

AN1798

Crystal Selection for Low-Power Secondary Oscillator

Authors: Naveen Raj and Padmaraja Yedamale Microchip Technology Inc.

INTRODUCTION

With the increasing development of low-power designs, including battery operated devices, more efforts have been made in designing low-power oscillators. In applications where an RTCC is maintained at all conditions, including Sleep, Deep Sleep and VBAT modes, the current consumption of the secondary oscillator circuit becomes more critical in overall system-level application design. With improvements in secondary oscillator design, the secondary oscillator on Microchip microcontrollers has achieved an oscillator current of 400 nA (typical). This makes it even more critical to select the right crystal to match the low-power secondary oscillator.

This document provides guidelines for crystal selection for the 32 kHz low-power secondary oscillator. This document should not be the sole criteria for crystal selection. It is recommended to get the oscillator characterized by the crystal vendor. The devices below have implemented the specific low-power oscillator discussed in this document:

- PIC24FJ128GA310 Family
- PIC24FJ128GC010 Family
- PIC24FJ128GA/GB204 Family

For devices not listed above, the secondary oscillator design may be different and data provided in this document may not be relevant. For new devices which implement the same secondary oscillator design, this document will be referred to in the device data sheet.

OSCILLATOR PERFORMANCE

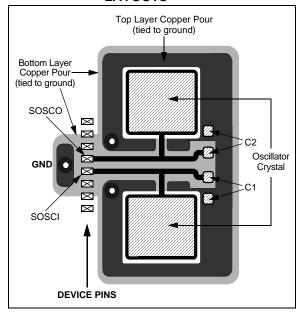
The performance of the oscillator is dependent on multiple factors; some of the parameters are covered in this document. Oscillator behavior can be influenced by:

- Layout and PCB Cleaning
- ESR of the Crystal
- Load Capacitance
- · Effect of Voltage
- Effect of Temperature

The above parameters can interact with each other, thus making it critical to know the influence of these parameters on oscillator behavior.

The following sections describe how different design elements can affect the 32 kHz oscillator overall performance. When selecting a suitable crystal for use with a Microchip microcontroller, the most important parameters are the loading capacitance and the ESR. The Load Capacitance (CL) should be 12.5 pF and the ESR range should be 50 kOhm (Typ.)/70 kOhm (Max.). The crystal drive circuitry in the microcontroller is optimized for these specifications. Selecting a lower load capacitance and/or lower ESR may cause crystal start-up or stability issues.

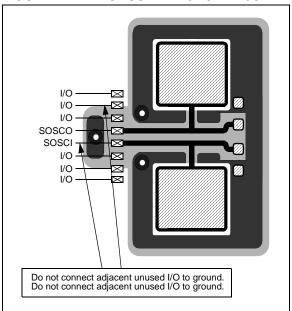
Layout and PCB Cleaning


Crystal layout is very critical in design. Due to the low-power operation of the oscillator, it is even more important to provide proper grounding around the crystal. The data sheet for the specific devices describes the details of layout consideration.

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins, with no more than 0.25 inches (6 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 1. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.


FIGURE 1: FINE-PITCH (DUAL-SIDED)
LAYOUTS

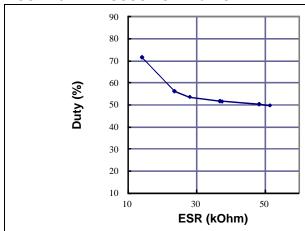
While choosing the pinout, avoid the pins adjacent to the SOSC pins for high-frequency switching signals. If there is a choice to leave the adjacent pins not utilized in the application, leave the adjacent pins unused. Do not connect the unused adjacent port pins to ground or VDD.

Once the crystal is soldered to the PC board, it is critical that all flux residue is removed by thoroughly washing the PCB with clean water and drying with hot air. This is especially true when hand-soldering prototype boards. If the board area surrounding the crystal is not cleaned, excess stray capacitance and leakage paths may cause the crystal to be off-frequency or experience other abnormal behavior.

FIGURE 2: UNUSED ADJACENT I/O

ESR of the Crystal

Note:


The Equivalent Series Resistor (ESR) is a parameter provided in the crystal data sheet and is the resistance in the crystal during oscillation. The oscillator on the devices mentioned in the "Introduction" section has a low-power design with a self-biasing Analog-to-Digital comparator.

When using a crystal with a low-ESR, less than 50 kOhm, the oscillator does not need much energy to drive, which in turn, makes the self-biasing comparator unstable. This results in the comparator producing a 32 kHz digital clock with the duty cycle not being 50%. Variation in the duty cycle is a direct representation of oscillator performance and accuracy.

The desired ESR rating of 50K typical (70K max) will provide an optimum performance across temperature and voltage. Figure 3 shows the plot of the duty cycle of the SOSC digital clock vs. ESR. Temperature, voltage and load capacitance are not varied. The only parameter that is varied is the ESR (from 14K to 51K).

The duty cycle mentioned in this document refers to the 32 kHz digital clock provided by the secondary oscillator. This can be measured on a REFO pin by configuring the REFO pin for 32 kHz or this can be measured on the RTCC pin by configuring the RTCC module.

FIGURE 3: SOSC DUTY vs. ESR

ESR (kOhm)	SOSC Duty (%)
14.0	71.7
23.5	56.3
27.9	53.6
36.8	51.8
37.4	51.6
48.2	50.3
51.4	49.8

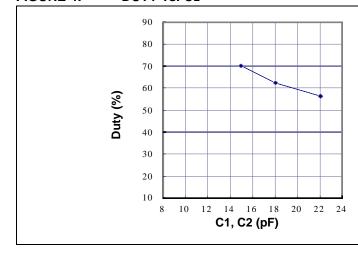
C1,C2 = 22 pF, VDD = 3.3V, Temperature = +25°C

If the ESR is much higher than the optimal value, it may result in starting problems, as well as slowing down the oscillator start-up, so care should be taken to monitor the duty cycle and select the ESR to achieve an optimum value. The recommended oscillator value for reliable operation is 50K typical and 65K/75K max. There is also a recommended specification for the duty cycle to make sure there are no missing counts. It is recommended that the duty cycle of the SOSC digital clock be within 35%-65% for reliable SOSC operation without any missing counts.

Load Capacitance

The load capacitance is another parameter provided in the crystal data sheet. It is represented as CL and is calculated as follows:

$$C_L = (C_1 \cdot C_2) / (C_1 + C_2) + C_{stray}$$


Figure 4 shows the variation of the SOSC duty cycle vs. the loading capacitor, with a constant ESR, VDD and temperature.

Since C1 = C2, then the capacitors are selected by:

$$C1, C2 = (C_L - C_{stray})/2$$

For example, a 32 kHz crystal with a 12.5 pF load capacitance, the recommended values of C1 and C2 are 22 pF $\pm 5\%$, 50V NP0 (Negative-Positive 0 ppm/°C) ceramic.

FIGURE 4: DUTY vs. CL

C1, C2 (pF)	Duty (%)
22	56.3
18	62.3
15	70.1
12	Not Functional
10	Not Functional

VDD = 3.3VTemperature = +25°C

AN1798

The higher the loading capacitor, the better the duty cycle. Therefore, when calculating the CL based on Example 1, always try to use the highest value closest to the calculated loading capacitor.

Using a loading capacitor with too high a value will cause problems, so after selecting the optimum loading capacitor, the SOSC should be characterized across voltage and temperature. Selecting a much higher value than the recommended capacitor may result in the SOSC not starting-up.

EXAMPLE 1: LOADING CAPACITOR CALCULATION

If C_L = 12.5 pF (Load capacitance provided by the vendor):

$$C_L = (C_1 \cdot C_2)/(C_1 + C_2) + C_{stray}$$

Assuming $C_{stray} = 2 \text{ pF} \text{ and } C_1 = C_2$:

$$C_I = 2(CL - C_{stray})$$

$$C_1 = 2(12.5 \ pF-2 \ pF)$$

$$C_1 = 2(10.5 \ pF) = 21 \ pF$$

Note 1: In these examples, do not use a loading capacitor below 21 pF. It is recommended to use the next standard ceramic capacitor value of 22 pF.

Effect of Voltage

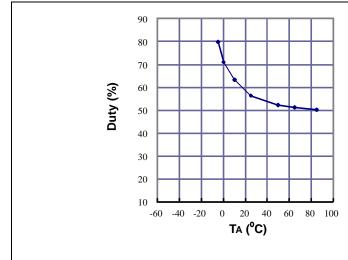
The VDD at which the device is operated also plays a role in SOSC behavior. The SOSC tends to have a more stable operation at a lower VDD.

There is an internal analog comparator that generates the 32 kHz digital clock. With a lower ESR value, the operation of this comparator will be unstable. This instability is more dominant when the VDD is higher. When the VDD is lower, this internal comparator tends to work in a stable mode.

FIGURE 5: DUTY vs. VDD

VDD (V)	Duty (%)
3.6	58.1
3.3	56.3
3.0	54.9
2.7	54.6
2.4	54.5
2.1	54.6

Temperature = $+25^{\circ}$ C ESR = 23.5 kOhm C1, C2 = 22 pF


Effect of Temperature

The performance of the secondary oscillator is more stable at higher temperatures. With experiments conducted on a low-ESR crystal (ESR of 23.5 kOhm), the oscillator performance is better for higher temperatures (as shown in Figure 6). When the

temperature is varied from -40°C to +85°C, the best performance is found at +85°C. Behavior starts deteriorating as the temperature gets closer to -40°C.

If the ESR of the crystal is increased to 70K ESR, as recommended, the impact of negative temperatures will not have a significant effect on oscillator behavior.

FIGURE 6: DUTY vs. TEMPERATURE

TA (°C)	Duty (%)	
-40	No Output	
-10	No Output	
-5	79.9 ⁽¹⁾	
0	71.1 ⁽¹⁾	
10	63.3	
25	56.3	
50	52.3	
65	51.3	
85	50.3	

VDD = 3.3V

ESR = 23.5 kOhm

C1,C2 = 22 pF

Note 1: Violates the duty cycle specification of 35% to 65%.

CONCLUSION

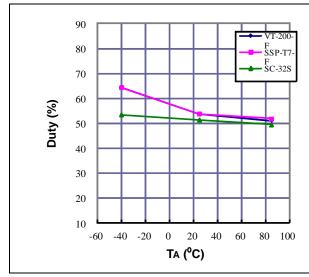
The parameters of operating voltage, temperature, loading capacitors, ESR and layout play a role in SOSC behavior. To improve the Secondary Oscillator performance, the following criteria should be met:

- Use the recommended layout as discussed in the Layout and PCB Cleaning section.
- Use a high-ESR (70K max) crystal to provide an optimum performance across temperature and voltage.
- Use a higher loading capacitor (use a crystal of C_L = 12.5) for a better duty cycle.
- A lower VDD, within the VDD operating range, provides reliable performance.
- The higher the temperature, the better the performance of the oscillator.

To provide a guideline for crystal selection, an ESR of 50K typical (65K/70K max) is recommended for an optimum performance across temperature and voltage.

It is recommended to avoid any switching signals adjacent to the SOSC pins to avoid noise due to the low-power SOSC design.

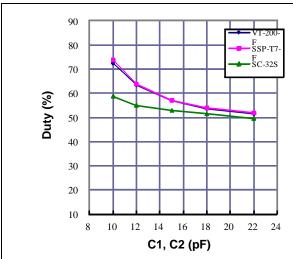
Note: It is strongly recommended to get the oscillator characterized by the crystal vendor.


Tests with Seiko Crystals

Further tests were conducted with Seiko crystals to confirm the above mentioned parameters. Three Seiko crystals with different ESRs were used for conducting the tests.

Product	f_num (Hz)	f_tol (x10 ⁻⁶)	CL (pF)	ESRMAX (kOhm)
VT-200-F	32768	±20	12.5	50
SSP-T7-F	32768	±20	12.5	65
SC-32S	32768	±20	12.5	70

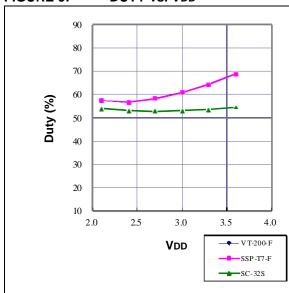
Figure 7, Figure 8 and Figure 9 show the test results for the three crystals.


FIGURE 7: DUTY vs. TEMPERATURE

VDD = 3.3V	Duty (%)		
TA (°C)	VT-200-F SSP-T7		SC-32S
-40	64.4	64.3	53.4
25	53.8	53.9	51.5
85	51.2	51.9	49.5

C1, C2 =
$$18 \text{ pF}$$

VDD = 3.3V


FIGURE 8: DUTY vs. CL

VDD = 3.3V	Duty (%)		
C1, C2 (pF)	VT-200-F SSP-T7-F S		SC-32S
22	51.6	51.8	49.6
18	53.8	53.9	51.5
15	57.1	57.1	52.8
12	63.4	63.8	55.0
10	72.4	73.7	58.8

Temperature = +25°C VDD = 3.3V

FIGURE 9: DUTY vs. VDD

-40°C	Duty (%)		
VDD (V)	VT-200-F	SSP-T7-F	SC-32S
3.6	68.8	68.9	54.5
3.3	64.4	64.3	53.4
3.0	61.0	61.0	53.1
2.7	58.2	58.2	52.9
2.4	56.6	56.6	53.0
2.1	57.5	57.5	54.0

Temperature = -40° C VDD = 3.6V

AN1798

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-611-3

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi. MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Vieio, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongging

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350 **EUROPE**

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf

Tel: 49-2129-3766400

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim

Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Italy - Venice

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw

Tel: 48-22-3325737

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800

Fax: 44-118-921-5820

03/25/14