

Temperature Indicator Module on 8-Bit PIC® Microcontrollers

Author: June Anthony Asistio

Microchip Technology Inc.

Author: Mayank Prasad

Microchip Technology Inc.

INTRODUCTION

This technical brief discusses the operation of the internal temperature indicator module found on the newer 8-bit PIC[®] Microcontrollers. This document also covers how to set up the module and estimate the temperature based on single-point calibration technique.

There are some applications that require measuring the internal operating temperature of the microcontroller. It is useful to monitor the temperature of the silicon die of the microcontroller to ensure that it is operating within its limits of thermal rating. In enclosed products, the microcontroller's internal temperature can be monitored for protection of other components that are part of the system.

TEMPERATURE INDICATOR MODULE OVERVIEW

The temperature indicator module consists of a temperature-sensing circuit that provides a voltage output to the Analog-to-Digital Converter (ADC) on the device. The analog voltage output (VMEAS) varies inversely to the device temperature, which can be measured using the internal ADC.

The circuit's range of operating temperature falls between -40°C and +125°C. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately.

Figure 1 shows a simplified block diagram of the temperature indicator module. This temperature indicator module features a different internal voltage referencing, as compared to the legacy 8-bit PIC devices, thereby improving the overall accuracy and lowering the offset error between the measured and the actual temperature values. The operation of the module is controlled by the module enable and range selection bits (TSEN and TSRNG bits in the FVRCON register). Figure 2 shows an example of the voltage

variation across temperature for a PIC18FXXK42 device. Details and operation of the previous temperature indicator module are further explained in AN2092 "Using the Temperature Indicator Module" (DS00002092).

FIGURE 1: TEMPERATURE INDICATOR MODULE BLOCK DIAGRAM

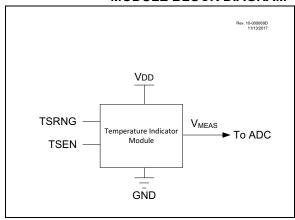
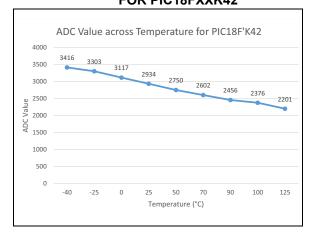



FIGURE 2: VOLTAGE VARIATION
ACROSS TEMPERATURE
FOR PIC18FXXK42

SINGLE-POINT CALIBRATION

This section describes the process of estimating the internal temperature using single-point calibration technique.

Note:

Single-point calibration is a quick method of calculating an estimate of the internal temperature within reasonable error limits. For applications requiring precise temperature measurement, a higher-order calibration is recommended, which is out of the scope of this document.

Module Configuration

To use the temperature indicator module with singlepoint calibration, the ADC and the Fixed Voltage Reference (FVR) modules need to be configured in addition to the temperature indicator module. The procedure for setting up the module is described in the following steps:

- Enable the FVR (EN bit) and set the FVR Buffer
 Gain (ADFVR bits) to 2x (2.048V) in the FVRCON register.
- Enable the temperature indicator (TSEN bit) in the FVRCON register. Select the appropriate range of operation (high range or low range) using the TSRNG bit.
- Set up the ADC module (or ADCC module, depending upon the device) as follows. Refer to the device data sheet for specific registers and instructions.
 - Set the appropriate ADC clock using ADCS bits.
 - b. Select FVR as the positive voltage reference using the ADPREF bits.
 - c. Select the analog channel reserved for the temperature indicator using the ADPCH bits (or CHS bits, depending upon the device).
 - d. The ADC must wait for a certain minimum acquisition time (parameter TS01 in device data sheet) for the analog channel to settle before the conversion can be performed. This can be done in the software or through ADACQ register (ADCC module only).
 - e. There may be significant noise in the channel, which could be captured by the ADC. To reduce the noise, it is recommended to take the average of a few ADC readings. If the device is equipped with the ADCC module, it can be set to operate in averaging or low-pass filter mode to reduce noise from the channel.
- Optionally, set up the UART to send the calculated temperature value to be displayed on the screen via a serial terminal window. Refer to the device data sheet for specific registers and instructions.

Temperature Calculation

The following steps are for calculating the die temperature (TMEAS):

- Obtain the ADC count value of the measured analog voltage. The analog output voltage from the temperature indicator module, VMEAS, is converted to a digital count value by the ADC and is referred to as ADCMEAS.
- 2. Obtain the ADC count value, ADCDIA at 90°C, from the DIA table. This parameter is stored as TSLR2 for the low-range setting or TSHR2 for the high-range setting of the temperature indicator module. This value is the digital count value of the voltage output from the temperature indicator module, as measured at 90°C at the FVR 2x voltage reference, populated in the DIA table beforehand to assist with single-point calibration. Refer to the device data sheet for more information.
- Obtain the output analog voltage (in mV) value of the Fixed Reference Voltage (FVR) for 2x setting from the DIA Table. This parameter is stored as FVRA2X in the DIA table. Refer to the device data sheet for more information.
- Obtain the value of the temperature indicator voltage sensitivity (in mV/°C), parameter Mv, for the corresponding range setting. Refer to the Electrical Specifications section in the corresponding device data sheet.
- 5. Calculate the estimated die temperature (TMEAS) using the following equation:

EQUATION 1: SENSOR TEMPERATURE

$$T_{MEAS} = 90 + \frac{(ADC_{MEAS} - ADC_{DIA}) \times FVRA2X}{(2^{N} - 1) \times MV}$$

Where:

ADCMEAS = ADC reading at temperature being estimated

ADCDIA = ADC reading stored in the DIA

FVRA2X = FVR value stored in the DIA for 2x setting N = Resolution of the ADC

Mv = Temperature Indicator voltage sensitivity (mV/°C)

Note:

It is recommended to take the average of ten measurements of ADCMEAS to reduce noise and improve accuracy. This can be done by writing a code in the software to perform averaging function. Alternatively, if the device is equipped with the ADCC module, this can be achieved by operating the ADCC in averaging or low-pass filter mode. Refer to the device data sheet for more information.

EXAMPLE 1: TEMPERATURE CALCULATION ON A PIC18FXXK42 DEVICE AT ROOM TEMPERATURE

At room temperature, the following values were observed on a PIC18FXXK42 device by the temperature indicator module operating in high-range mode with FVR 2X as the voltage reference:

 $ADC_{MEAS} = 2948$ (output from ADC)

 ADC_{DIA} = TSHR2 = 0x0998 = 2456 (from DIA table)

FVRA2X = 0x0801 = 2049 (from DIA table)

N = 12 (K42 has 12-bit ADC)

Mv = -3.684 (parameter TS02 from device data sheet)

Plugging these values in Equation 1, we get:

$$T_{MEAS} = 90 + \frac{(2948 - 2456) \times 2049}{4095 \times (-3.684)}$$

$$T_{MEAS} = 90 - 66.8 = 23.2^{\circ}C$$

A working demonstration of this module for a PIC18FXXK42 device is available in the Examples section of MPLAB $^{\circledR}$ Xpress Cloud IDE.

CONCLUSION

The temperature indicator module helps determine the internal operating temperature of the silicon die, which can be extremely useful in certain applications. The module outputs an analog voltage inversely proportional to the variation in temperature, which can be measured by the ADC through a dedicated channel. This ADC value can then be used to estimate the temperature based on single-point or multiple-point calibration techniques.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleertNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2942-5

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614

Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423

Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523

Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820