tested at +25°C.									
Sym.	Characteristics	Min.	Тур.	Max.	Units	Conditions/Comments					
TLZD	Clock↓ to Data Low-Impedance (during a Read Data Command)	0	_	80	ns						
THZD	Clock↓ to Data High-Impedance (during a Read Data command)	0	_	80	ns						
TDLY	Data Input Not Driven to Next Clock Input (delay required between command/data or command/ command)	1.0	_	_	μs						
TERAB	Bulk Erase Cycle Time	_	_	8.4	ms	PIC16(L)F191XX devices					
TERAR	Row Erase Cycle Time	_	_	2.8	ms						
TPINT	Internally Timed Programming Operation Times	_	_	2.8 5.6	ms	Program memory					
				5.6	ms	Configuration Words					
TPEXT	Delay Required between Begin Externally Timed Programming and End Externally Timed Programming Commands	1.0	_	2.1	ms	(Note 3)					
TDIS	Delay Required after End Externally Timed Programming Command	300	_	_	μS						
TEXIT	Time Delay when Exiting Program/Verify Mode	1	_	_	μS						

- Note 1: Bulk Erased devices default to brown-out enabled, with BORV = 1 (low trip point). VDDMIN is the VBOR threshold (with BORV = 1) when performing Low-Voltage Programming on a Bulk Erased device, to ensure that the device is not held in Brown-out Reset.
 - 2: The hardware requires VDD to be above the BOR threshold, at the ~2.4V nominal setting, in order to perform Bulk Erase operations. This threshold does not depend on the BORV Configuration bit settings. The threshold is the same for both F and LF devices, even though the LF devices may not have a user configurable ~2.4V nominal BOR trip point setting. Refer to the microcontroller device data sheet specifications for min./typ./max. limits of the VBOR level (at the BORV = 0 setting of F devices).
 - **3:** Externally timed writes are not supported for Configuration bits.

APPENDIX A: REVISION HISTORY

Revision A (4/2017)

Initial release of this document.

Revision B (6/2018)

Updated Example B-3.

APPENDIX B: PIC16(L)F191XX DEVICE ID, CHECKSUMS AND PINOUT DESCRIPTIONS

TABLE B-1: DEVICE IDs AND CHECKSUMS

		Configure		Configuration 1		Configu	Configuration 2		otion 2	Configu	unation 4	Configur	ration E			Checksum					
	Device	Device	Device	Device	Device	Device	Configu	ration 1	Comigu	ration 2	Configur	ation 3	Connigi	uration 4	Configur	ation 5		Unp	rotected	Code-	Protected
Device	ID	Word (Hex)	Mask (Hex)	Word (Hex)	Mask (Hex)	Word (Hex)	Mask (Hex)	Word (Hex)	Mask (Hex)	Word (unprotected)	Word (protected)	Mask	Blank (Hex)	00AAh First and Last (Hex)	Blank (Hex)	00AAh First and Last (Hex					
PIC16F19155	3096	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	BD7D	3ED3	9AF5	1C4B					
PIC16LF19155	3097	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	BD7D	3ED3	9AF5	1C4B					
PIC16F19156	3098	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	9D7D	1ED3	7AF5	FC4B					
PIC16LF19156	3099	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	9D7D	1ED3	7AF5	FC4B					
PIC16F19175	309A	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	BD7D	3ED3	9AF5	1C4B					
PIC16LF19175	309B	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	BD7D	3ED3	9AF5	1C4B					
PIC16F19176	309C	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	9D7D	1ED3	7AF5	FC4B					
PIC16LF19176	309D	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	9D7D	1ED3	7AF5	FC4B					
PIC16F19185	30BA	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	BD7D	3ED3	9AF5	1C4B					
PIC16LF19185	30BB	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	BD7D	3ED3	9AF5	1C4B					
PIC16F19186	30BC	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	9D7D	1ED3	7AF5	FC4B					
PIC16LF19186	30BD	3FFF	2F77	3FFF	3EE7	3FFF	3F7F	3FFF	2F9F	3FFF	3FFE	0001	9D7D	1ED3	7AF5	FC4B					

EXAMPLE B-1: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED: PIC16F19155, BLANK DEVICE

PIC16F19155	Sum of Memory Addresses 0000h-1FFFh	n E000h (2000h+3FFFh)						
	Configuration Word 1	3FFFh						
	Configuration Word 1 Mask	2F77h						
	Configuration Word 2	3FFFh						
	Configuration Word 2 Mask	3EE7h						
	Configuration Word 3	3FFFh						
	Configuration Word 3 Mask	3F7Fh						
	Configuration Word 4	3FFFh						
	Configuration Word 4 Mask	2F9Fh						
	Configuration Word 5 Unprotected	3FFFh						
	Configuration Word 5 Mask	0001h						
	Checksum = E000h + (3FFFh and 2	F77h) + (3FFFh and 3EE7h) + (3FFFh and 3F7Fh) +						
	(3FFFh and 2F9Fh) + ((3FFFh and 0001h)						
	= F000h + 2F77h + 3EE7h + 3F7Fh + 2F9Fh + 0001h							
	= BD7Dh							

EXAMPLE B-2: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION DISABLED: PIC16F19155, 00AAh AT FIRST AND LAST ADDRESS

PIC16F19155	Sum of Memor	ry Addresses 0000h-1FFFh	6156h (AAh + (1FFEh * 3FFFh) + AAh)				
	Configuration \		3FFFh ,				
	Configuration \	Word 1 Mask	2F77h				
	Configuration \	Word 2	3FFFh				
	Configuration \	Word 2 Mask	3EEFh				
	Configuration \	Word 3	3FFFh				
	Configuration \	Word 3 Mask	3F7Fh				
	Configuration \	Word 4	3FFFh				
	Configuration \	Word 4 Mask	2F9Fh				
	Configuration \	Word 5 Unprotected	3FFFh				
	Configuration \	Word 5 Mask	0001h				
	Checksum	= 6156h + (3FFFh and 2F77h) + (3FFFh and 3EEFh) + (3FFFh and 3F7F (3FFFh and 2F9Fh) + (3FFFh and 0001h) = 7156h + 2F77h + 3EEFh + 3F7Fh + 2F9Fh + 0001h					
		= 3ED3h					

EXAMPLE B-3: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED: PIC16F19155, BLANK DEVICE

		·	
PIC16F19155	Configuration We	ord 1	3FFFh
	Configuration W	ord 1 Mask	2F77h
	Configuration W	ord 2	3FFFh
	Configuration W	ord 2 Mask	3EE7h
	Configuration W	ord 3	3FFFh
	Configuration W	ord 3 Mask	3F7Fh
	Configuration W	ord 4	3FFFh
	Configuration W	ord 4 Mask	2F9Fh
	Configuration W	ord 5 Unprotected	3FFEh
	Configuration W	ord 5 Mask	0001h
	Sum of User IDs	s = (000Bh and 000Fh) << 12 + (000	0Dh and 000Fh) << 8 + (0007h and 000Fh)
		<< 4 + (000Dh and 000Fh)	
		= B000h + 0D00h + 0070h + 000D)h
		= BD7Dh	
	Checksum	= (3FFFh and 2F77h) + (3FFFh ar	nd 3EE7h) + (3FFFh and 3F7Fh) +
		(3FFFh and 2F9Fh) + (3FFEh and	nd 0001h) + BD7Dh
		= 2F77h + 3EE7h + 3F7Fh + 2F9F	⁻ h + 0000h + BD7Dh
		= 9AF9h	

EXAMPLE B-4: CHECKSUM COMPUTED WITH PROGRAM CODE PROTECTION ENABLED: PIC16F19155, 00AAh AT FIRST AND LAST ADDRESS

		•	
PIC16F19155	Configuration \	Word 1	3FFFh
	Configuration 1	Word 1 Mask	2F77h
	Configuration 1	Word 2	3FFFh
	Configuration 1	Word 2 Mask	3EE7h
	Configuration 1	Word 3	3FFFh
	Configuration '		3F7Fh
	Configuration		3FFFh
	Configuration	Word 4 Mask	2F9Fh
	-	Word 5 Unprotected	3FFEh
	Configuration '	· ·	0001h
	Sum of User II	Os = (0003h and 000Fh) <<	12 + (000Eh and 000Fh) << 8 + (000Dh and 000Fh)
		<< 4 + (0003h and 000	• • • • • • • • • • • • • • • • • • • •
		= 3000h + 0E00h + 00D0	0h + 0003h
		= 3ED3h	
	Checksum	= (3FFFh and 2F77h) +	(3FFFh and 3EE7h) + (3FFFh and 3F7Fh) +
		,	(3FFEh and 0001h) + 3ED3h
		,	h + 2F9Fh + 0000h + 3ED3h
		= 1C4Bh	
		-	

Note: The Sum of User IDs in Example B-3 and Example B-4 is with the unprotected checksum inserted into the User ID memory. See Section 3.6.2, Program Code Protection Enabled Checksum Computations.

TABLE B-2: PROGRAMMING PIN LOCATIONS BY PACKAGE TYPE

Device	Dookogo	Package	V DD	Vss	МС	LR	ICSF	CLK	ICSPDAT	
Device	Package	Code	Pin	Pin	Pin	Port	Pin	Port	Pin	Port
PIC16(L)F19155	SPDIP-28	SP	20	8,19	1	RE3	28	RB7	27	RB6
PIC16(L)F19156	SSOP-28	SS	20	8,19	1	RE3	28	RB7	27	RB6
	SOIC-28	SO	20	8,19	1	RE3	28	RB7	27	RB6
	UQFN-28	MV	17	5,16	26	RE3	25	RB7	24	RB6
PIC16(L)F19175	PDIP-40	PI	11,32	12,31	1	RE3	40	RB7	39	RB6
PIC16(L)F19176	UQFN-40	MV	7,26	6,27	18	RE3	15	RB7	14	RB6
	TQFP-44	PT	7,28	6,29	18	RE3	17	RB7	16	RB6
PIC16(L)F19185	UQFN-48	MV	7,30	6,31	20	RE3	19	RB7	18	RB6
PIC16(L)F19186	TQFP-48	PT	7,30	6,31	20	RE3	19	RB7	18	RB6

REGISTER B-1: CONFIGURATION WORD 1: OSCILLATORS

R/P-1	U-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1 R/P-1 R/P-1
FCMEN	_	CSWEN	LCDPM	VBATEN	CLKOUTEN	_	RS	TOSC<2	:0>	_	FEXTOSC<2:0>
bit 13											bit 0

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' x = Bit is unknown '0' = Bit is cleared '1' = Bit is set n = Value when blank or after Bulk Erase W = Writable bit

- bit 13 FCMEN: Fail-Safe Clock Monitor Enable bit
 - 1 = FSCM timer is enabled
 - 0 = FSCM timer is disabled
- bit 12 Unimplemented: Read as '1'
- bit 11 CSWEN: Clock Switch Enable bit
 - 1 = Writing to NOSC and NDIV is allowed
 - 0 = The NOSC and NDIV bits cannot be changed by user software
- bit 10 LCDPM: LCD Charge Pump Mode bit
 - 1 = User intends to enable LCD charge pump during LCD operation
 - 0 = LCD charge pump is forced off
- bit 9 VBATEN: VBAT Pin Enable bit
 - 1 = VBAT functionality is disabled; VBAT pin becomes GPIO
 - 0 = VBAT functionality is enabled; VBAT pin has a battery connected to it
- bit 8 **CLKOUTEN:** Clock Out Enable bit

If FEXTOSC = EC (high, mid or low) or Not Enabled:

- 1 = CLKOUT function is disabled; I/O or oscillator function on OSC2
- 0 = CLKOUT function is enabled; Fosc/4 clock appears at OSC2

Otherwise:

This bit is ignored.

- bit 7 Unimplemented: Read as '1'
- bit 6-4 RSTOSC<2:0>: Power-up Default Value for COSC bits

This value is the Reset default value for COSC and selects the oscillator first used by user software.

- 111 = EXTOSC operating per FEXTOSC bits (device manufacturing default)
- 110 = HFINTOSC with HFFRQ = 4'b0000, 4 MHz and CDIV = 4:1
- 101 = LFINTOSC
- 100 = SOSC
- 011 = Reserved (defaults to HFINTOSC, OSCFRQ = 4 MHz, CDIV = 1:1)
- 010 = EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC bits
- 001 = EXTOSC with 2x PLL, with EXTOSC operating per FEXTOSC bits
- 000 = HFINTOSC with 2x PLL and HFFRQ = 4'b1111, 32 MHz and CDIV = 1:1
- bit 3 Unimplemented: Read as '1'
- bit 2-0 FEXTOSC<2:0>: FEXTOSC External Oscillator Mode Selection bits
 - 111 = EC (External Clock) above 8 MHz; PFM set to high power (device manufacturing default)
 - 110 = EC (External Clock) for 100 kHz to 8 MHz; PFM set to medium power
 - 101 = EC (External Clock) below 100 kHz; PFM set to low power
 - 100 = Oscillator is not enabled
 - 011 = Oscillator is not enabled
 - 010 = Oscillator is not enabled
 - 001 = Oscillator is not enabled
 - 000 = Oscillator is not enabled

REGISTER B-2: CONFIGURATION WORD 2: SUPERVISORS

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1	U-1	U-1	R/P-1	R/P-1	R/P-1
DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	_	BORE	N<1:0>	LPBOREN	_		PWRT	S<1:0>	MCLRE
bit 13													bit 0

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' <math>x = Bit is unknown '0' = Bit is cleared '1' = Bit is set n = Value when blank or after Bulk Erase W = Writable bit

- bit 13 **DEBUG:** Debugger Enable bit
 - 1 = Background debugger is disabled
 - 0 = Background debugger is enabled
- bit 12 STVREN: Stack Overflow/Underflow Reset Enable bit
 - 1 = Stack overflow or underflow will cause a Reset
 - 0 = Stack overflow or underflow will not cause a Reset
- bit 11 PPS1WAY: PPSLOCK One-Way Set Enable bit
 - 1 = The PPSLOCK bit can be cleared and set only once; PPS registers remain locked after one clear/set cycle
 - 0 = The PPSLOCK bit can be set and cleared repeatedly (subject to the unlock sequence)
- bit 10 ZCDDIS: Zero-Cross Detect Disable bit
 - 1 = ZCD is disabled. ZCD can be enabled by setting the ZCDSEN bit of the ZCDCON register
 - 0 = ZCD is always enabled (ZCDSEN bit is ignored)
- bit 9 BORV: Brown-out Reset Voltage Selection bit
 - 1 = Brown-out Reset Voltage (VBOR) is set to a lower trip point level
 - 0 = Brown-out Reset Voltage (VBOR) is set to a higher trip point level

The higher voltage setting is recommended for operation at or above 16 MHz.

- bit 8 Unimplemented: Read as '1'
- bit 7-6 BOREN<1:0>: Brown-out Reset Enable bits

When enabled, Brown-out Reset Voltage (VBOR) is set by the BORV bit.

- 11 = Brown-out Reset is enabled; SBOREN bit is ignored
- 10 = Brown-out Reset is enabled while running, disabled in Sleep; SBOREN bit is ignored
- 01 = Brown-out Reset is enabled according to SBOREN
- 00 = Brown-out Reset is disabled
- bit 5 LPBOREN: Low-Power BOR Enable bit
 - 1 = Ultra Low-Power BOR is disabled
 - 0 = ULPBOR is enabled
- bit 4-3 Unimplemented: Read as '1'
- bit 2-1 PWRTS<1:0>: Power-up Timer Selection bits
 - 11 = PWRT is disabled
 - 10 = PWRT is set at 64 ms
 - 01 = PWRT is set at 16 ms
 - 00 = PWRT is set at 1 ms
- bit 0 MCLRE: Master Clear (MCLR) Enable bit

If LVP = 1:

RE3 pin function is MCLR (it will reset the device when driven low)

If LVP = 0:

- 1 = MCLR pin is MCLR (it will reset the device when driven low)
- $0 = \overline{MCLR}$ pin may be used as the general purpose RE3 input

REGISTER B-3: CONFIGURATION WORD 3: WINDOWED WATCHDOG TIMER

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
WE	WDTCCS<2:0> WDTCWS<2:0>				2:0>	-	WDTE	<1:0>		V	VDTCPS	<4:0>	
bit 13													bit 0

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' <math>x = Bit is unknown '0' = Bit is cleared '1' = Bit is set n = Value when blank or after Bulk Erase W = Writable bit

bit 13-11 WDTCCS<2:0>: WDT Input Clock Selector bits

000 = WDT reference clock is the 31.25 kHz HFINTOSC (MFINTOSC) output

001 = WDT reference clock is the 31.0 kHz LFINTOSC (default value)

010 = Reserved

•

٠

110 = Reserved

111 = Software control

bit 10-8 WDTCWS<2:0>: WDT Window Select bits

	1	WDTCWS<2:0> at	POR	Coffware	_	
WDTCWS<2:0>	Value	Window Delay Percent of Time	Window Opening Percent of Time	Software Control of WDTCWS<2:0>?	Keyed Access Required?	
000	000	87.5	12.5			
001	001	75	25			
010	010	62.5	37.5			
011	011	50	50	No	Yes	
100	100	37.5	62.5			
101	101	25	75			
110	111	n/a	100			
111	111	n/a	100	Yes	No	

bit 7 Unimplemented: Read as '1'

bit 6-5 WDTE<1:0>: WDT Operating Mode bits

00 = WDT is disabled, SWDTEN is ignored

01 = WDT is enabled/disabled by the SWDTEN bit in WDTCON0

10 = WDT is enabled while Sleep = 0, suspended when Sleep = 1; SWDTEN is ignored

11 = WDT is enabled regardless of Sleep; SWDTEN is ignored

REGISTER B-3: CONFIGURATION WORD 3: WINDOWED WATCHDOG TIMER (CONTINUED)

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

	1	WDTCPS<4:0	> at P0	OR	Software	
WDTCPS<4:0>	Value	Divider R	atio	Typical Time-out (Fin = 31 kHz)	Control of WDTCPS<4:0>?	
00000	00000	1:32	2 ⁵	1 ms		
00001	00001	1:64	2 ⁶	2 ms	-	
00010	00010	1:128	2 ⁷	4 ms		
00011	00011	1:256	2 ⁸	8 ms		
00100	00100	1:512	2 ⁹	16 ms	-	
00101	00101	1:1024	2 ¹⁰	32 ms		
00110	00110	1:2048	2 ¹¹	64 ms		
00111	00111	1:4096	2 ¹²	128 ms		
01000	01000	1:8192	2 ¹³	256 ms		
01001	01001	1:16384	2 ¹⁴	512 ms	No	
01010	01010	1:32768	2 ¹⁵	1s		
01011	01011	1:65536	2 ¹⁶	2s	-	
01100	01100	1:131072	2 ¹⁷	4s		
01101	01101	1:262144	2 ¹⁸	8s		
01110	01110	1:524299	2 ¹⁹	16s	-	
01111	01111	1:1048576	2 ²⁰	32s		
10000	10000	1:2097152	2 ²¹	64s		
10001	10001	1:4194304	2 ²²	128s		
10010	10010	1:8388608	2 ²³	256s		
10011	10011		_			
	• • •	1:32	2 ⁵	1 ms	No	
11110	11110		-16	_		
11111(1)	01011	1:65536	2 ¹⁶	2s	Yes	

Note 1: Default fuse – '5' b11111'.

The higher voltage setting is recommended for operation at or above 16 MHz.

^{1 =} Brown-out Reset Voltage (VBOR) is set to a lower trip point level

^{0 =} Brown-out Reset Voltage (VBOR) is set to a higher trip point level

REGISTER B-4: CONFIGURATION WORD 4: MEMORY

R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-1	U-1	R/W-1	R/W-1	R/W-1 R/W-1 R	/W-1
LVP	_	WRTSAF ⁽¹⁾	WRTD ⁽¹⁾	WRTC ⁽¹⁾	WRTB ⁽¹⁾	WRTAPP ⁽¹⁾	_	_	SAFEN ⁽¹⁾	BBEN ⁽¹⁾	BBSIZE<2:0>	>
bit 13												bit 0

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' x = Bit is unknown '0' = Bit is cleared '1' = Bit is set n = Value when blank or after Bulk Erase W = Writable bit

- bit 13 LVP: Low-Voltage Programming Enable bit
 - 1 = Low-Voltage Programming is enabled; MCLR/VPP pin function is MCLR, MCLRE Configuration bit is ignored
 - 0 = High voltage on MCLR/VPP must be used for programming

The LVP bit cannot be written (to zero) while operating from the LVP programming interface. The purpose of this rule is to prevent the user from dropping out of LVP mode while programming from LVP mode, or accidentally eliminating LVP mode from the configuration state. The preconditioned (erased) state for this bit is critical.

- bit 12 Unimplemented: Read as '1'
- bit 11 WRTSAF: Storage Area Flash Write Protection bit⁽¹⁾
 - 1 = SAF is NOT write-protected
 - 0 = SAF is write-protected

Unimplemented if SAF is not supported in the device family and only applicable if SAFEN = 0.

- bit 10 WRTD: Data EEPROM Write Protection bit⁽¹⁾
 - 1 = Data EEPROM is NOT write-protected
 - 0 = Data EEPROM is write-protected

Unimplemented if data EEPROM is not present.

- bit 9 WRTC: Configuration Register Write Protection bit⁽¹⁾
 - 1 = Configuration register is NOT write-protected
 - 0 = Configuration register is write-protected
- bit 8 WRTB: Boot Block Write Protection bit⁽¹⁾
 - 1 = Boot Block is NOT write-protected
 - 0 = Boot Block is write-protected

Only applicable if BBEN = 0.

- bit 7 WRTAPP: Application Block Write Protection bit⁽¹⁾
 - 1 = Application Block is NOT write-protected
 - 0 = Application Block is write-protected
- bit 6-5 Unimplemented: Read as '1'
- bit 4 SAFEN: SAF Enable bit (1)
 - 1 = SAF is disabled
 - 0 = SAF is enabled
- bit 3 BBEN: Boot Block Enable bit⁽¹⁾
 - 1 = Boot Block is disabled
 - 0 = Boot Block is enabled
- bit 2-0 BBSIZE<2:0>: Boot Block Size Selection bits (refer to Table C-2)

BBSIZE<2:0> bits are used only when $\overline{BBEN} = 0$.

BBSIZE<2:0> bits can only be written while BBEN = 1; after BBEN = 0, BBSIZE<2:0> bits are write-protected.

Note 1: Bits are implemented as sticky bits. Once protection is enabled, it can only be reset through a Bulk Erase.

APPENDIX C: MEMORY PARTITIONING

User Flash is partitioned into:

- · Application Block
- · Boot Block
- SAF Block

According to the BBEN, BBSIZE<2:0> and SAFEN bits (Register B-4). Default settings assign all memory in the user Flash area to the Application Block.

Boot Block

The Boot Block, if enabled, begins at the lowest address of memory and spans the size specified by the BBSIZE<2:0> bits. The SAF Block, if enabled, is placed at the end of memory and spans 128 words.

Memory Write Protection

All partitions have a corresponding write protection fuse (Register B-4). If write-protected locations are written from NVMCON, memory is not changed and WRERR is set.

Note: Partitioned memory replaces the write protection options (WTC) of previous devices. Partitioning and associated write protection can be cleared using Bulk Erase.

TABLE C-1: MEMORY MAP PARTITIONS AND PROTECTION

			Pa	rtition					
Reg	Address	BBEN = 1 SAFEN = 1	BBEN = 1 SAFEN = 0	BBEN = 0 SAFEN = 1	BBEN = 0 SAFEN = 0				
	0000h End of Boot address ⁽¹⁾		WRTAPP = 0:	WRTB = 0: Boot Block write-protected	WRTB = 0: Boot Block write-protected				
PFM	End of Boot address + 1 ⁽¹⁾ ••• End of PFM address – 129 ⁽²⁾	WRTAPP = 0: Application Block write-protected	Application Block write-protected	WRTAPP = 0: Application Block	WRTAPP = 0: Application Block write-protected				
	End of PFM address – 128 ••• End of PFM address – 1 ⁽²⁾		WRTSAF = 0: SAF Block write-protected	write-protected	WRTSAF = 0: SAF Block write-protected				
Config	Configuration Words ⁽³⁾	WRTC = 0: Configuration Registers are write-protected							
DFM	Data Flash Memory ⁽³⁾	WRTD = 0: Data EEPROM is write-protected							

- Note 1: End of Boot address is based on BBSIZE<2:0>, see Register B-4 and Table C-2.
 - 2: End of PFM address is based on Figure 2-1.
 - 3: Configuration Words and Data Flash Memory addresses are based on Figure 2-1.

TABLE C-2: BOOT BLOCK SIZE BITS(1)

BBEN	BBSIZE<2:0>	Preferred Boot Block	ι	Ac Jser Prog	2)	End of Boot Address			
		Size (words)	1k	2k	4k	8k	16k	32k	Address
1	xxx	0	0	0	0	0	0	0	_
0	111	512	512	512	512	512	512	512	01FFh
0	110	1024		1024	1024	1024	1024	1024	03FFh
0	101	2048			2048	2048	2048	2048	07FFh
0	100	4096				4096	4096	4096	0FFFh
0	011	8192					8192	8192	1FFFh
0	010	16384			(Note 3)		•	16384	3FFFh
0	001	32768				3FFFh			
0	000	65536			3FFFh				

- Note 1: This is generic information and not all entries apply to this device.
 - 2: For each device, the user program memory size specification is listed in Figure 2-1.
 - 3: The maximum Boot Block size is half the user program memory size. All selections higher than the maximum are set to half size. For example, all BBSIZE<2:0> = 000-100 to produce a Boot Block size of 4 kW on an 8 kW device.

REGISTER C-1: CONFIGURATION WORD 5: CODE PROTECTION

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/P-1
_	_	_	_	_	_	_	_	_	_	_	_	_	CP
bit 13													bit 0

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' <math>x = Bit is unknown '0' = Bit is cleared '1' = Bit is set n = Value when blank or after Bulk Erase W = Writable bit

bit 13-1 Unimplemented: Read as '1'

bit 0 **CP**: Program Flash Memory Code Protection bit

1 = Program Flash Memory code protection is disabled

0 = Program Flash Memory code protection is enabled

APPENDIX D: DEVICE CONFIGURATION INFORMATION (DCI)

TABLE D-1: DEVICE CONFIGURATION INFORMATION

Address ⁽¹⁾	- Description	Value	Units
PIC16			
8200h	Erase Row Size ⁽²⁾	32	Words
8201h	Number of Write Latches	32	_
8202h	Number of User Rows ⁽³⁾	See Table D-2	Rows
8203h	EE Data Memory Size	256	Bytes
8204h	Pin Count	See Table D-3	Pins

- Note 1: These locations are read-only.
 - 2: Erase size is the minimum erasable unit in the PFM, expressed as rows.
 - **3:** Total device Flash memory capacity is (row_size * num_rows).

TABLE D-2: NUMBER OF USER ROWS

Part Name	Memory Size	Number of User Rows
PIC16(L)F19155	8k	256
PIC16(L)F19175	8K	256
PIC16(L)F19185	8K	256
PIC16(L)F19156	16k	512
PIC16(L)F19176	16k	512
PIC16(L)F19186	16k	512

TABLE D-3: PIN COUNT

Part Number	Pin Count
PIC16(L)F19155	28
PIC16(L)F19175	40/44
PIC16(L)F19185	48
PIC16(L)F19156	28
PIC16(L)F19176	40/44
PIC16(L)F19186	48

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-3222-7

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY

Tel: 631-435-6000 **San Jose, CA** Tel: 408-735-9110

Tel: 408-436-4270 **Canada - Toronto** Tel: 905-695-1980

Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829 China - Shenzhen

Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen

Tel: 86-592-2388138 **China - Zhuhai** Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781 Italy - Padova

Tel: 39-049-7625286 **Netherlands - Drunen** Tel: 31-416-690399

Fax: 31-416-690340 **Norway - Trondheim** Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820