Atmel AVR4030: Atmel Software Framework -
Reference Manual

Features

Architecture description
Code style

Design style

Directory structure

1 Introduction

The Atmel® Software Framework (abbreviated ASF, www.atmel.com/asf) provides
software drivers and libraries to build applications for Atmel megaAVR®, AVR
XMEGA®, AVR UC3 and SAM devices. It has been designed to help develop and
glue together the different components of a software design. It can easily integrate
into an operating system (OS) or run as a standalone product.

In this application note developers can read about how the ASF is designed, which
rules apply, how to use and develop code with the ASF.

This document is not a getting started guide but rather describes the underlying
architecture of the ASF.

ATMEL

ATMEL

Y ®

Atmel
Microcontrollers

Application Note

Rev. 8432B-AVR-03/12

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192&source=redirect�
http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=760�
http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=760�
http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=1965&source=left_nav�
http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=1965&source=left_nav�
http://www.atmel.com/dyn/products/devices.asp?category_id=163&family_id=607&subfamily_id=1965&source=left_nav�
http://www.atmel.com/products/avr/uc3.asp?category_id=163&family_id=607�
http://www.atmel.com/products/microcontrollers/arm/default.aspx�

ATMEL

2 Software installation and setup

2.1 Downloading

The ASF is included in Atmel Studio® 6 (http://www.atmel.com/atmelstudio). A
separate package is available for IAR™ and AVR32 Studio users on
http://www.atmel.com/asf. Atmel Studio users do not need this package as the ASF is
integrated and installed in Atmel Studio.

2.2 Online API Documentation

2.3 Release notes

2.4 Bug tracker

2.5 Getting started

2 Atmel AVR4030

The official ASF online APl documentation is located at http://asf.atmel.com.

The ASF release notes document is available on http://www.atmel.com/asf and
described:

e Supported tools

e Supported devices

o New features

o API changes

e Bug fixes

e Known issues

The official Atmel Software Framework bug tracker is located at
http://asf.atmel.com/bugzilla/. This should be used for all bug reports regarding ASF.

Refer to the Atmel application note AVR4029: Atmel Software Framework - Getting
Started, to be found on http://www.atmel.com/asf.

8432B-AVR-03/12

http://www.atmel.com/atmelstudio�
http://www.atmel.com/asf�
http://asf.atmel.com/�
http://www.atmel.com/asf�
http://asf.atmel.com/bugzilla/�
http://www.atmel.com/asf�

Atmel AVR4030

3 ASF directory structure

The Atmel Software Framework is split in six main parts, the avr32/ directory, the
xmega/ directory, the mega/ directory, the common/ directory, the sam/ directory and
the thirdparty/ directory. These six directories represent the Atmel AVR UC3
architecture, the Atmel megaAVR, the Atmel AVR XMEGA architecture and the Atmel
SAM architecture, what is common between all architectures and finally third party
libraries.

An overview of what is in the ASF root folder:

avr32/

common/

mega/

sam/

thirdparty/

xmega/
Each architecture (and the common directory) are split into several subdirectories,
these directories contains the various modules; boards, drivers, components, services
and utilities. See the list below and Figure 3-1 for an overview of how the various
modules are wired together.

applications/
boards/
components/
drivers/
services/
utils/

Figure 3-1. Atmel Software Framework modules structure.

lapplications - Your Application!

Y
lcomponents
Hardware components
Drivers

\J

7 v
Idrivers

Low level MCU drivers

Iservices
Software Stack

v ASF

Y

Iboards
Hardware board abstraction

8432B-AVR-03/12

ATMEL

3.1 Architecture and common directory structure

3.1.1 applications/

3.1.2 boards/

3.1.3 components/

3.1.4 drivers/

3.1.5 services/

3.1.6 utils/

This directory provides application examples that are based on services, components
and drivers modules. These applications are more high level and might have multiple
dependencies into several modules, thus demoing advanced applications like web
server, various USB demos, bootloader, audio player, etc.

This directory contains the various board definitions for the given architecture. The
board code abstracts the modules above the board from the physical wiring, 1/0
initialization, initialization of external devices, etc. The board code will also identify
what board features are available to the modules above.

The board entry point board.h header file used by all applications is located at
common/boards/board.h since it is shared between multiple architectures.

This directory provides software drivers to access external hardware components
such as memory (for example, Atmel DataFlash®, SDRAM, SRAM, and NAND flash),
displays, sensors, wireless, etc.

The components are placed in the common/ directory if it is shared between the
architectures; otherwise it is placed in the appropriate architecture directory.

Each driver is composed of a driver.c and driver.h file that provides low level register
interface functions to access a peripheral or device specific feature. The services and
components will interface the drivers.

This directory will provide more application oriented software such as a USB classes,
FAT file system, architecture optimized DSP library, graphical library, etc.

The services are placed in the common/ directory if it is shared between the
architectures; otherwise it is placed in the appropriate architecture directory.

This directory provides several linker script files, common files for the build system
and C/C++ files with general usage defines, macros and functions. The utils/ directory
also provide ways to make a common interface for differences between toolchains for
a specific architecture.

The code utilities are placed in the common/ directory if they are shared between the
architectures; otherwise they are placed in the appropriate architecture directory.

3.2 Third party directory structure

4 Atmel AVR4030

The /thirdparty directory is made of all software with a different license than the Atmel
Corporation application note license text.

An overview of what is in the thirdparty/ directory:

8432B-AVR-03/12

Atmel AVR4030

cyberom/
freertos/
gtouch/

Each of this module in the thirdparty/ directory should specified a license file in the
thirdparty/<module>/license.txt.

ATMEL ;

8432B-AVR-03/12

4 Compiler support

4.1 Atmel Studio 6

ATMEL

Atmel Software Framework aims for being independent of the compiler in use; hence
the various differences between compilers are stowed away in an architecture
specific header file. This file is located below each architecture directory at
utils/compiler.h.

Currently ASF supports GCC and IAR for both 8-bit and 32-bit AVR and ARM. The
latest available toolchain version should be the one used for developing.

To get started with ASF tools, refer to the Atmel application note AVR4029: Atmel
Software Framework - Getting Started, to be found on http://www.atmel.com/asf.

The ASF is integrated into Atmel Studio 6, based on GNU GCC compiler; refer to the
http://www.atmel.com/atmelstudio for more information.

4.2 GNU compiler collection

GNU makefile are provided for all ASF projects:

e For example, for 32-bit AVR devices, the GCC project files for the GPIO peripheral
bus driver example for the Atmel AT32UC3A0512 device on the Atmel EVK1100
board are located in:
avr32/drivers/gpio/peripheral bus example/at32uc3a0512 evk1l100/gcc

o For example, for Atmel AVR XMEGA devices the GCC project for the DMA driver
example for the Atmel ATxmega128A1 on the Atmel AVR Xplained board are
located in:

xmega/drivers/dma/example/atxmegal28al xplain/gcc

4.3 IAR Embedded Workbench

4.4 Toolchain header files

4.4.1 Bug reporting

6 Atmel AVR4030

IAR Embedded Workbench® workspace are provided for ASF projects.

o For example, for 32-bit Atmel AVR devices, the IAR project files is located in:
avr32/drivers/gpio/peripheral bus example/ at32uc3a0512 evkl100/iar

o For example, for AVR XMEGA devices the IAR project is located in:

xmega/drivers/dma/example/atxmegal28al xplain/iar

Since the toolchain header files are not bug free some routines must be followed to
ensure that they become bug free.

The current way is to ship updated toolchain header files along with Atmel Software
Framework. Users must then update the toolchain with these to be assured the
compiler is generating firmware as expected.

When a developer encounters a bug in the current toolchain, where the toolchain
already have the latest header files update, it is vital that a bug report is made.

8432B-AVR-03/12

http://www.atmel.com/asf�
http://www.atmel.com/atmelstudio�
http://www.atmel.com/dyn/products/product_card.asp?part_id=4117�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114�
http://www.atmel.com/dyn/products/product_card.asp?part_id=4298�

Atmel AVR4030

4.4.1.1 Temporary workaround for defined symbols

While waiting for a new release of the toolchain header file, a temporary workaround
is allowed in the source code. The workaround typically undefined the wrong
definition and define it correctly within the source code for the specific module in
development. The workaround must also have a line of documentation in front of it
stating it is a workaround and should be removed when fixed in the header files.

//! \todo Remove workaround for bug in header files.

#undef DMA CTRL

#define DMA CTRL _SFR_MEMS8 (0xCAFE)
The #undef line is to make sure the code does not automatically fail after the
toolchain header files update. The Doxygen formatted documentation will make sure

the workaround pops up when generating the documentation, which gives the
developers a remainder about unfinished code.

4.4.1.2 Temporary workaround for type definitions

4.4.2 Update of header files

8432B-AVR-03/12

While waiting for a new release of the toolchain header file, a temporary workaround
is allowed in the source code. The workaround is to define a new type definition as it
should be, but alter the name by adding _tmpfix as a suffix before the _f part of the
type definition name.

The workaround must also have a line of documentation in front of it stating it is a
workaround and should be removed when fixed in the header files.

//! \todo Remove workaround for bug in header files.
typedef struct avr32 dmaca tmpfix {
unsigned long sar0;
(...)
} avr32 dmaca tmpfix t;
The Doxygen formatted documentation will make sure the workaround pops up when

generating the documentation, which gives the developers a remainder about
unfinished code.

The various architectures in ASF have a header files package located in the
utils/header _files/ directory. A readme.txt in the same directory instructs the user how
to update his toolchain header files. No direct editing must be done in the header files
package in the ASF repository.

ATMEL v

5 Code style

5.1 General naming rules

ATMEL

This chapter contains the naming rules and general code style that is required used
on all code components in the Atmel Software Framework.

If the name of a function, variable, constant or type originates from a data sheet or
other specification document, it should match the style used there as closely as
possible.

For example, it's perfectly ok, and even preferable, to name the request identifier field
of a USB setup request bRequest even though it violates the coding style specified on
this page, as any person familiar with the USB 2.0 specification will immediately
understand what the field is for.

5.2 Function and variable names

5.3 Constants

8 Atmel AVR4030

e Functions and variables are named using all lower case letters: [a-z] and [0-9]

e Underscore ' ' is used to split function and variable names into more logical
groups

e Variable name must be different of type name used (wrong example "static name
namel[2]")

5.2.1 Example

void this is a function prototype (void);

5.2.2 Rationale

All-lowercase names are easy on the eyes, and it's a very common style to find in C
code.

o Constants are named using all upper case letters: [A-Z] and [0-9]
e Underscore' 'is used to split constant names into more logical groups
e Enumeration constants shall follow this rule

e Constants made from an expression must have braces around the entire
expression; single value constants may skip this

5.3.1 Examples

#define BUFFER SIZE 512
#define WTK FRAME RESIZE WIDTH (WTK FRAME RESIZE RADIUS + 1)

enum buffer size = {
BUFFER SIZE A = 128,
BUFFER SIZE B = 512,
}i

8432B-AVR-03/12

5.4 Type definitions

5.5 Structures and unions

5.6 Function like macro

8432B-AVR-03/12

Atmel AVR4030

5.3.2 Rationale

Constants should stand out from the rest of the code, and all-uppercase names
ensure that. Also, all-uppercase constants are very common in specification
documents and data sheets, from which many such constants originate.

The braces around an expression are vital to avoid an unexpected evaluation. For
example a constant consisting of two variables added together, which are later
multiplied with a variable in the source code.

Enumerations are constants too, so it makes sense to have them follow the same rule
as preprocessor constants.

o stdint.h and stdbool.h types must be used when available

o Type definitions are named using all lower case letters: [a-z] and [0-9]
e Underscore' 'is used to split names into more logical groups

o Every type definition must have a trailing'_t'

5.4.1 Example

typedef uint8 t buffer item t;

e Structures and unions follow the naming rule as functions and variables

e Do not use typedefs unless it is really necessary. Typedefs are only ok in the
following cases:

o The type definition is architecture-dependent and may be defined as
a struct, union or scalar

5.5.1 Examples
struct cmd {
uint8 t length;
uint8 t *payload;
}i

union cmd parser {
struct cmd cmd a;
struct cmd cmd b;

}i

o Function like macros follow the same naming rules as the functions and variables.
This way it is easier to exchange them for inline functions at a later stage

o Where possible function like macros should be blocked into a do {} while (0)
e Function-like macros must never access their arguments more than once
¢ All macro arguments as well as the macro definition itself must be parenthesized

ATMEL ;

5.7 Indentation

10 Atmel AVR4030

ATMEL

5.6.1 Example
#define set io(id) do {
PORTA |= (1 << (id)): \
} while (0)

5.6.2 Rationale

We want function-like macros to behave as much as regular functions as possible.
This means that they must be evaluated as a single statement; the do { } while (0)
wrapper for "void" macros and surrounding parentheses for macros returning a value
ensure this.

The macro arguments must be parenthesized to avoid any surprises related to
operator precedence; we want the argument to be fully evaluated before it's being
used in an expression inside the macro. Also, evaluation of some macro arguments
may have side effects, so the macro must ensure it is only evaluated once (sizeof and
typeof expressions don't count).

e Indentation is done by using the TAB character. This way one ensures that
different editor configurations do not clutter the source code and alignment

e The TAB characters must be used before expressions/text, for the indentation

e TAB must not be used after an expression/text, use spaces instead. This will
ensures good readability of the source code independent of the TAB size

e The size of the TAB character is not fixed. Anyway, it is recommended that
developers use a TAB character that is large enough, so that readability is
achieved. Moreover, a large indentation is an easy way to avoid deep nesting of
control blocks

5.7.1 Example

enum scsi_asc_ascq {

[TAB] [spaces]
SCSI_ASC_NO ADDITIONAL SENSE INFO = 0x0000,
SCSI_ASC_ LU NOT READY REBUILD IN PROGRESS = 0x0405,
SCSI_ASC_WRITE ERROR = 0x0c00,
SCSI_ASC _UNRECOVERED READ ERROR = 0x1l100,
SCSI_ASC_INVALID COMMAND OPERATION CODE = 0x2000,
SCSI_ASC_INVALID FIELD IN CDB = 0x2400,
SCSI_ASC_MEDIUM NOT PRESENT = 0x3a00,
SCSI_ASC_INTERNAL TARGET FAILURE = 0x4400,

}i

5.7.2 Rationale

The size of the TAB character can be different for each developer. We can not
impose a fixed size. In order to have the best readability, the TAB character can only
be used, on a line, before expressions and text. After expressions and text, the TAB
character must not be used, use spaces instead.

The entire point about indentation is to show clearly where a control block starts and
ends. With large indentations, it is much easier to distinguish the various indentation

8432B-AVR-03/12

5.8 Text formatting

5.9 Space

8432B-AVR-03/12

Atmel AVR4030

levels from each others than with small indentations (with two-character indentations
it is almost impossible to comprehend a non-trivial function).

Another advantage of large indentations is that it becomes increasingly difficult to
write code with increased levels of nesting, thus providing a good motivation for
splitting the function into multiple, more simple units and thus improve the readability
further. This obviously requires the 80-character rule to be observed as well.

If you're concerned that using TABs will cause the code to not line up properly, please
see the section about continuation.

¢ One line of code, documentation, etc. should not exceed 80 characters, given an
eight spaces TAB indentation

e Text lines longer than 80 characters should be wrapped and double indented

5.8.1 Example

/* This is a comment which is exactly 80 characters wide for example
showing. */

dma pool init coherent (&usbb_desc pool, addr, size,
sizeof (struct usbb sw dma desc), USBB DMA DESC ALIGN) ;

#define unhandled case (value) \

do { \

if (ASSERT_ENABLED) { \

dbg printf level (DEBUG ASSERT, \

"$s:%d: Unhandled case value %d\n", \

__FILE , LINE , (value)); \

abort () ; \

} \

} while (0)

5.8.2 Rationale

Keeping line width below 80 characters will make sure the contents of files is
viewable, even on small screens, without breaking the lines. It also helps identify
obsessive levels of nesting. In general improves readability.

e Put spaces around binary and ternary operators

o After an expression/text, use spaces, instead of the TAB character

e Do not put space after unary operators

¢ Do not put spaces between parentheses and the expression inside them

e Do not put space between function name and parameters in function calls and
function definitions

5.9.1 Example

fat_dir_current_sect
= ((uint32_t) (dclusters[fat_dchain_index].cluster + fat_dchain nb_clust - 1)

* fat_cluster_size) + fat_ptr_data + (nb_sect % fat_cluster_size);

AIMEL 1"

®

ATMEL

5.10 Continuation

o Continuation is used to break a long expression that does not fit on a single line
e Continuation should be done by adding an extra TAB to the indentation level

5.10.1 Example

static void xmega usb udc submit out queue(struct xmega usb udc *xudc,

usb ep id t ep id, struct xmega usb udc ep *ep)

#define xmega usb read(reg) \

mmio read8((void *) (XMEGA USB BASE + XMEGA USB_ ##reg))

5.10.2 Rationale

By indenting continuations using an extra TAB, we ensure that the continuation will
always be easy to distinguish from code at both the same and the next indentation
level. The latter is particularly important in if, while and for statements.

Also, by not requiring anything to be lined up (which will often cause things to end up
at the same indentation level as the block which is being started), things will line up
equally well regardless of the TAB size.

5.11 Comments

e Short comments may use the
// Comment
(...)
¢ Long (multi line) comments shall use the
/*
* Long comment that might wrap multiple lines ...
*/
(...)

5.12 Braces

e The opening brace shall be put at the end of the line in all cases, except for
function definition. The closing brace is put at the same indent level than the
expression

e The code inside the braces is indented
e Single line code blocks should also be wrapped in braces

5.12.1 Examples
if (byte cnt == MAX CNT) {
do_something() ;
} else {

do_something else();

}

12 Atmel AVR4030

8432B-AVR-03/12

5.13 Pointer declaration

When declaring a pointer, link the star (*) to the variable

5.13.1 Example

5.14 Compound statements

8432B-AVR-03/12

uint8 t *pl;

Atmel AVR4030

The opening brace is placed at the end of the line, directly following the

parenthesized expression
The closing brace is placed at the beginning of the line following the body
Any continuation of the same statement (for example, an 'else' or 'else

if

statement, or the 'while' in a do/while statement) is placed on the same line as the

closing brace
The body is indented one level more than the surrounding code
The 'if", 'else’, 'do’, 'while' and 'switch' keywords are followed by a space

5.14.1 Examples

if (byte cnt == MAX1 CNT) {
do_something () ;

} else if (byte cnt > MAX1 CNT) ({
do_something else();

} else {

now for something completely different();

while (i <= O0xFF) {

++1;

do {
++1;

} while (i <= O0xFF);

for (i = 0; i < OxFF; ++1) {

do_something () ;

/* Following example shows how to break a long expression. */

for (uint8 t i = 0, uint8 t ii = 0, uint8 t iii = 0;
(i < LIMIT I) && (ii < LIMIT II) && (iii == LIMIT III);
++i, ++1ii, ++iidi) |

do_something() ;

AIMEL

®

13

ATMEL

5.14.2 Rationale

This is the standard K&R style. It is both readable and space-efficient. Placing braces
on separate lines doesn't contribute anything to readability, but may consume a lot of
extra vertical space. The indentation ensures that the body is visually separated from
the rest.

5.15 “Switch Case” statement

e The switch block follows the same rules as other compound statements
e The case labels are on the same indentation level as the switch key word
e break is on the same indentation level as the code inside each label

e The code inside each label is indented

5.15.1 Example

switch (byte cnt) {

case 0:

break;
case 1:
case 2:

break;
default:

5.16 Preprocessor directives

14

e The # operator must always be put on the beginning of the line
e The directives are indented (if needed) after the #

5.16.1 Example

#1if (UART CONF == UART_SYNC)

define INIT CON (UART EN | UART SYNC | UART PAUSE)
#elif (UART CONF == UART ASYNC)

define INIT CON (UART EN | UART ASYNC)

#elif (UART_CONF==UART PCM)

define INIT CON (UART EN | UART PCM | UART NO HOLE)
#else

error Unknown UART configuration
#endif

Atmel AVR4030

8432B-AVR-03/12

5.17 Header files

8432B-AVR-03/12

Atmel AVR4030

5.17.1 Include of header files

When including header files, one shall use “ for files that are included relative to the
current file’s path and <> for files that are included relative to an include path.
Essentially, this means that “” is for files that are included from the ASF module itself,
while <> is for files that are included from other ASF modules.

For example, in adc.c, one could include accordingly:

#include <compiler.h>
#include “adc.h”
5.17.2 Header files guard

Include guards are used to avoid the problem of double inclusion. A module header
file include guard must be in the form MODULE_H_INCLUDED.

For example, in adc.h:

#ifndef ADC H INCLUDED
#define ADC_H INCLUDED

#endif // ADC_H_ INCLUDED

ATMEL 1

ATMEL

6 Design style

6.1 Module file name and placement

e The module file name should be the same as the module name itself
e The files should be grouped in a directory named after the module

e The module directory should be placed appropriately in ASF as given by the
directory structure definition

¢ No new top-level directories should be created

e Common modules should go in the common/ directory, architecture specific
modules go into its appropriate architecture directory

o Architecture parts of a common module should be grouped together
with the common module
6.1.1 Exception

The rules above do not always make sense, or hinder a straight forward solution.
Hence it is possible to loosen on the rules above, as long as the ASF maintainers
approve of the deviation.

In addition special files like conf_*.h, main application files, etc. may deviate from the
rule.

6.1.2 Examples

6.1.2.1 Location of a driver
{avr32, common, ...}/drivers/<module>/<module>.{c h}
avr32/drivers/gpio/gpio.c

6.1.2.2 Location of an architecture specific service

{avr32, xmega, ...}/services/<module>/<module>.{c h}

common/services/delay/delay.c

6.1.2.3 Location of an common service with architecture specific parts

common/services/<module>/<module>. {c h}

common/services/<module>/<arch>/<arch module>.{c h}

common/services/clock/sysclk.h
common/services/clock/xmega/xmega sysclk.h

6.1.2.4 Location of a component
{avr32, common, ...}/components/<module>/<module>.{c h}
avr32/components/touch/resistive touch.c

6.1.2.5 Exception when having a sub-structure in a driver

avr32/drivers/usbb/usbb device.c
avr32/drivers/usbb/usbb _host.c
avr32/drivers/usbb/usbb otg.c

16 Atmel AVR4030

8432B-AVR-03/12

Atmel AVR4030

6.2 Common application programming interface

Atmel ASF offers some shared services and components between architectures, but
it will not offer a shared interface for drivers. In addition the top level board.h is shared
between all architectures along with common parts of the code utilities in the utils/
directory.

6.2.1 Shared services
All the shared services are located in the common/services/ directory. These common
services will have an identical interface for all architectures.

6.2.2 Shared components

The shared components are located in the common/components/ directory, and
typically uses shared services to add common interfaces to external devices like
Atmel DataFlash.

6.2.3 Shared code utilities

Shared utilities are located in the common/utils/ directory, these utilities will have
identical interface for all architectures. Typical shared utilities are interrupt control and
standard input/output (stdio) module.

6.3 Similar application programming interface

6.3.1.1 Initialization

8432B-AVR-03/12

Ideally all modules should have an identical API across the architectures, but since
this is not always possible or applicable each module should strive for a similar API.
In addition the layers above can wire the sub-modules together when appropriate.

For modules shared between the various architectures the developer should strive as
far as possible for a compatible interface. Compatible is here a way to describe an
interface which can be shared with a reasonable amount of glue code (if needed at
all).

The reason for doing a similar API instead of a shared APl might be one of several
reasons:

e Reduce flash and RAM footprint

¢ Reduce power consumption

e Improve performance

e Improve feature support

For some situations a similar APl might not make sense at all, and an architecture
specific module can be implemented. This is rationalized by different architectures are
targeted against various application segments. You would not expect to see an Atmel
tinyAVR® interfacing and decoding compressed music from a multimedia player.

6.3.1 Examples

The examples below shows the typical guidelines used for new modules, such as
hardware drivers or a communication services.

The recommended way to initialize a module is the example below; parameters may
differ between architectures if similar APl methodic is applied.

ATMEL L

6.3.1.2 Enable

6.3.1.3 Disable

6.3.1.4 Start

6.3.1.5 Stop

6.3.1.6 Write

6.3.1.7 Read

6.4 Documentation

18 Atmel AVR4030

ATMEL

<module> init (...)

adc _init(adc_t *adc, adc options t *options)

The recommended way to enable a module is the example below; parameters may
alter between architectures if similar APl methodic is applied.
<module> enable(...)

adc_enable(adc_t *adc)

The recommended way to disable a module is the example below; parameters may
alter between architectures if similar APl methodic is applied.

<module> disable(...)

adc disable(adc_t *adc)

The recommended way to start a module is the example below; parameters may alter
between architectures if similar APl methodic is applied.
<module> start(...)

adc_start (adc_t *adc)

The recommended way to stop a module is the example below; parameters may alter
between architectures if similar APl methodic is applied.

<module> stop(...)

adc_stop (adc_t *adc)

The recommended way to write data to a module is the example below; parameters
may alter between architectures if similar APl methodic is applied.
<module> write(...)

adc_write(adc t *adc, uintl6 t value)

The recommended way to read data from a module is the example below; parameters
may alter between architectures if similar APl methodic is applied.
<module> read(...)

adc read(adc_t *adc, uintl6 t *value)

Atmel Software Framework is based on inline documentation formatted to be read by
the Doxygen documentation tool. For more information about the open source project
Doxygen, visit http://www.doxygen.org/.

Doxygen bases its input on comment blocks in the source code, and is invoked with
triggers like /**and /! in the input files.

8432B-AVR-03/12

NOTE

Atmel AVR4030

All source code files should have the Atmel Corporation application note license text.
In addition it should have some information about what the file is all about.

For existing released software, the year field starts at the year the file was created,
and is updated to list the year the file was last changed.

For example, created in 2008:

Copyright (C) 2008 Atmel Corporation. All rights reserved.

For example, created and changed in 2008:

Copyright (C) 2008 Atmel Corporation. All rights reserved.

For example, created in 2008, changed in 2009:

Copyright (C) 2008 - 2009 Atmel Corporation. All rights reserved.
For example, created in 2008, changed in 2010:

Copyright (C) 2008 - 2010 Atmel Corporation. All rights reserved.
For example, created in 2006, changed in 2009, 2010, and 2012:

Copyright (C) 2006 - 2012 Atmel Corporation. All rights reserved.

It is recommended to group the documentation into modules to provide a nicer output
in the generated documentation. This is done by the Doxygen tags \defgroup and
\ingroup.

Doxygen also provides a lot of functionality to improve the contents and layout of the
generated documentation, visit the Doxygen website and browse the documentation
there to get further details.

6.4.1 Examples

6.4.1.1 Doxygen documentation opening tag for multi line comments

/**
* <documentation>

*/

6.4.1.2 Doxygen documentation opening tag for single line comments

6.4.1.3 File documentation

6.4.1.4 Making a Doxygen group

8432B-AVR-03/12

//! <documentation>

*

\file

\brief AVR XMEGA Direct Memory Access Controller driver
Copyright (C) 2011 Atmel Corporation. All rights reserved.
\page License

<Atmel Corporation application note license>

P R I

~

/**

* \defgroup sensible group name My module (ABBREVIATED)
*

* This is some contents that will show up within this group.

AIMEL 19

®

ATMEL

6.4.1.5 Adding contents to a documentation group

6.5 Quick Start guides

20 Atmel AVR4030

/**
* \ingroup sensible group name
*

* The contents written here will be merged with the contents
* written in the previously mentioned Doxygen tag. This makes it
* possible to split out the documentation between several files.

*/

The drivers in ASF have quick start guides as part of their API documentation. These
show and explain, in a step-by-step fashion, the code and actions needed to set up
and use a driver in one or more use cases.

The doxygen code for the quick start guides is located at the end of the API files to
avoid clutter. In the APl documentation, the quick start guides are made easily
accessible by presenting a link first thing in the description, and in a dedicated
section.

The most basic use case is presented on the first page of the quick start guide, while
more advanced use cases are presented on individual subpages. A list of links to the
advanced use cases is shown at the bottom of the main page of the quick start guide,
each accompanied by a brief description.

For each use case, the details are first presented. Then follow two sections which
explain how to set up (“Setup steps”) and how to use the driver (“Usage steps”) in the
use case. These sections consist of the following subsections:

1. “Prerequisites” (optional): a list of prerequisites for the use case — usually
only needed in the “Setup steps” section. The use case may for example
depend on a secondary driver which must manually be added to the project,
e.g., an interrupt based ADC use case will need an interrupt management
driver.

2. “Example code”: the complete code needed to set up and use the respective
drivers in the use case. The example code should work out of the box, as
long as the prerequisites are in place.

3. “Workflow”: the steps followed to construct the code, presented as numbered
lists, where each step features a fragment of code to copy or an action to
perform. Any relevant code is repeated in the steps to make the guide easy
to read. The steps may also have additional notes or attention points, i.e.,
details or explanations of which it is important that the user is aware.

6.5.1 Examples

The following subsections show example doxygen code for defining a quick start
guide.

Note that since the sections “Setup steps” and “Usage steps” are defined in the same
way, the code to define it is only presented for the former section — simply copy the
code and replace setup with usage for the other section.

8432B-AVR-03/12

Atmel AVR4030

6.5.1.1 Linking to quick start guide in APl documentation

/**
* \defgroup some group Some Module (SM)

*

* See \ref some quickstart.

*

* This is a driver for the Some Module. It provides functions for

6.5.1.2 Main quick start guide page definition
/ * x

* \page some quickstart Quick start guide for Some Module driver

*

* This is the quick start guide for the \ref some group "Some
Module driver",

* with step-by-step instructions on how to configure and use the
driver in a

* selection of use cases.

*

* The use cases contain several code fragments. The code fragments
in the

* steps for setup can be copied into a custom initialization
function, while

* the steps for usage can be copied into, e.g., the main
application function.

*

6.5.1.3 Presenting basic use case

* \section some basic use case Basic use case
* In this basic use case, the SM is configured for:
* - some config detail

* - a second config detail

6.5.1.4 Opening a section for use case steps

* \section some basic use case setup Setup steps

6.5.1.5 Presenting use case prerequisites (optional)

* \subsection some basic use case setup prereq Prerequisites

* For the setup code of this use case to work, the following must
* be added to the project:

* —# Another Module (AM) driver

AIMEL 21

®
8432B-AVR-03/12

ATMEL

6.5.1.6 Presenting use case code

* \subsection some basic_use case setup code Example code
* Content of conf sm.h:

* \code

* #define CONFIG SM SOME FEATURE

* \endcode

* Add to application C-file:
* \code

* void some init (void)

*

* do_one thing();

* do_something else();

*)

* \endcode

6.5.1.7 Presenting use case workflow

* \subsection some basic_use case setup flow Workflow

* —# Ensure that conf sm.h is present and contains configuration
symbol for some feature:

* - \code #define CONFIG SM SOME FEATURE \endcode

* - \note This configuration file is used by the driver and
* should not be included by the user.

* -# Enable some feature:

* - \code do_one thing(); \endcode

* - \note This is a detail that the user may find helpful or
* interesting.

* —-# Do that other thing:

* - \code do_something else();
* .. \endcode
* - \attention This is a detail that the user should be aware of

* to avoid disaster or common mistakes.

6.5.1.8 Listing advanced use cases

* \section some use cases Advanced use cases

* For more advanced use of the SM driver, see the following use
cases:

* - \subpage some use case 1: list of emphasized features

*/

6.5.1.9 Advanced use case page definition and presentation

/**

* \page some use case 1 Use case #1

22 Atmel AVR4030

8432B-AVR-03/12

6.6 APl symbol definitions

Atmel AVR4030

* In this use case, the SM is configured for:
* - first detail

* — some other detail

API symbols are fine to use, but give them values with the corresponding values
provided by the toolchain.

6.6.1 Example

Preferred way to declare API defines:

#define OSC_MODE EXTERNAL AVR32 PM OSCCTRLO MODE EXT CLOCK
Non-valid way to declare API defines, avoid when possible:

#define OSC_MODE EXTERNAL 0x01234567

6.7 Hardware driver clock management

The clock module will disable the clock for most non-vital modules during initialization.
For example, this means that all the PR bits are set on Atmel AVR XMEGA devices.
Drivers must therefore ensure that their hardware module is clocked before
interfacing them.

It is preferred that drivers use the clock service to enable and disable the peripheral
clock for the driver module. On modules where it is not possible to go through the
clock service it is of course acceptable to work directly with the hardware registers.

The clock service is available in the common/services/clock directory, both
implementation and documentation. The module functions of interest are prefixed with
sysclk_.

6.8 Hardware driver sleep management

All hardware drivers should update the sleep manager about which sleep level is
appropriate for the current activity. It is vital that each locked sleep mode has its
corresponding unlock call. For more information about the sleep manager see the
common/services/sleepmgr/ directory, and the module functions are prefixed with
sleepmgr .

6.9 Configuration Header File

8432B-AVR-03/12

For modules which are compile-time configurable, the configuration must be retrieved
from a dedicated header file. The header file for a module shall be named
conf_<module>.h.

A template configuration header file with all available options must be made available,
filled in with default values so that the module does not break the build if added to a
project template for any of its supported devices.

ATMEL 2

ATMEL

6.10 Hardware driver interrupt level

The interrupt handlers used in a driver should, to the extent possible, have a
configurable interrupt level. Configuration of the interrupt level should be done via the
module’s configuration header file. As with the other configuration options, the driver
must define sane default values if none are provided.

The configuration symbols should be on the form CONFIG_<MODULE>_INTLVL. If
more specific interrupt configuration is needed, then they should appear as
CONFIG_<MODULE> <SOURCE>_INTLVL.

6.10.1 Examples

CONFIG DMA INTLVL PMIC LVL LOW
CONFIG USART DRE INTLVL PMIC LVL, MEDIUM
CONFIG USART RXC INTLVL PMIC_LVL HIGH

24 Atmel AVR4030

8432B-AVR-03/12

7 Table of contents

8432B-AVR-03/12

Atmel AVR4030

=T 1 17 =X 1
O (17400 To L7 o 1 Lo o I 1
2 Software installation and setup...........cceeeeueeeeeviiiemimeeensicciiiensnnenns 2
2.1 DOWNIOAAING ...ttt e et e et e e b e e e b e s ee e 2
2.2 Online API DOCUMENTAtIONciiieii e e e e e e e e 2
2.3 REIEASE NOLES.....eeiiiiiie et e e e e e e e e e e e e s eeeeeaeeaaan 2
2.4 BUQG tTACKET ...ttt e e e e b e s ea e 2
2.5 Getting Startedooueiiie s 2
3 ASF direCtory StrUCHUIE............eeeeeeeeeeeens 3
3.1 Architecture and common directory structurecccooieiiiii e 4
311 @PPHCALIONS/ ... 4

B Tt N o To T o 7 PSPPI 4
3.1.3 COMPONENES/ ...ttt e ettt e e e e e e e 4

B Tt 0 o [1= = PP 4

B Tt I [o Y PP 4

B Tt TR (1 PP UPRTR 4

3.2 Third party directory StruCtUrecooii i 4
00Ty oY1 [=T =TT] oY oo g S 6
S N 10 0 1=) (8 o [T T S 6
4.2 GNU compiler COIECHIONcoiiiiiii e e 6
4.3 IAR Embedded WOrkbencCh............ooooiiiiiiiiieeeeee e 6
4.4 Toolchain header fil€Soooeeeieiiiieee e e 6
oy I = 10 o [=T oTo] 1] T PP PSP SPP PPN 6
4.4.2 Update of header fileSooiiiiiiiiii s 7

5 €O SIYI@....e s 8
5.1 General NamiNg FUIESoii i 8
5.2 Function and variable Namesc.uuiiiiiiii i 8
B5.2.1 EXAMPIE ... 8
B5.2.2 RAONAIEooiieiieee ettt e e e et e e e e e e e e e e e e e reaaaaaan 8

LR I O] 013 =1 o | £ SR 8
5.3 EXAMPIES ..ot 8
LR I S - (0] o F- | =PSSO 9

5.4 Type definitioNScoouiiiiii s 9
5141 EXAMPIE ...t e e 9

5.5 Structures and UNIONSoiiiiieiiiiiiiie et e e e e e e e enere e e e e e e e eeans 9
5.5 1 EXAMPIES.....ceiitiieeet e 9

5.6 FUNCHON [IKE MACKO ...oiiiieeee ettt e e e e e e eeaee e 9
5.6.1 EXAMPIE ... e 10
B5.6.2 RAIONAIEcoiieieee et e e e e e e e e e e e aaaean 10

L A 1T =Y o1 = 11 o TSR 10
B.7. 4 EXAMPIE ... 10
B5.7. 2 RAHONAIE ..ot 10

5.8 Text formatting......coooueiiiii e 11
B5.8.1 EXAMPIE ... e e 11
5.8.2 RAEIONAIEceiiiiiieet e 11

5.9 SPACE ..ot 11
5.9.1 EXAMPIE ... 11

L0t L @7 111910 = 11T o PR 12
5,101 EXAMPIE et 12
5.10.2 RALONAIE ...t 12

5,11 COMMENTS ...ttt e e e e e e ettt e e e e e e s e re e e e e e e s e s nrnneeeaaeeeean 12

LT D = = Vo Y S 12
512, EXAMPIES. ..ttt 12

5.13 Pointer declarationoeiiiiiiiii e 13
5131 EXAMPIE et 13

5.14 Compound Statementscoouiiiiiii s 13
5141 EXAMPIES ..ottt s 13
B5.14.2 RAONAIE ...t 14

5.15 “Switch Case” statementoooiiiiiii e 14
5151 EXAMPIE et 14

5.16 PreproCessor dir€CHVESoiiiuiiiiiiiiii e 14
B5.16.1 EXAMPIE .ottt 14

LT A o 1= Lo 1= ol 1= PR 15
5.17.1 Include of header filesccuuiiiiiii e 15
5.17.2 Header fileS QUAIooiiiiiiiiiiie et e 15

L0 0 L=Ey [T B 47 (= 16

6.1 Module file name and placement ..o 16
B. 1.1 EXCEOPLON ..ottt 16
B.1.2 EXAMPIES ..ottt 16

6.2 Common application programming interfacecccccoiiiiiini e, 17
5.2.1 SNAIEA SEIVICES......uuiiiiieitie ettt et e e s 17
6.2.2 Shared COMPONENTSouuiiiiiiiiie ettt e e e es 17
6.2.3 Shared Code ULITIHIESeeiiiiiiiiiii e 17

6.3 Similar application programming interface...........cccoooeiiiiii e, 17
B.3.1 EXAMPIES ...t 17

(S To Yot U g T=T | = 4o) o 1R 18
B.4.1 EXAMPIES......eiiiiiieeiet e 19

6.5 QUICK Start QUIEScooiiiiee s 20
B.5.1 EXAMPIES ..ot 20

6.6 APl symbol definitioNSoooiuiiiiiii e 23
B.6.1 EXAMPIE ... 23

6.7 Hardware driver clock management..............oooiiiiiiiiie e 23

6.8 Hardware driver sleep managementcooiiiiiiiie e 23

26 Atmel AVR4030

8432B-AVR-03/12

Atmel AVR4030

6.9 Configuration Header Fileoooiiiii e 23
6.10 Hardware driver interrupt level ... 24
B.10.1 EXGMPIES..... oottt e e e e e e e e e e e e e e e e e nnaaeeaaaeas 24

7 Table Of CONLENTS ...t 25

8432B-AVR-03/12

ATMEL 2

AIMEL

Y ©

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan

2325 Orchard Parkway Unit 01-5 & 16, 19F Business Campus 16F, Shin Osaki Kangyo Bldg.
San Jose, CA 95131 BEA Tower, Milennium City 5 Parkring 4 1-6-4 Osaki Shinagawa-ku
USA 418 Kwun Tong Road D-85748 Garching b. Munich Tokyo 104-0032

Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) 3-6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) 3-6417-0370

Fax: (+852) 2722-1369

© 2012 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, DataFlash®, megaAVR®, tinyAVR®, XMEGA®, and others are
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of
others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

8432B-AVR-03/12

http://www2.atmel.com/�

	1 Introduction
	2 Software installation and setup
	2.1 Downloading
	2.3 Release notes

	3 ASF directory structure
	4.1 Atmel Studio 6
	4.2 GNU compiler collection
	4.3 IAR Embedded Workbench

	5 Code style
	5.1 General naming rules
	5.2 Function and variable names
	5.2.1 Example
	5.2.2 Rationale

	5.3 Constants
	5.3.1 Examples
	5.3.2 Rationale

	5.4 Type definitions
	5.4.1 Example

	5.5 Structures and unions
	5.5.1 Examples

	5.6 Function like macro
	5.6.1 Example
	5.6.2 Rationale

	5.7 Indentation
	5.7.1 Example
	5.7.2 Rationale

	5.8 Text formatting
	5.8.1 Example
	5.8.2 Rationale

	5.9 Space
	5.9.1 Example

	5.10 Continuation
	5.10.1 Example
	5.10.2 Rationale

	5.11 Comments
	5.12 Braces
	5.12.1 Examples

	5.13 Pointer declaration
	5.13.1 Example

	5.14 Compound statements
	5.14.1 Examples
	5.14.2 Rationale

	5.15 “Switch Case” statement
	5.15.1 Example

	5.16 Preprocessor directives
	5.16.1 Example

	5.17 Header files
	5.17.1 Include of header files
	5.17.2 Header files guard

	6 Design style
	6.1 Module file name and placement
	6.1.1 Exception
	6.1.2 Examples

	6.2 Common application programming interface
	6.2.1 Shared services
	6.2.2 Shared components
	6.2.3 Shared code utilities
	6.3.1 Examples

	6.4 Documentation
	6.4.1 Examples

	6.5 Quick Start guides
	6.5.1 Examples

	6.6 API symbol definitions
	6.6.1 Example

	6.7 Hardware driver clock management
	6.8 Hardware driver sleep management
	6.9 Configuration Header File
	6.10 Hardware driver interrupt level
	6.10.1 Examples

	7 Table of contents

