

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 1 of 26

AR1020/AR1021 SPI/I
2
C Open Source Linux Driver

Documentation

Document #: AD-110029-002

Title: AR1020/AR1021 SPI/I
2
C Open Source Linux Driver Documentation

Subtitle:
Date: 27-April-2012

Description: This document describes the reference AR1020/AR1021 SPI-I
2
C driver

software developed for Linux.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 2 of 26

Revision History

Version Date By Description

001 01/03/2011 SG Initial Revision

002 04/27/2012 AR Updated for AR1011/AR1021 release.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 3 of 26

Table of Contents

AD-110029-002 .. 1

AR1020/AR1021 SPI-I
2
C OPEN SOURCE LINUX DRIVER DOCUMENTATION 1

1.0 INTRODUCTION .. 4

2.0 INSTALLATION OF THE DRIVER ... 4

2.1 PRELIMINARY STEPS .. 4
2.2 I

2
C INTERFACE SPECIFIC STEPS .. 4

2.2.1 Connecting the controller to the embedded board .. 4
2.2.2 Setting up the Linux kernel source ... 5

2.2.2.1 Automatic configuration .. 5
2.2.2.2 Manual configuration ... 5

2.2.3 Setting up the board’s platform specific settings .. 6
2.3 SPI INTERFACE SPECIFIC STEPS .. 6

2.3.1 Connecting the controller to the embedded board .. 6
2.3.2 Setting up the Linux kernel source ... 7

2.3.2.1 Automatic configuration .. 7
2.3.2.2 Manual configuration ... 7

2.3.3 Setting up the board’s platform specific settings .. 8
2.4 UPDATING TARGET SYSTEM .. 8

2.4.1 Setting up debugging .. 8
2.4.1.1 Increasing kernel log level using kernel parameters ... 8

2.4.2 Overview of updating kernel on embedded target ...10
2.4.3 Activating driver as kernel module ..10
2.4.4 Verifying touch packets from driver ..10

2.4.4.1 Monitoring kernel debug messages .. 11
2.4.4.2 Building inputverify application .. 11
2.4.4.3 Finding a device path using inputverify ... 11
2.4.4.4 Reading packet data using inputverify ... 12

2.5 DRIVER DIAGNOSTIC TOOLS ...12
2.5.1 Verifying complete driver configuration ...12
2.5.2 Verifying controller bus data ...13
2.5.3 Verifying/probing touch IRQ ID ...14
2.5.4 Setting touch IRQ using a kernel parameter ..15

COMMAND COMMUNICATION ...15
2.5.5 Controller commands from an application ..15

2.5.5.1 Leading zero on I2C controller commands ... 16
2.5.5.2 I2C inter-byte delays on host-to-controller writes... 16

3.0 CALIBRATION METHODS ...17

3.1 CONSOLE CALIBRATION ...17
3.1.1 Using built-in kernel driver’s software calibration ..17
3.1.2 Using controller’s hardware calibration feature...19

3.2 CALIBRATION UNDER THE ANDROID OS ..20
3.2.1 Installing Android driver calibration tool package ..20
3.2.2 Compiling Android calibration from source ..22
3.2.3 Adjusting calibration inset ...22

3.3 TSLIB ..22
3.3.1 Cross-compile Tslib ...22
3.3.2 Setting up Tslib library ..23

3.4 CALIBRATION UNDER THE QTOPIA OS ...26

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 4 of 26

1.0 Introduction

The goal of the documentation presented is to provide instructions on how to quickly and easily setup

AR1020/AR1021 SPI or AR1020/AR1021 I
2
C controller communications and calibrate touch controller

drivers for most embedded Linux configurations. After this setup and calibration, applications running on

target machine will be aware of the position and touch state of the touch screen connected to the touch

controller. We have provided driver source code, discussed some common open source touch libraries, and

have provided an open source Android calibration application to aide in enabling the driver to function on

any platform the provided source code is compiled for.

A kernel source tree installation script (“update_kernel_tree.sh”), a controller test utility (“inputverify”),

and source code for our Android calibration utility are provided tools that were created to help simplify the

task of setting up a touch controller driver for the target computer. These tools and the libraries discussed

in this documentation are only recommendations and there are a variety of many good open source

solutions available. However, at a minimum the Microchip kernel driver will need to be compiled within

the Linux kernel source code tree.

After all of the documentation steps have been completed for the intended target platform, a kernel device

path will appear under “/dev/input” that will send touch state information (in evdev format) to any

application or touch library that reads this location. Normally, a library will be configured to read from this

location and the application will process the touch state information in the form of mouse events interpreted

from the GUI framework the application is using.

2.0 Installation of the driver

2.1 Preliminary steps

Please complete the following instructions before setting up the AR1020/AR1021 installation:

 Setup a compiler or cross-compiler environment on the host which will be used for compiling

applications and the kernel.

 The kernel source for the target system will need to be available on the host.

 Find available pins on the target system for AR1020/AR1021’s SPI or I
2
C bus lines and the

interrupt line to be connected to.

 The platform specific file path within the kernel tree responsible for setting up host

communication with SPI and/or I
2
C busses, and associating IRQ numbers with devices will need

to be determined. For example, on the Samsung 6410 board platform, this file is located at

"arch/arm/mach-s3c6410/mach-smdk6410.c".

2.2 I
2
C interface specific steps

2.2.1 Connecting the controller to the embedded board

Often it is easier testing the kernel with the embedded target board using the AR1000 Development Kit

board before integrating the chip with the board. To accomplish this, please connect the lines as follows:

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 5 of 26

Connect the AR1020/AR1021 IRQ line to an available GPIO line

Connect the AR1020/AR1021 +5V line to VDD power

Connect the AR1020/AR1021 GND line to the board ground

Connect the AR1020/AR1021 SDA line to the I
2
C bus's data line

Connect the AR1020/AR1021 SCL line to the I
2
C bus's clock line

When connecting the AR1020/AR1021 IRQ line to the embedded target, we ideally want to choose a GPIO

line that is configured as an input by default. When looking on the board or CPU schematic, available lines

marked as EINT (external interrupt) usually work well with the operating system as a touch interrupt.

2.2.2 Setting up the Linux kernel source

In order for the included installation script and utilities to function, the provided source code will need to be

compiled. To setup the environment for compiling source code for the target system, please see the

relevant online Linux documentation on how to best accomplish this.

2.2.2.1 Automatic configuration

Extract installation files and run a command such as "tar zxvf AR1020-LINUX-SPI-I2C-V102.tar.gz".

After the files are extracted, run the command “sh ./update_kernel_tree.sh" at the root of the extracted

files. The script will prompt for the root of the kernel source tree intended for the target system. After

entering this path the appropriate files in the kernel source will automatically be updated such that new

drivers will appear in the kernel configuration.

2.2.2.2 Manual configuration

Note: The steps in this section may usually be skipped since the “update_kernel_tree.sh” script automates

this process. However, to verify the script kernel source update or to manually configure the setup of the

kernel, these steps may be useful as a reference.

Copy the "ar1020-i2c.c" file to the "drivers/input/touchscreen" directory.

Modify the "Kconfig" in the "drivers/input/touchscreen" such that it contains the following at the bottom of

the file before the "endif" line.

config TOUCHSCREEN_AR1020_I2C

 tristate "Microchip AR1020 I2C touchscreen"

 depends on I2C

 help

 Say Y here if you have a Microchip AR1020 I2C Controller and

 want to enable support for the built-in touchscreen.

 To compile this driver as a module, choose M here: the

 module will be called ar1020-i2c.

The "Makefile" in the "drivers/input/touchscreen" needs to contain the following at the bottom of the file.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 6 of 26

obj-$(CONFIG_TOUCHSCREEN_AR1020_I2C) += ar1020-i2c.o

Next, to include Microchip touch support within the kernel, run "make menuconfig" for a text kernel

configuration interface or "make xconfig" for a graphical configuration interface.

Browse to "Device Drivers->Input device support->Touchscreens" in the kernel tree interface and choose

"Microchip AR1020 I2C touchscreen" as a built-in option.

Note: If the "Microchip AR1020 I2C touchscreen" option does not appear in the kernel menu, verify that

“Device Driver->I2C support” is an included kernel configuration component (the driver will not appear

otherwise).

2.2.3 Setting up the board’s platform specific settings

The platform specific files will now need to be modified so we may associate the AR1020/AR1021 I
2
C

driver with the appropriate I
2
C bus and GPIO interrupt. Begin by searching for the keywords "struct

i2c_board_info" and then go to the source code line specific to the current I
2
C bus that is to be used.

For one of this structure's elements, please add the following line:

{ I2C_BOARD_INFO("ar1020_i2c", 0x4d),.irq=116,},

This line will cause the "ar1020_i2c_probe" function within the AR1020/AR1021 kernel driver to be called

on system startup. The ".irq" variable's value will need to be changed to the IRQ number of the GPIO line

the controller IRQ is attached to. If unsure of the IRQ value to use, we may set this value later using a

kernel parameter and the following line may be used to finish registration of the AR1020/AR1021 driver

with the kernel:

{ I2C_BOARD_INFO("ar1020_i2c", 0x4d),},

Please see section “2.5.3 Verifying/probing touch IRQ ID” for more information on determining the

appropriate IRQ ID to use.

2.3 SPI interface specific steps

2.3.1 Connecting the controller to the embedded board

Often it is easier testing the kernel with the embedded target board using the AR1000 Development Kit

board before integrating the chip with the board. To accomplish this, please connect the lines as follows:

Connect the AR1020/AR1021 IRQ line to an available GPIO line

Connect the AR1020/AR1021 +5V line to VDD power

Connect the AR1020/AR1021 GND line to the board ground

Connect the AR1020/AR1021 SDI line to the SPI bus's output line

Connect the AR1020/AR1021 SCK line to the SPI bus's clock line

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 7 of 26

Connect the AR1020/AR1021 SDO line to the SPI bus's input line

When connecting the AR1020/AR1021 IRQ line to the embedded target, we ideally want to choose a GPIO

line that is configured as an input by default. When looking on the board or CPU schematic, available lines

marked as EINT (external interrupt) usually work well with the operating system as a touch interrupt.

2.3.2 Setting up the Linux kernel source

In order for the included installation script and utilities to function, the provided source code will need to be

compiled. To setup the environment for compiling source code for the target system, please see the

relevant online Linux documentation on how to best accomplish this.

2.3.2.1 Automatic configuration

Extract installation files and run a command such as "tar zxvf AR1020-LINUX-SPI-I2C-V102.tar.gz".

After the files are extracted, run the command “sh ./update_kernel_tree.sh" at the root of the extracted

files. The script will prompt for the root of the kernel source tree intended for the target system. After

entering this path the appropriate files in the kernel source will automatically be updated such that new

drivers will appear in the kernel configuration.

2.3.2.2 Manual configuration

Note: The steps in this section may usually be skipped since the “update_kernel_tree.sh” script automates

this process. However, to verify the script kernel source update or to manually configure the setup of the

kernel, these steps may be useful as a reference.

The "ar1020-spi.c" file should be copied to the "drivers/input/touchscreen" directory.

Modify the "Kconfig" in the "drivers/input/touchscreen" such that it contains the following at the bottom of

the file before the "endif" line.

config TOUCHSCREEN_AR1020_SPI

 tristate "Microchip AR1020 SPI touchscreen"

 depends on SPI_MASTER

 help

 Say Y here if you have a Microchip AR1020 SPI Controller and

 want to enable support for the built-in touchscreen.

 To compile this driver as a module, choose M here: the

 module will be called ar1020-spi.

The "Makefile" in the "drivers/input/touchscreen" needs to contain the following at the bottom of the file.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 8 of 26

obj-$(CONFIG_TOUCHSCREEN_AR1020_SPI) += ar1020-spi.o

Next, to include Microchip touch support within the kernel, run "make menuconfig" for a text kernel

configuration interface or "make xconfig" for a graphical configuration interface.

Browse to "Device Drivers->Input device support->Touchscreens" in the kernel tree interface and choose

"Microchip AR1020 SPI touchscreen" as a built-in option.

Note: If the "Microchip AR1020 SPI touchscreen" option does not appear in the kernel menu, verify that

“Device Driver->SPI support” is an included kernel configuration component (the driver will not appear

otherwise).

2.3.3 Setting up the board’s platform specific settings

The platform specific files will now need to be modified so we may associate the AR1020/AR1021 SPI

driver with the appropriate SPI bus and GPIO interrupt. Begin by searching for the keywords "struct

spi_board_info" and then go to the source code line specific to the current SPI bus that is to be used.

In the relevant section, change the value of the ".modalias" variable to "ar1020-spi". This change will cause

the "ar1020_spi_probe" function within the AR1020/AR1021 kernel driver to be called on system startup.

The ".mode" variable's value will need to be changed to SPI_MODE_1 to setup the host to output to the

clock line in the expected matter (there are four modes for the kernel to setup the host clock line for SPI).

Finally, the ".irq" variable's value will need to be changed to the IRQ number of the GPIO line the

controller IRQ is attached to. If unsure of the IRQ value to use, we may leave this at the default value and

later this IRQ value may be set using a kernel parameter instead. If the chip select line is used, the

“.chip_select” variable will need to be set to a value of one.

Please see section “2.5.3 Verifying/probing touch IRQ ID” for more information on determining the

appropriate IRQ ID to use.

2.4 Updating Target System

2.4.1 Setting up debugging

When working with an embedded target, ideally there should be means to monitor debug messages from

the kernel and run commands on the target. Having such a debugging connection will give us a great deal

of control in testing and configuring the target system’s setup.

An example of a common kernel debugging setup may be a Windows host computer running terminal

software such as “DNW” or “Hyperterminal” connected between the embedded target and the host using an

NULL modem cable on RS-232 ports. Other possibilities include a remote connection over Ethernet

between the host and the target. Another option may be to run the “dmesg” command on the target system

as needed to see the most recent kernel messages.

2.4.1.1 Increasing kernel log level using kernel parameters

The kernel log messages within the driver have various log levels based on importance. When setting up

the target system, it’s often useful to enable all logging to better ensure the driver can be up and running

sooner if something doesn’t work on the first attempt. For example, a higher log level will enable the

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 9 of 26

AR1020/AR1021 driver to be able to output touch coordinates using kernel debug messages. This can be

very valuable in verifying the AR1020/AR1021 driver configuration since seeing valid touch coordinates is

an indication that the driver setup is mostly complete.

The Linux kernel supports a parameter called “loglevel”. To see all debug messages within the

AR1020/AR1021; we want to set this “loglevel” parameter to a value of eight. A kernel parameter is set

within the boot loader. For the U-Boot boot loader, the kernel parameters are stored in an environmental

variable called “bootargs”. The following is an example of the command to run within the U-Boot

command shell to query the kernel parameters:

Command:

echo $bootargs

Example Result:

noinitrd console=ttySAC0 init=/init usbi.mtd=1 root=ubi0:rootfs

rootfstype=ubifs

The result the command returns will be different for your target system. The above result will be used as

part of the next command.

Command:

saveenv bootargs noinitrd console=ttySAC0 init=/init usbi.mtd=1

root=ubi0:rootfs rootfstype=ubifs loglevel=8

saveenv

Example Result:

Saving Environment to NAND…

Erasing Nand…Writing to Nand… done

Replace the text in italics with your current boot arguments determined from the “echo $bootargs”

command above.

If the Grub boot loader is used (on x86 systems), this parameter can be set within the Grub menu, by

editing the “menu.lst” file (grub V1), or editing the “grub.cfg” (grub V2). In general, this parameter needs

to be added to the line starting with the keyword “kernel” (Grub version 1.XX) or “linux” (Grub version

2.XX). For further information, please see online communication documentation on Grub

(“http://www.gnu.org/software/grub”).

After a reboot of the system, the new log level will be applied.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 10 of 26

2.4.2 Overview of updating kernel on embedded target

In order to enable the AR1020/AR1021 driver on the target system, the kernel will need to updated. After

the kernel source has been modified appropriately from section 2.2.2 or section 2.3.2 above, enter the

command “make” at the root of the kernel source. After several minutes, the compiler will generate a

kernel image “zImage” that will now additionally contain the AR1020/AR1021 driver component.

To use the AR1020/AR1021 driver that was configured as a built-in component, the entire kernel will need

to be replaced with data in the “zImage” file (for the ARM architecture, this is file is generated in the

“arch/arm/boot” subdirectory). The methods to update this kernel can vary from system to system,

however the boot loader (such as U-Boot) usually plays the primary role in updating the kernel.

The general procedure for updating the kernel using U-Boot is loading the kernel image from “zImage”

into RAM, erasing the blocks of NAND flash the kernel will be written to, and then writing kernel image

from RAM onto the erased NAND blocks. The following is a U-Boot command shell example using the

“dnw” tool to load the “zImage” file to RAM location 0xc0008000 into NAND flash blocks between 40000

and 300000:

dnw

nand erase 40000 300000

nand write c0008000 40000 300000

nand read c0008000 40000 300000

bootm c0008000

2.4.3 Activating driver as kernel module

Usually the AR1020/AR1021 driver component is selected as a built-in kernel component. However, in

some scenarios it may be more convenient to use the driver component as a kernel module. For example, if

the driver is a module, the driver may be separately updated without the need to update the system’s kernel.

In order for a kernel module to work properly, the kernel module will need use the same kernel source

version as the kernel module. Also, the kernel will need to be updated at least once such that the platform

changes are applied (otherwise the bus driver will not associate with the AR1020/AR1021 driver

component). The command to load the I
2
C kernel driver component is “insmod ar1020-i2c.ko”, and

“insmod ar1020-spi.ko” for the SPI kernel driver component.

To unload the kernel module, run the command “rmmod ar1020-i2c” for the I
2
C kernel driver component

and “rmmod ar1020-spi” for the SPI kernel driver component.

Note: If an error appears such as “rmmod: chdir(2.6.28.6): No such file or directory” after running the

“rmmod command”, then create the missing directory under “/lib/modules” with a command such as

“mkdir /lib/modules/2.6.28.6” to correct this issue.

2.4.4 Verifying touch packets from driver

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 11 of 26

2.4.4.1 Monitoring kernel debug messages

The quickest way to verify touch packets is often by setting the kernel log level to eight as discussed in

section 2.4.1.1 following by a touch. If the touch is detected successfully, output similar to the following

may be seen in the kernel debug log (format below is X position, Y position, and pen state):

AR1020 I2C: 2932 2446 1

AR1020 I2C: 2970 2426 1

AR1020 I2C: 2993 2403 1

AR1020 I2C: 2993 2403 0

If there is there is no coordinates reported as a result of a touch, please see the section “2.5 Driver

diagnostic tools” to help better determine the source of the issue.

2.4.4.2 Building inputverify application

Alternatively, it may be more convenient to verify touch coordinates using the provided application

“inputverify” rather than by looking at kernel debug messages. To generate this application, we need to

compile the “inputverify.c” file from within the root of the driver installation folder. For example, to

generate an “inputverify” application file using the cross-compiler “arm-linux-gcc” we may enter the

command “arm-linux-gcc –o inputverify inputverify.c” on the host. If Android is the target system, the –

static flag will need to be set in order to ensure “inputverify” runs properly using a command such as “arm-

linux-gcc –o inputverify inputverify.c -static”.

2.4.4.3 Finding a device path using inputverify

A controller’s device path is the path in which data may be read from the touch controller using an

application. To help automatically discover the controller, the “inputverify” tool that is included with the

driver may be used to discover the path of the controller. To detect the device path, run the command

“./inputverify –f –p EVDEV” from the installation directory.

Command:

./inputverify –f –p EVDEV

Example output:

Microchip Touchscreen Controller Utility V1.00

Command-line options selected:

Find mode enabled.

Protocol set to EVDEV

Found controller at device path: /dev/input/event2

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 12 of 26

If there is no controller detected, please see the section “2.5.1 Verifying complete driver configuration”

to verify a complete kernel driver configuration.

2.4.4.4 Reading packet data using inputverify

If the controller is detected, to verify touches are being correctly being seen by the kernel, run

“inputverify” on the target machine with the device's evdev path as a parameter. For example "./inputverify

-p EVDEV -d /dev/input/event2".

Command:

./inputverify –d /dev/input/event2 –p EVDEV

Example output:

Microchip Touchscreen Controller Utility V1.00

Command-line options selected:

Device path set to /dev/input/event2

Protocol set to EVDEV

Decoding EVDEV packets (Press Ctrl-C to exit)

State: 2188 2522 0

State: 2188 2522 1

State: 2176 2522 1

State: 2176 2517 1

If there is there is no coordinates reported as a result of a touch, please see the next section “2.5 Driver

diagnostic tools” to help better determine the source of the issue.

2.5 Driver diagnostic tools

It is not uncommon for some of the platform settings or the configuration settings to be slightly off such

that it causes the driver to not be fully enabled or communications issues on the bus and/or touch IRQ line.

To aide in getting the platform configuration correct, some mechanisms have been added to the driver such

as kernel logging (“2.5.1 Verifying complete driver configuration”), data bus polling (“2.5.2 Verifying

controller bus data”) and IRQ probing (“2.5.3 Verifying/probing touch IRQ ID”). These three tests

need to be followed in this order since Section 2.5.2 depends on 2.5.1 in order to run and likewise

diagnostic test 2.5.3 depends on 2.5.2.

2.5.1 Verifying complete driver configuration

If there is no response as a result of a touch, the first thing to check is if the AR1020/AR1021 kernel driver

has successfully been included within the kernel.

If the AR1020/AR1021 SPI kernel driver has been included, “ar1020_spi_init: begin” will be seen within

the kernel debug output. If the AR1020/AR1021 I
2
C kernel driver has been included, “ar1020_i2c_init:

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 13 of 26

begin” will be seen within the kernel debug output. This message will appear regardless if the kernel

platform settings have been modified or not.

To verify the platform settings within the kernel have been modified appropriately to associate the SPI or

I
2
C bus with the AR1020/AR1021 driver, we will check to see if the driver’s probe function has been

called. If the AR1020/AR1021 SPI kernel driver has been registered correctly, “ar1020_spi_probe: begin”

will be seen within the kernel debug output. If the AR1020/AR1021 I
2
C kernel driver has been registered

correctly, “ar1020_i2c_probe: begin” will be seen within the kernel debug output. This message will only

appear if the board’s platform settings source file has been modified correctly. If this debug message has

not been seen, please verify the correct platform source file has been changed. Adding a printk() debug

message within the target board’s initialization function in the platform specific source file can help in

determining this.

2.5.2 Verifying controller bus data

To ensure the SPI or I
2
C bus has been enabled and configured correctly, it may be useful to know if we are

reading data correctly.

Within the AR1020/AR1021 driver, there is a mode such that the data is constantly clocked from the

controller (ignoring the state of the IRQ). To enable this mode, add the kernel parameter “ar1020-

i2c.testI2Cdata=1” if using the AR1020/AR1021 I
2
C driver component or add the kernel parameter

“ar1020-spi.testSPIdata=1” if using the AR1020/AR1021 SPI driver component. For an example of setting

up a kernel parameter, please see section “2.4.1.1 Increase kernel log level using kernel parameters”.

Using this mode, it can quickly be determined by touching the touch screen if good touch data is being seen

by the system. A good packet will consist of a “0x80” or “0x81” value followed by four data bytes.

The following is an example of the expected output in this mode in the SPI component (the output with I
2
C

component is nearly identical):

AR1020 SPI: ar1020_spi_init: begin

AR1020 SPI: ar1020_spi_probe: begin

AR1020 SPI: In testing mode to verify packet. To inhibit this mode,

Unset the “testSPIdata” kernel parameter

0x04

0x80 0x4a 0x0f 0x26 0x14

0x81 0x4a 0x0f 0x26 0x14

0x81 0x3d 0x0f 0x22 0x14

0x80 0x2d 0x0f 0x1d 0x14

If there are no bytes being seen in this mode, it’s recommended to verify that the correct SPI or I
2
C bus has

been configured in the board’s platform source file. For the AR1020/AR1021 SPI driver, if seemingly

random bytes are appearing, the clock may not be set correctly (there are four different kernel modes

available for the kernel clock line on SPI) or an unsupported speed value may have been specified (see

AR1000 datasheet for information on the AR1020/AR1021 supported SPI speed range).

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 14 of 26

2.5.3 Verifying/probing touch IRQ ID

The external interrupt number will be different than the internal interrupt id the operating system will use.

To determine this interrupt number, kernel macros/functions may be used. For example, if the external

interrupt number is known to be seven, the “IRQ_EINT(7)” macro may be used which should return the

correct interrupt ID to use. If the GPIO number is known to be 48, the “gpio_to_irq(48)” function may be

used which should return the correct interrupt ID to use. Occasionally, there are errors in board support

package and these macros do not work properly, but this should be uncommon.

If there is some trouble in acquiring the appropriate ID using macros, a probing mechanism has been added

to the driver to help make this determination of the touch IRQ ID easier. To enable this mode, add the

kernel parameter “ar1020-i2c.probeForIRQ=1” if using the AR1020/AR1021 I
2
C driver component or add

the kernel parameter “ar1020-spi.probeForIRQ=1” if using the AR1020/AR1021 SPI driver component.

For an example of setting up a kernel parameter, please see section “2.4.1.1 Increase kernel log level

using kernel parameters”.

After this feature is enabled, kernel debug message will prompt for a continuous touch before probing

different IRQ IDs until the probe completes. By default, the driver will scan IRQ IDs from 0 to 200. This

range may be changed by using the kernel parameters “probeMin” and “probeMax”. For example, to probe

the IRQ IDs from 100 to 130, the parameters “ar1020-spi.probeMin=100 ar1020-spi.probeMax=130”

should be added if using SPI component and “ar1020-i2c.probeMin=100 ar1020-i2c.probeMax=130” if

using I
2
C component.

The following is an example of the expected output in this mode using the SPI component (the output with

I
2
C component is identical) using kernel parameters “ar1020-spi.probeForIRQ=1 ar1020-

spi.probeMin=110 ar1020-spi.probeMax=120”:

AR1020 SPI: ar1020_spi_init: begin

AR1020 SPI: ar1020_spi_probe: begin

AR1020 SPI: Probing for interrupt id.

AR1020 SPI: Please touch screen before IRQ probe for successful

detection.

AR1020 SPI: Probing will commence in five seconds.

AR1020 SPI: Kernel exception messages may appear during the

AR1020 SPI: probing process.

AR1020 SPI: Testing IRQ 110

AR1020 SPI: Testing IRQ 111

AR1020 SPI: Testing IRQ 112

AR1020 SPI: Testing IRQ 113

AR1020 SPI: Testing IRQ 114

AR1020 SPI: Testing IRQ 115

AR1020 SPI: Testing IRQ 116

AR1020 SPI: Touch IRQ detected at ID: 116.

input: AR1020 Touchscreen as /class/input/input2

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 15 of 26

2.5.4 Setting touch IRQ using a kernel parameter

Setting a touch IRQ value can always be done directly from the kernel source. However, if an IRQ value is

set using the kernel source, the target system’s Linux kernel will need to be recompiled and updated after

every change. To make setting the touch IRQ value easier, the AR1020/AR1021 driver supports directly

setting the touch IRQ using a kernel parameter. For example, to set the IRQ to 116, the parameter “ar1020-

spi.touchIRQ=116” should be added if using SPI component and “ar1020-i2c.touchIRQ=116” if using I
2
C

component. If an IRQ value is set using a kernel parameter, this will override any value set within the

kernel source. For an example of setting up a kernel parameter, please see section “2.4.1.1 Increase

kernel log level using kernel parameters”.

The following is example of the kernel debug output that will appear if “ar1020-i2c.touchIRQ=116” is used

with the AR1020/AR1021 driver component.

AR1020 I2C: ar1020_i2c_probe: begin

AR1020 I2C: Using IRQ 116 set via kernel parameter.

Command communication

2.5.5 Controller commands from an application

Controller command communication is usually hardcoded into the kernel driver. However, in order to

enable applications to access the full AR1020/AR1021 command set, a driver feature using a Linux kernel

component called “sysfs” has been added so commands may be easily sent to the controller without the

need for an additional library.

After the AR1020/AR1021 driver has finished loading, a directory located at “/sys/kernel/ar1020” will

appear in the file system.

The variables relating to controller commands within this directory are as follows:

commandMode – The current mode of the controller. To enable command communication, this value

must first be set to a value of “1”. The decoding of touch packets will be inhibited until it is set back to a

value of “0”.

sendBuffer – This is the location that gets written to write a command to the controller. The expected

value is in hexadecimal.

receiveBuffer – This value contains the response of the last sent command to the controller.

commandDataPending – After a command has been sent to the controller, this value will be “1” until a

response has been processed. After a response has been processed, this value will be “0”. The purpose of

this value is that an application may quickly poll this “commandDataPending” value until it has a value of

“1” so the application may more quickly respond after the controller has finished processing the command.

Usage of this value is optional as a delay of 100 milliseconds after the command is sent is sufficient for

most commands.

The following is an example of the enable command using these kernel values from the command-line:

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 16 of 26

Command:

cd /sys/kernel/ar1020

echo “1”>commandMode

echo “0x55 0x01 0x12”>sendBuffer

cat receiveBuffer

Example output:

0x55 0x02 0x00 0x12

Please note that touch reporting is disabled until we exit command mode. To exit command mode, run the

following command:

echo “0”>commandMode

To send a command using a custom application, it should be noted that these kernel locations should be

opened as a text file rather than binary file.

Note: the following command format is also interpreted correctly by the driver if preferred:

echo “55 1 12”>sendBuffer

2.5.5.1 Leading zero on I
2
C controller commands

When sending commands using the I
2
C interface, a zero is required as a first command byte. If a zero is

not sent as a first byte, the controller commands will sometimes, but not always succeed.

For example, the following is an example of the recommended way of sending the enable command using

the I
2
C interface:

echo “0x00 0x55 0x01 0x12”>sendBuffer

2.5.5.2 I2
C inter-byte delays on host-to-controller writes

Our AR1020/AR1021 controller does not have a clock stretching capability when bytes are being written to

it from the host. This means that in order for the controller to understand the command we are sending, we

need to add delays where appropriate so bits are not misread by the controller. To add these delays, we will

modify the I
2
C kernel bus source that is applicable to the target board. This I

2
C bus driver source code for

the target system should be located within the “drivers/i2c/busses” subdirectory. We will need to modify

the code such that there will be a 170 micro-second inter-byte delay (delay in-between bytes) and a 30

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 17 of 26

micro-second stop bit delay (delay before stop bit). The specific source file and code modifications vary

from different target systems, however the below is a tested example using a Samsung 2410 I
2
C bus

controller of how the changes may be implemented.

In the file “drivers/i2c/busses/i2c-s3c2410.c” from the kernel source, after the include definitions, add the

following lines:

#define INTERBYTEDELAY 170

#define STOPDELAY 30

Search for the text “ndelay(i2c->tx_setup);” and replace this line with the following lines:

// ndelay(i2c->tx_setup);

udelay(INTERBYTEDELAY);

Next search for the text “void s3c24xx_i2c_stop” and add the following lines at the beginning of this

function:

udelay(STOPDELAY);

Finally, we will recompile and update the kernel in our embedded device.

3.0 Calibration Methods

Up to this point, we have been setting things up such that the system reads the controller data and decodes

this into controller’s raw coordinates. Raw coordinates are coordinates that the controller calculates and

communicates as a result of a touch. These raw coordinates will be accurate according to its electrical

connections from the touch screen to the controller. However, to make these raw coordinates match up

with the touched area of the display, a touch calibration will often be necessary.

3.1 Console calibration

3.1.1 Using built-in kernel driver’s software calibration

The AR1020/AR1021 kernel driver has a built-in min-max software calibration that supports all of the

orientations the touchscreen may be mounted on the display. This section details the steps to be followed

to best accomplish using the driver calibration components.

Communicating with the kernel driver

Communication with the AR1020/AR1021 is done via a kernel mechanism called sysfs. Sysfs appears as a

set of directories on the file system under “/sys” that can be used to communication with all kernel

components that support this interface. The directory that the AR1020/AR1021 kernel component is

registered under is “/sys/kernel/ar1020”.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 18 of 26

The variables relating to calibration within this directory are as follows:

minX –The smallest possible value on x-axis.

minY –The smallest possible value on y-axis.

maxX –The largest possible value on x-axis.

maxY –The largest possible value on y-axis.

swapAxes –Set to one if horizontal touch movement on x-axis result in movement in the y-axis and vice

versa.

 invertX –Set to one to cause x coordinates to appear on the opposite side of x-axis.

invertY – Set to one to cause y coordinates to appear on the opposite side of y-axis.

Setting Raw Mode

In order to fully ensure the calibration constants are valid, it is highly recommended that the kernel driver

be set to raw mode. In this mode, the coordinate returned by the kernel will exactly match the coordinate

returned by the controller. In order to set this mode, the calibration values will need to be set as follows:

minX - 0

minY - 0

maxX - 4095

maxY - 4095

swapAxes - 0

invertX - 0

invertY - 0

A calibration variable may be set by writing a string value to the filename. As an example of how to write

the above value, from the “/sys/kernel/ar1020” directory, run the following commands:

echo “0” > minX

echo “0” > minY

echo “4095” > maxX

echo “4095” > maxY

echo “0” > swapAxes

echo “0” > invert

echo “0” > invertY

Setting these variables will cause an immediate change in the reported coordinates for every change in

value.

Correct swapped or inverted axes

1. Using the “inputverify” tool, touch across the touchscreen horizontally. If the y-values change

much more than the x-value, the x and y are swapped. To correct this, run the command “echo

“1”> “swapAxes”.

2. Using the “inputverify” tool, touch across the touchscreen horizontally. If on the left side of the

display the x value is greater than the right side, then the x axis is inverted. To correct this, run the

command “echo “1”> “invertX”.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 19 of 26

3. Using the “inputverify” tool, touch across the touchscreen vertically. If on the top side of the

display the x value is greater than the bottom side, then the y axis is inverted. To correct this, run

the command “echo “1”> “invertY”.

Determine the minimum/maximum values of touch area over display

1. Using the “inputverify” tool, touch the left side of the viewable area of the display on the

touchscreen. Please write down this x value down as “minX”.

2. Using the “inputverify” tool, touch the right side of the viewable area of the display on the

touchscreen. Please write down this x value down as “maxX”.

3. Using the “inputverify” tool, touch the top side of the viewable area of the display on the

touchscreen. Please write down this y value down as “minY”.

4. Using the “inputverify” tool, touch the bottom side of the viewable area of the display on the

touchscreen. Please write down this y value down as “maxY”.

Using the values written down above, set the “minX”, “minY”, “maxX”, “maxY” variables within the sysfs

tree. For example if minX, minY, maxX, maxY were 310, 305, 3700, 3720 respectively, the commands to

run would be as follows:

echo “310” > minX

echo “305” > minY

echo “3700” > maxX

echo “3720” > maxY

Verify calibration

If a GUI drawing application or environment is easily available, run the application and verify the touch is

evaluated correctly under the touched location based on its numerical value.

If a GUI drawing application or environment is not easily available, using the “inputverify” tool, touch in

the upper-left of the display area under the touch screen and verify the coordinates returned are near (0, 0).

Next, touch in the lower-right of the display area under the touch screen and verify the coordinates returned

are near (4095, 4095). If this is not the case, tweaking of the minimum and maximum values may be

necessary such that upper-left and lower-right corners are near (0, 0) and (4095, 4095) respectively.

3.1.2 Using controller’s hardware calibration feature

If no software calibration library is easily available on the embedded target and there is a need for a

calibration to persist after a reboot, the AR1020/AR1021’s hardware calibration can be a very convenient

feature as an AR1020/AR1021’s hardware calibration stores calibration data within EEPROM.

In general, we do the following (as described in the AR1000 datasheet) for a hardware calibration:

1. Set inset by setting appropriate RAM offset (the default controller inset is 12.5 percent). For a

console hardware calibration, choose zero percent.

2. Send the calibrate command.

3. If using a GUI application, draw calibration target at current inset after every controller response

from a touch.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 20 of 26

4. If using a console calibration, touch and release at the corners of the display on the touchscreen in

the following order: upper-left, upper-right, lower-right, and finally lower-left.

The following is a command line example of the above:

echo “1”>commandMode

echo “0x55 0x05 21 0x00 0x2e 0x01 0x00”>sendBuffer

echo “0x55 0x02 0x14 0x04”>sendBuffer

echo “0”>commandMode

If it becomes more convenient on the embedded system to have a software calibration after previously

having done a hardware calibration, it is very important to disable the hardware calibration before the

software calibration. The “TouchOptions” register of the AR1020/AR1021 controller will be used to un-set

the “Calibrated Coordinates Enable” bit following by running the “Registers Write to EEPROM” controller

command. If an 8-wire sensor is attached a value of two will be written to the “TouchOptions” registers,

otherwise value of zero will need to be written. The following example commands may be used on a 4 or a

5 wire touch setup to disable calibration:

echo “1”>commandMode

echo “0x55 0x05 0x21 0x00 0x2d 0x01 0x00”>sendBuffer

echo “0x55 0x01 0x23”>sendBuffer

echo “0”>commandMode

3.2 Calibration under the Android OS

Once the AR1020/AR1021 kernel driver has been setup and verified, the device needs to be calibrated such

that coordinates returned by the kernel correspond with the touched area of the touchscreen. On devices

running the Android operating system, this can be done by installing and running the provided calibration

application. This calibration application uses the AR1020/AR1021 kernel driver’s software calibration and

applies calibration settings both after calibration and after every reboot.

3.2.1 Installing Android driver calibration tool package

In the root of the installation folder, there is a “Calibration.apk” file that is intended to be used for installing

this calibration application onto the target device. There are a couple different ways to install this

installation package.

One way to install this calibration package is to use a package installer that may already exist on the target

device. Using this package installer, select this calibration package file (“Calibration.apk”) from either

over the network or through a removable storage medium such as MicroSD.

Another way to install this package is to use an Android utility called “adb”. This utility is run from the

development host and communicates with an “adbd” daemon on the target device. Communications with a

target device may be verified using the command “adb devices”. If there is good communication, the target

devices will appear as a result of this command. If the device is not listed, please see the “adb”

documentation on Androids web site. After communication is established, run the command “adb install

calibration.apk” from the root of the installation folder on the development host.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 21 of 26

The following is an example set of commands to setup adb on an Android embedded target (we setup on

port 80 to avoid firewall issues) for a network connection:

netcfg eth0 dhcp

setprop service.adb.tcp.port 80

stop adbd

start adbd

netcfg

After the last command, make note of the IP address returned. In our example, we will use IP address

“192.168.0.101”.

The following is an example set of commands to setup adb and install the calibration package from the host

system over a network connection:

adb connect 192.168.0.101:80

adb install Calibration.apk

Using the buttons on the target Android device, start the calibration application from the list of currently

installed applications. A calibration application will appear with a target in the upper-left corner as shown

below.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 22 of 26

Touch the three calibration targets and the application will automatically exit. The touchscreen is now

calibrated (calibration data is stored within Android configuration settings) and will be applied after every

reboot of the device.

3.2.2 Compiling Android calibration from source

Normally, installing the provided calibration package will be sufficient in most cases. However, to make

changes to the calibration software such as changing the inset or adding custom graphics, the source code

will need to be recompiled.

The calibration application’s source files, found within the “Calibration” subdirectory of the driver

installation files, have been setup to be compiled within the Eclipse IDE tool. Before opening the

calibration project, the Android SDK will need to be installed and Eclipse will need to be setup with the

Android plug-in. Instructions on how to do this may be found at

http://developer.android.com/sdk/index.html.

Once Eclipse and the Android SDK have been setup, with Eclipse “select File->Import..”. An import

dialog will appear and the option “Existing Projects into Workspace” under the “General” tree should be

selected followed by clicking the “Next >” Button. Finally, for the “Select root directory” option, browse

to the path of the “Calibration” directory located at the root of the installation source.

To compile the project, selection the “Calibration” package from package explorer and select “Run As-

>Android Application” and the “Calibration.apk” package will be built within the “Calibration\bin”

subdirectory of the installation source.

3.2.3 Adjusting calibration inset

Within the “Calibration.java”, located at “src\com.microchip.calibration” within project explorer, near the

beginning of the “CalibrationView” class, find the following line (can simply search for “inset=10”):

final int inset=10;

This value represents the inset percent the calibration will display the targets at. For example, to have the

calibration display the targets at 20 percent; change this line to:

final int inset=20;

3.3 Tslib

3.3.1 Cross-compile Tslib

By default, the “install-tslib.sh” script has been setup to use the default tools of the host computer.

However, for most embedded system, the binary format on target embedded system does not match the

binary format of the host system. For example, a host computer may be running a desktop Linux operating

http://developer.android.com/sdk/index.html

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 23 of 26

system such as Ubuntu using an x86 based binary format while the target computer may be running arm

based binary files. In order to compile to a different binary format, a cross-compiler is needed.

If a cross-compiler is being used, please run the following steps before running this script:

1. Using the editor of choice, edit the file “install-tslib.sh” and uncomment (remove “#” symbols)

from the following lines:

export CC=arm-linux-gcc

export CXX=arm-linux-g++

export AR=arm-linux-ar

export RANLIB=arm-linux-ranlib

2. After these lines are uncommented, follow the steps detailed in “3.3.2 Setting up Tslib library”

to generate the binary files. After the binary files have been generated, it is a good idea to verify

that the binaries were compiled to the target format (usually arm) instead of the host format

(usually x86). To do this run the following commands on the host:

file /usr/local/tslib/bin/ts_test

file /usr/local/tslib/lib/ts/input.so

For each of these commands, if the target format is arm based, you should see output similar to the

following:

/usr/local/tslib/bin/ts_test: ELF 32-bit LSB executable, ARM, version 1

(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.14,

not stripped

/usr/local/tslib/lib/ts/input.so: ELF 32-bit LSB shared object, ARM,

version 1 (SYSV), dynamically linked, not stripped

3.3.2 Setting up Tslib library

The Tslib library is an open source touch library mostly aimed at embedded systems. The Tslib libraries

come with a calibration application (“ts_calibrate”) and a test application (“ts_test”) that utilize the

graphics frame buffer. The frame buffer is a device that abstracts the graphics hardware so that software

may access graphics capabilities using a common interface across various hardware platforms. The frame

buffer interface is very common on embedded devices.

A Tslib installation script, the Tslib version 1.0 source bundle, and patch files are provided to ensure the

code functions correctly with Microchip touchscreen controllers. Before running this startup script, please

ensure the “autotools” packages are already installed on host computer such as “autoconf” and “automake”

that this script depends upon. If the “autotools” packages are not installed, please reference the relevant

documentation of how to install these for the Linux distribution of the host computer. An example usage of

this script is shown below.

Command:

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 24 of 26

sh ./install-tslib.sh

Example output:

Extracting files

tslib-1.0/

tslib-1.0/m4/

tslib-1.0/m4/external/

tslib-1.0/m4/external/PLACEHOLDER

tslib-1.0/m4/internal/

tslib-1.0/m4/internal/visibility.m4

tslib-1.0/plugins/

.

.

.

make[2]: Leaving directory `/home/steve/Desktop/AR1XXX-LINUX-I2C-

V102/tslib-1.0'

make[1]: Leaving directory `/home/steve/Desktop/AR1XXX-LINUX-I2C-

V102/tslib-1.0'

Installation complete.

Next environmental variables will need to be setup in order to

run 'ts_calibrate' and 'ts_test' tslib utilities.

For example if evdev path is at /dev/input/event5,the minimum

environmental variables will need to be set by using the following

commands.

export TSLIB_TSDEVICE=/dev/input/event5

export TSLIB_PLUGINDIR=/usr/local/lib/ts

If everything is setup correctly, the “ts_calibrate” application can be used to calibrate the display and the

“ts_test” application can be used to test the calibration. However, before we can use these utilities, we need

to setup a couple environmental variables. At a minimum, we need to set the environmental variables

“TSLIB_TSDEVICE” and “TSLIB_PLUGINDIR” for the utilities to work correctly with our Tslib

configuration. On system startup, these variables should always be set before running the Tslib-based

application that depends on these variables.

export TSLIB_TSDEVICE=/dev/input/event5

export TSLIB_PLUGINDIR=/usr/local/lib/ts

Other environmental values that can be set include the following:

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 25 of 26

export TSLIB_FBDEVICE=/dev/fb0

export TSLIB_CONSOLEDEVICE=none

export TSLIB_CALIBFILE=/etc/pointercal

export TSLIB_CONFFILE=/etc/ts.conf

After setting the environmental values, we now can run “ts_calibrate”. The images below shows what can

be expected to see after running this calibration.

To test the calibration, run the “ts_test” command. The image below demonstrates the test screen.

Microchip Technology, Inc.

AR1020-AR1021-LINUX-SPI-I2C-V102

Page 26 of 26

3.4 Calibration under the Qtopia OS

If the Qtopia operating system is used, all of the Tslib steps above still apply since Qtopia uses Tslib. The

only other step to do before running Qtopia is set the “QWS_MOUSE_PROTO” environmental value

“TPanel:REPLACE_THIS_TEXT_WITH_EVDEV_PATH”. The “QWS_MOUSE_PROTO” variable is

the one that Qtopia specifically uses. For example, if the AR1020/AR1021 device is located at

“/dev/input/event2”, the command to set this variable may be as follows using the bash shell:

export QWS_MOUSE_PROTO=”TPanel:/dev/input/event2”

