

MCP795WXX

MCP795WXX Family Silicon Errata

The MCP795WXX family devices that you have received conform functionally to the current Device Data Sheet (DS20002280**D**), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for devices listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the MCP795WXX silicon.

Note:	This document summarizes all silicon
	errata issues from all revisions of silicon,
	previous as well as current. Only the
	issues indicated in the last column of
	Table 2 apply to the current silicon
	revision.

Note: For more information on identifying the product date code, refer to Packaging Information section of the product Data Sheet or contact your local Microchip sales office.

TABLE 1: AFFECTED PART NUMBERS

Part Number
MCP795W10
MCP795W11
MCP795W12
MCP795W20
MCP795W21
MCP795W22

TABLE 2: SILICON ISSUE SUMMARY

Issue Number	Issue Summary	Affected Date Codes ^(1, 2)	
		All	
1	Time running fast when Vcc > 3.6V.	X	
2	Incorrect square wave clock output frequency when Vcc > 3.6V.	X	
3	Incorrect EVLS debounce period when Vcc > 3.6V.	X	
4	Incorrect WDT time-out period and pulse width when Vcc > 3.6V.	X	
5	Incorrect alarm interrupt output pulse width when using the $\overline{\text{WDO}}$ pin and Vcc > 3.6V.	X	
6	Date incrementing at noon.	X	
7	Month or Year write changing date value.	X	
8	Day of week write resetting to 1.	X	
9	Hundredth-second out of sync with second.	X	
10	Hundredth of Second value not changing.	X	

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

2: The date codes are presented in YYWW format.

Silicon Errata Issues

Note:

This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision.

1. Issue: Time Running Fast

When Vcc is greater than 3.6V, the internal time keeping registers do not count correctly, resulting in fast operation.

Work around

Operate the device at or below 3.6V.

Affected Silicon Revisions

All
X

2. Issue: Incorrect Clock Output Frequency

When Vcc is greater than 3.6V, selecting a square wave frequency for the CLKOUT pin other than 32.768 kHz will result in the incorrect frequency being outputted.

Work around

Operate the device at or below 3.6V or select 32.768 kHz output.

Affected Silicon Revisions

All	
X	

3. Issue: Incorrect EVLS Debounce Timing

When Vcc is greater than 3.6V, the low-speed event detect debounce period will not match the data sheet-specified values.

Work around

Operate the device at or below 3.6V.

Affected Silicon Revisions

All	
X	

4. Issue: Incorrect WDT Timings

When Vcc is greater than 3.6V, the Watchdog Timer time-out period and output pulse width will not match the data sheet-specified values.

Work around

Operate the device at or below 3.6V.

Affected Silicon Revisions

All
X

5. Issue: Incorrect Alarm Output Pulse Width

When Vcc is greater than 3.6V, if the WDO pin is selected as the alarm interrupt output pin, the output pulse width will not match the data sheet-specified value.

Work around

Operate the device at or below 3.6V.

Affected Silicon Revisions

All	
Х	

6. Issue: Date Increment

When operating in 12-hour mode (RTCHOUR<6> is set), if the application loads an hour value before 12:00 PM while the oscillator is running, then the date and day of week may increment at 12:00 PM. When this occurs, the month and year will also increment according to the normal rollover rules. The date will increment again at 12:00 AM.

Work around

Disable the oscillator by ensuring both the ST and EXTOSC bits are cleared and wait for the OSCON bit to clear before loading the new hour value.

Affected Silicon Revisions

All	
X	

7. Issue: Date Changes after Month or Year Write

When writing a new value in the Year, Month or Date registers, the Date register value may change unexpectedly.

Work around

If any of the Date, Month or Year values is to be changed, then write new Date, Month and Year value, in that order (this write can be continuous or discontinuous operation). Then, write Date value again. The ST bit can remain set during this operation, or it can be cleared and set again afterward.

Affected Silicon Revisions

All	
X	

8. Issue: Day of Week Reset after Day of Week Write

If the day of week (RTCWKDAY<2:0>) is equal to the value of 7 and the application writes a new day of week value to the timekeeping registers while the oscillator is not running, then when the oscillator is enabled, the day of week may reset the value to 1.

Work around

Update the day of week while the oscillator is enabled. Or, change the day of week value to another value besides 7 before disabling the oscillator, then set to the correct day while the oscillator is disabled, before re-enabling the oscillator.

Affected Silicon Revisions

All	
X	

9. Issue: HSEC Value Not Synchronized with Second Value

When reading the HSEC register and Second register shortly after the time values are set, the two registers may not roll over at the same moment.

Work around

The HSEC register does not cause the Second value to change, but instead the values are clocked off an internal clock divisor independently. The HSEC value is automatically synchronized with the Second value at the beginning of the minute, when the second rolls over from 59 to 00. Following that first minute change, the HSEC and Second registers will be in sync.

Affected Silicon Revisions

All	
X	

10. Issue: HSEC Value Not Changing

The HSEC register may appear stuck at the same value for two or more successive reads, even though more than 10 ms have passed. If the oscillator is running, then the internal value is still counting, but the value may not be updated every time it is read.

Work around

Read the HSEC value, then read it again 120 µs later to ensure an unstuck value. Alternatively, read the HSEC register and compare the present value with the previous value, and if the same, re-read the HSEC register until it is different.

MCP795WXX

APPENDIX A: DOCUMENT REVISION HISTORY

Rev E Document (07/2022)

Edited Issue 7.

Rev D Document (06/2017)

Edited Issue 7; Added Issues 9 and 10.

Rev C Document (12/2016)

Added Issue 8: Day of Week Reset after Day of Week Write.

Rev B Document (12/2015)

Adopted new document format. Added silicon issues 6 (date incrementing at noon) and 7 (month write resetting date to 1). Removed MCP795BXX part numbers.

Rev A Document (03/2012)

Initial release of this document.

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2012-2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-0770-0

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-5983

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252 **China - Xiamen** Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **Sweden - Gothenberg** Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820