AVR32753: AVR32 UC3 How to connect to an

SSL-server

Features

e Basic HTTPS connection to a web server running on a PC
- POLARSSL Library with support of:

Block and stream ciphers: AES, ARC4 DES/3DES

Public-key cryptography: RSA, MPI, Diffie-Hellman

Cryptographic protocols: SSL/TLS client and server

Hash functions: MD2, MD4, MD5, SHA-1, SHA-256, SHA-512

Random Number Generators: HAVEGE

- lwlP TCP/IP Stack 1.3.0
- Free RTOS

1 Introduction

This application note demonstrates the ability of the UC3 device to exchange
messages with a server over TCP/IP connectivity through a secure socket layer

connection.

Figure 1-1. SSL application

Ethernet cable

RS232 Cable

Ethernet cab

AIMEL

I 5

32-bit AVR

Microcontrollers

EVK1100

HTTP

over SSL (https) Client

ssl_server.exe

HyperTerminal

SSL Client

SSL Server

AIMEL

®

Application Note

Rev. 32111C-AVR-11/09

2 Requirements

3 Acronyms

2 AVR32753

ATMEL

The software provided with this application note requires several components:

e A computer running Microsoft® Windows® 2000/XP/Vista.

e AVR32Studio and the GNU toolchain (GCC) or IAR Embedded Workbench® for
AVR32 compiler.

e A JTAGICE mkll or AVROne! Debugger.
e FLIP Version 3.2.1. (Available on www.atmel.com)
e An AVR UC3 evaluation kit: EVK1100.

AES: Advanced Encryption Standard, also known as Rijndael, is a block cipher
adopted as an encryption standard.

ARCA4: Alleged Rivest Cipher 4, a stream cipher developed by Ron Rivest.

DES: Data Encryption Standard, a deprecated cryptographic block cipher.

DHCP: Dynamic Host Configuration Protocol.

DNS: Domain Name System (DNS) associates various information with domain
names.

EBI: External Bus Interface.

GPIO: General Purpose Input Output.

HAVEGE: Hardware Volatile Entropy Gathering and Expansion, is a user-level
software unpredictable random number generator.

LwIP: Lightweight IP is a widely used open source TCP/IP stack designed for
embedded systems.

MACB: Media Access Control version B.

MD2: Message Digest Algorithm 2, is a cryptographic hash function developed by
Ronald Rivest in 1989. The algorithm is optimized for 8-bit computers.

MD4: Message Digest Algorithm 4, is a cryptographic hash function developed by
Ronald Rivest in 1990.

MD5: Message Digest Algorithm 5, is a cryptographic hash function developed by
Ronald Rivest in 1991.

RSA: Rivest, Shamir, & Adleman, public key encryption technology.

SDRAM: Synchronous Dynamic Random Access Memory.

SRAM: Static Random Access Memory.

SHA-1: Secure Hashing Algorithm 1.

SHA-256: one of the four Secure Hashing Algorithm 2.

SHA-512: one of the four Secure Hashing Algorithm 5.

SSL: Secure Sockets Layer, a communications protocol, predecessor to Transport
Layer Security.

TC: Timer Counter, 16-bit Timer Counter channels available on the UC3.

TLS: Transport Layer Security, successor to Secure Sockets Layer.

TCP/IP: Transmission Control Protocol/Internet Protocol.

URL: Uniform Resource Locator is a compact string of characters used to represent a
resource available on the Internet.

USART: Universal Synchronous & Asynchronous Receiver Transmitter.

POLARSSL: an open source embedded SSL/TLS library with standalone cipher and
cryptic algorithm.

32111C-AVR-11/09

http://www.atmel.com/�

4 SSL Operations

AVR32753

The aim of this application is to demonstrate how to secure a message exchange
between the client running on the EVK1100 board and a server. This is done by using
the SSL/TLS standard. To realize this objective several major software components
are needed.

4.1 Major software components

4.1.1 POLARSSL

4.1.2 FreeRtos

4.1.3 lwIP

32111C-AVR-11/09

This demo application is using the software components described below.
In the following figure you can see major software components in green color.

Figure 4-1. Tasks overview with their software components

Schedule tasks

| wTe [

TCPAP

This is a small footprint SSL library which contains all needed functions to implement
an SSL/TLS server or client.

Each cipher in POLARSSL (AES, MD5, SHA-1, etc.) is self-contained and can be
reused as a standalone module.

For example, the file “aes.c” contains all functions to operate an AES ciphering.
This demo uses a SSL/TLS client module which contains a set of functions that allow
to easily create a client without a strong knowledge in SSL/TLS technologies.

This is a portable, open source, mini Real Time Kernel.
Thanks to this OS, this demo will create different tasks such as network tasks and the
basic SLL task.

This is a Lightweight TCP/IP stack designed for embedded systems. This stack has
been ported on UC3 to use the MACB controller of the UC3A.

The IwlIP stack is executed as a FreeRtos task. This demo uses version 1.3.0, which
includes supports for DHCP.

ATMEL ;

4.2 Client Operation

ATMEL

The Client software runs on the EVK1100. When the board is switched on, the
necessary UC3 resources are initialized:

o CPU frequency

o USART

0 SDRAM

0 GPIO for LED blinking

At this point the program will tell the user through the USART that the initialization is
correctly done.
The software will then start FreeRtos tasks:

1. LED blinking tasks: this is a set of three tasks used to visually check if the
application is alive. During the demo, each task controls a LED (LED 1, 2 and 3).
These LEDs will continuously blink at a different frequency.

2. Ethernet tasks: These two tasks (IwIP and Ethernet) take care of handling the
TCP/IP stack, and also manage ping requests and DHCP functionality. The MACB
must be initialized before these two tasks are launched.

3. Basic web server: This optional task (see Make file) is a web server which can be
used for task monitoring.

4. Basic SSL client: This task handles the secure message exchange. It creates a
client task that uses SSL/TLS network layers and performs the following:

0 Initializes SSL/TLS required structure.
Connects to a server.
Prepares SSL/TLS structure for a secure transaction.

Secures the transaction using Simple SSL/TLS handshake. (See
next chapter)
Writes a message to the server through SSL/TLS layer.

Reads a message from the server through SSL/TLS layer.
Dumps this message through USART.

Closes the connection to the server.

Cleans all SSL/TLS requires the structures.

OO O O

O O O O O

4.3 Secure a transaction with SSL/TLS

4 AVR32753

Using the POLARSSL client functions, the Simple SSL/TLS handshake and write
message can be done in a single function ‘ssl_write’.

A simple SSL/TLS handshaking which establishes an encrypted communication is
described hereafter.

32111C-AVR-11/09

1

2)
3)
4)
5)
6)

7)

8)

9)

AVR32753

Client Network Sver

O ClientHello >
< ServerHello®
ServerKeyExchange ©

A A

ServerHelloDone ®

A\ J

O ClientKeyExchange
O ChangeCipherSpec
@ Finished

¥ v

ChangeCipherSpecé)
< Finished ©

Client sends a ClientHello message specifying the highest TLS protocol
version it supports, a random number, a list of suggested cipher suites and
compression methods.

Server responds with a ServerHello message, containing the chosen
protocol version, a random number, cipher suite, and compression method
from the choices offered by the client.

Server sends its public information in ServerKeyExchange message

Server sends a ServerHelloDone message, indicating it is done with
handshake negotiation.

Client responds with a ClientKeyExchange message, this is the session key
information encrypted with server’s public key.

Client now sends a ChangeCipherSpec record, essentially telling the Server,
"Everything | tell you from now on will be encrypted.”

Client sends an encrypted Finished message, containing a hash and
Message Authentication Code (MAC) over the previous handshake
messages. The Server will attempt to decrypt the Client's Finished message,
and verify the hash and Message Authentication Code (MAC). If the
decryption or verification fails, the handshake is considered to have failed and
the connection should be closed.

Server sends a ChangeCipherSpec message to activate the negotiated
option for all future messages it will send.

Server sends a Finished message to let the client check the newly activated
options.

Note: for more information about SSL transactions see [5].

32111C-AVR-11/09

AIMEL 5

I)

ATMEL

4 .4 Client Software Architecture
4.4.1 Source Code overview

4.4.1.1 Main()

The main() function of the program is located in the file:
src/SERVICES/POLARSSL/EXAMPLES/SSL_EXAMPLE/main.c
e [nitialize the clock, SDRAM and UART.
e Start LED blinking tasks.
e Start the Ethernet Task which includes LwIP and MACB setup, web server
task and Client SSL task.

4.4.1.2 SSL client task

This task uses the SSL client function given with POLARSSL; source code of the SSL

client task can be found in:
= sSrc/SERVICES/POLARSSL/EXAMPLES/SSL_EXAMPLE/network/basicssl/basics

sl.c
= src/SERVICES/POLARSSL/EXAMPLES/SSL_EXAMPLE/network/basicssl/basics

sl.h

src/NETWORK/BasicSSL/Basicssl.c
This file contains the task called: vBasicSSLClient, that does the following:

1. Creates and initializes structures required for SSL/TLS client application.
havege_state *hs; /* Store, random number table */
ssl_context *ssl; /* SSL sate machine used for handshaking */
ssl_session *ssn; /* State of the current session*/

/* allocate and init havege structure */
hs = malloc(sizeof(havege_state));
havege_init(hs);

/* allocate ssl contexte struture*/
ssl = malloc(sizeof(ssl_context));
memset(ssl, 0, sizeof(ssl_context));

/* allocate ssl session struture*/
ssn = malloc(sizeof(ssl_session));
memset(ssn, 0, sizeof(ssl_session));

2. Starts to connect to the SSL server using the network connection function. This
operation is done every second until the connection request is accepted by the
server.

3. Once connected to the server, created structures are initialized with the following
code; this operation is required before writing a message.
The ssl structure contains much information:
0 Supported cipher algorithm.
SSL/TLS version.

o State of the transaction.
0 Expiration time
o Random number table

6 AVR32753

32111C-AVR-11/09

AVR32753

/* set client mode in ssl structure */
ssl_set_endpoint(ssl, SSL_IS_CLIENT);

/* set autentification mode, certificate is not needed */
ssl_set_authmode(ssl, SSL_VERIFY_NONE);

/* add random number structure to ssl strucutre */
ssl_set_rng(ssl, havege_rand, hs);

/* set debug function */
ssl_set_dbg(ssl, my_debug, stdout);

/* set network function and give open socket to ssl structure*/
ssl_set_bio(ssl, net_recv, &server_fd, net_send, &server_fd);

/* set supported ciphering algorithm using ssl_default_ciphers */
ssl_set_ciphers(ssl, ssl_default_ciphers);

/* set session expiration time to 600 seconds */
ssl_set_session(ssl, 1, 600, ssn);

4. Now, the client is able to write a message to the server using the function
“write_ssl”. All SSL handshakes are done automatically in this function.

/* While there are data to be written over the security layer */
while((ret = ssl_write(ssl, buf, len)) <=0) {
/* if Error during written, this is dumped on the UIART */
iT(ret '= POLARSSL_ERR_NET_TRY_AGAIN){
PRINTF_DBG(" failed\n™);
PRINTF_DBG("SSL : ! ssl_write returned %x(%x)\n\n"",
ret,-ret);

}

goto exit;

}

5. If write is successfully done, the read operation is performed using “read_ssl”.
All read data are sent to the USART.
The “read_ss|1” function takes care of the transaction state.

do {
len = BUF_SIZE - 1;
/* Till read buffer with 0 */
memset(buf, 0, sizeof(unsigned char)*BUF_SIZE);
/* call read function to read data from server */
ret = ssl_read(ssl, buf, len);
/* try to read again if requested by the server */
iT(ret == POLARSSL_ERR_NET_TRY_AGAIN)
continue;
/* leave is server close the connection */
if(ret == POLARSSL_ERR_SSL_PEER_CLOSE_NOTIFY)
break;
/* leave is other Kkind of error and dump error to USART */
ifCret <=0) {
PRINTF_DBG("failed\n ! ssl_read returned %x,(%x)\n\n",
ret,-ret);
break;
3
len = ret;

PRINTF_DBG("™ %d bytes read\n\n%s\n*, len, (char *) buf);

i
while(0);

AIMEL 7

L Jo]
32111C-AVR-11/09

4.4.1.3 Drivers

4.4.1.4 Components

8 AVR32753

ATMEL

6. Once all data have been read, the connection is closed and the allocated data

structures are freed.
net_close(server_fd);

//This function Cleanup all Memory

ssl_free(ssl);
memset(ssl, 0, sizeof(ssl));

7. Ared LED starts blinking to let user know that the secure transaction is done.

for(G;) {
gpio_clr_gpio_pin(LED6_GP10);
vTaskDelay(200);

3

The AT32UC3A drivers’ sources are located in the src/DRIVERS directory.
This application requires:

e CPU/CYCLE_COUNTER: needed to compute time or delay
o EBI/SDRAMC: This driver is heeded to control the SDRAM.

e FLASHC: Flash controller driver needed during clock setting to sets internal flash

wait state.
e GPIO: controls the LEDs.
e [INTC: interrupt handling.
o MACB: Ethernet controller for network functions.
e PM: power management, sets clock cycle.
e TC: Timer Counter, needed by freeRTOS

o USART: needed to dump the secure message received from the server to UART1.

The hardware components sources are located in the src/COMPONENTS directory.
There is only one component needed for this application:
The SDRAM component used for dynamic memory allocation.

All dynamic memory allocated for this application will be done in the memory range
from:
0xD0000000 to 0xD2000000

A dedicated link file:
‘src/SERVICES/POLARSSL/EXAMPLE/SSL_EXAMPLE/AT32UC3A0512/GCCl/link_uc3a0512.1ds' (for

GCC and AVR32studio)
‘src/SERVICES/POLARSSL/EXAMPLE/SSL_EXAMPLE/AT32UC3A0512/IAR/Inkuc3a0512.xcl’

(for IAR™)
is used to enable such functionality. This will move the heap form internal SRAM to
SDRAM.

SDRAM is initialized before main in a function call _init_startup() whichis

located in the file :
‘src/SERVICES/FREERTOS/Source/portable/GCC/AVR32_UC3/port.c’

32111C-AVR-11/09

4.4.1.5 SERVICES

4.4.2 Board Definition Files

4.4.3 Project Configuration

AVR32753

Table 4-1. Major SSL structures and tasks stacks are stored in this SDRAM:

Structure ssl_conetxte 2168 Bytes

Structure ssl_session 96 Bytes for each session
Structure havege 36880 Bytes

SSL read buffer 16896 Bytes

SSL write buffer 16896 Bytes

Basic Web Server stack 256 Bytes

Basic SSL client stack 1500 Bytes

IwlP stack 512 Bytes

netif stack 256 Bytes

This application requires the following services:
POLARSSL 0.12.1: for documentation see [1].
Lwip 1.3.0: for documentation see [2].

FreeRTOS: for documentation see [3].

The application is designed to run on the EVK1100.
All projects are configured with the following definition: BOARD=EVK1100.
The EVK1100 definition can be found in the src/BOARDS/EVK1100 directory.

This application can be customized by changing a few definitions such as the IP
address, MAC address, use of DHCP, SSL/TLS server port...

Note: All definitions are not explained in this section, only those pertinent to this
application note.

4.4.3.1 src/SERVICES/POLARSSL/EXAMPLES/SSL_EXAMPLE/conf_eth.h

32111C-AVR-11/09

This header file sets all external configurations of the Ethernet module such as the
Mac address, server and client IP address.

Table 4-2. Mac address: this address must be unique, given values are in
hexadecimal.

#define ETHERNET_CONF_ETHADDRO 0x00
#define ETHERNET_CONF_ETHADDR1 0x14
#define ETHERNET_CONF_ETHADDR?2 0x25
#define ETHERNET_CONF_ETHADDRS3 0x40
#define ETHERNET_CONF_ETHADDR4 0x40
#define ETHERNET_CONF_ETHADDRS5 0x40

This configuration will set MAC address to: 00:14:25:40:40:40

AIMEL 0

L[]

ATMEL

Table 4-3. Board IP address, required if DHCP is not enabled (see Iwipopts.h).

#define ETHERNET_CONF_IPADDRO | 192
#define ETHERNET_CONF_IPADDR1 | 168
#define ETHERNET_CONF_IPADDR2 |0
#define ETHERNET_CONF_IPADDR4 | 2

This configuration will set client IP address to: 192.168.0.2

Table 4-4. SSL server address and port address.

#define SSL_SERVER_PORT

4433, this is the TPC port where the SSL
server will be waiting for the connection

#define SSL_SERVER_NAME

'"192.168.0.1", this is the address of the
machine that host the server application.
You cannot put the hosts name, because
IwlP DNS function is not activated in this
application

4.4.3.2 src/SERVICES/POLARSSL/EXAMPLES/SSL_EXAMPLE/conf_|wip_threads.h

Table 4-5. SSL task setting.

#define IwipBASIC_SSL_CLIENT STACK_SIZE

1500, define the stack size for
the SSL client task

#define IwipBASIC_SSL_CLIENT_PRIORITY

(tskIDLE_PRIORITY+6)
defining the task
priority

4.4.3.3 src/SERVICES/FREERTOS/Source/include/FreeRTOSConfig.h

This file contains configuration defines for FreeRtos. There are no SSL client related

4.4.3.4 src/SERVICES/POLARSSL/EXAMPLES/SSL_EXAMPLE/lwipopts.h

defines in this file.

Table 4-6. LwIP 1.3.0 configuration.

#define LWIP_DHCP

1 :(enable), this is used to enable or disable
DHCP;

0 :(disable, default value) the client file uses
the fixed IP address set in conf_eth.h

4.4.3.5 src/SERVICES/POLARSSL/include/polarssl/config.h

4.4.4 Preprocessor definition

10

AVR32753

Disable or enable some POLARSSL functionalities. Handle with care because the
SSL/TLS client functions need most of the modules.

Some preprocessor definitions are used to enable or disable main features of the

application.
Table 4-7. Enable or disable SSL task.

SSL_USED=1

(default) Build the application with the SSL client task

SSL_USED=0

Build the application without the SSL client task.
Network tasks will be available for ping, and LEDs will blink but
SSL/TLS transaction won't be possible.

32111C-AVR-11/09

AVR32753

Table 4-8. Enable or disable web server task.

(default) Build the application with the web server task.
Connecting to this web server, returns stacks memory status.
This is updated every second on a web browser.

Note: This task, is not using the SSL connection

HTTP_USED=1

HTTP_USED=0 Build the application without web server task

4.5 Server Software

This application note comes with a PC SSL server program ‘ssl_server.exe’ available
in “src/Server”.

This SSL server application is a very simple application based on POLARSSL.

It has been built with debug option on, so during transactions, all handshakes
information from a server point of view will be dumped on the console.

To run this server, execute ‘ssl_server.exe’ in a console and the server does the
following:

e |t waits for a connection requests on port 4433.

e When it accepts a connection from a client
0 Executes a full handshake with the client to secure the transaction.
o0 safely exchanges messages with the client

5 Running the application

5.1 Setting HyperTerminal:

Run HyperTerminal.
Table 5-1. Setup baud rate.

Baud rate 57600
Data bits 8
Parity None
Stop bits 1
Flow control None

Connect a RS232 cable to UART _1 of the EVK1100 board

5.2 Network configuration

The PC that runs the server application has to be setup with network parameters.
This depends whether the EVK1100 application has been built with or without the
DHCP feature.

5.2.1 DHCP disabled (default)

In this mode, it is recommended to directly connect the EVK1100 to the PC running
the SSL/TLS server.

Take the EVK1100 Ethernet cable, connect it to the EVK1100 connector named
“ETH” and the other connector directly to the PC that hosts the SSL/TLS server.
Open the Windows control panel, and select network setting.

Right click on “Local Area Connection” and select the properties menu.

AIMEL 1

L[]

32111C-AVR-11/09

12

ATMEL

The following menu will appear:

—& Local Area Connection Properties ? E
General | Authentication || Advanced
Connect using:

B8 Broadcom Met<treme 57w Gigabit C

Thiz connection uses the following items:

% Metwork Manitor Driver]
=il v2.3.1.9

5

Drescription

Tranzmizsion Control Protocol/Intemet Pratocol. The default
wide area network pratacal that pravides communication
across diverse interconnected networks

Shaw icon in natification area when connected
Matify me when this connection has limited ar no connectivity

Select “Internet Protocol (TCP/IP)” and press “Properties”.
There is a new dialog box, which must be filled as defined in the following screen
shot.

Internet Protocol ({TCPAP) Properties 7 E
General
“f'ou can get |P settings assigned automatically if pour network supports

this capability. Othenwise, pou need to ask your network. admiristratar for
the appropriate [P settings,

(0 Obtain an IP address autamatically
(®ilze the following IF address?
1P address: 192 168 . O 1

Subnet mask: 255 .286.286 . 0

Default gateway

(®) Use the following DNS server addiesses:
Preferred DNS server.

Alternate DMS server

Once this is configured, press OK. Now configuration is ready.
The default server IP address can be changed (see conf_eth.h)
Note: make sure the SSL_SERVER_NAME IP address (conf _eth.h) is the same IP

address as the one defined for the PC

AVR32753

32111C-AVR-11/09

5.2.2 DHCP enable

5.3 Compile Source Code

5.3.1GCC

5.3.21AR

32111C-AVR-11/09

AVR32753

If DHCP mode has been setup in the client application (#define LWIP_DHCP 1),
there is nothing to setup. DHCP will give an address to the client application.

Plug one side of the Ethernet cable to EVK1100 connector named “eth” and the other
side on an Ethernet switch, hub or router.

/N\The server address must be set in
sSrc/SERVICES/POLARSSL/EXAMPLES/SSL_EXAMPLE/conf_eth.h.

To get the server IP address, execute “ipconfig” in a console.

This will give you for example:
IP Address. :10.175.128.1

Now edit src/config/conf_eth.h and change the following define:
#define SSL_SERVER NAME "10.175.128.1"

Remove the line with the ‘#error’ message, save the file and recompile the project.

The GCC project is located here:

src/SERVICES/POLARSSL/ EXAMPLE/SSL_CLIENT/AT32UC3A0512/GCC/

To build the project under GCC, run the following command in a console:
‘make clean’ to clean up the project

‘make all’ to build up the full application

The IAR project is located in:
src/SERVICES/POLARSSL/ EXAMPLE/SSL_CLIENT/AT32UC3A0512/IAR/
To build the project under IAR :

Double click on ‘ssl_example.eww’ or menu ‘File=»open=>workspace...’

{u]s]:]
Press the make button. '+=

AIMEL 13

L[]

ATMEL

5.3.3 AVR32STUDIO
Run avr32studio.

Import Existing Project into Workspace (File->import...), press the “next” button.

% Import ‘Z‘@@

Select
Y
Create new projects fram an archive file or directary. ! - 5

Select an import source:

= (= General
B, Archive Fil
IBAEisting P
(], File Syster
L preferences
[ERES Rl
[] CjC++ Executable
@ CfC++ Project Settings
B Qs
<, Projects from Cvs
[Remate Systems
(= Run/Debug
(= Tasks
B (= Team
fﬂ, Team Project Set

:
@

Select the archive file with the browse button. Select the project AVR32753 and press
the “finish” button.

% Import \;\@@

Import Projects ~
Select a directory to search for existing Eclipse projects. f_f /
-

() Select root direckory:

(@ Select archive filer | CHIEWK1100-BASICSLL-1.0.4.ip|
Prajerts:
BVR32753 (AVRIZTSI)

Warking sets

[[]add praject to warking sets

@
The project is now available in AVR32753 project explorer folder.

Press the build button % -

Load the Code: Please refer to the application note AVR32015: AVR32 Studio getting
started (ref [6])

14 AVR32753

32111C-AVR-11/09

AVR32753

5.4 Start SSL Server

This application comes with a server application. To run this application, you can
simply open a DOS console and run “ssl_server.exe” available in src/Server
Once started, this application will wait for a client connection on port 4433.

Note: This is a server application, if you using a firewall, you must be sure that port
4433 accepts connection requests. Otherwise, client connection requests will be
refused by the firewall.

5.5 Running the Application

Power up the board.
The different part of the application should have the following behavior:
o EVK1100:
LED 1, 2 and 3 are blinking, the task vStartLEDFlashTasks is running.
e HyperTerminal:

HyperTerminal will display the status of the running application, the write
message and the read messages.

“& EVK1101 - HyperTenmninal

Fle Edt Wiew Cal Transfer Help

D= 3 @B &

SS5L: no DNS mode

SSL: net_connect Pass

SSL: Setting up the SSL/TLS structure... ok
SSL: Hrite ...

SSL GET /hello/ HTTP/1.1
Host: MyServerbame

SSL: Successfully write 44 bytes to server
S5L: Read from server:

HTTP/1.6 200 OK
Content-Type: text/html

<h2><p><center>Successful connection using: SSL_EDH_RSA_AES_256_SHA

S5L: Successfully read 113 bytes from server
SSL: END

<
Connected 00:29:06 AMSIW 57600 &-N-1 UM

AIMEL 15

L Ju
32111C-AVR-11/09

ATMEL

PC SSL/TLS Server:
Server will display status of connection request

AWIHDOWSisystem32!

INLibrarysxyss1-B.9-gplixyss1-B.9\visualedss1_server-exe

. Loading the server cert. and key
. Bind on https://lul:alhn..t 4433/
. Waiting For a remote connection
. Setting up the RHG and S8L data

5.6 Troubleshooting

Performing S8L/TLS handshak
£33 l\llhx-cu-y\xyss 1 8.9-—gplixyss 1
9 —gplixpss 1

- 9—gp1\xyss l—ﬂ -

\llhx-cu-y\s sl s
STibrary\

ake server
sepver state:
> flush output
flush output
server state: 1
> flush output
s flush output
INlibrary\xyss 1 Iﬂ.?
l\llhx-cu-y\xyssl a. > fetch input

. v .
JINlibrarysssl_ t 1., .
tls. in_left: B, nb_want:

.9\111;»“-,-\
-INlibrary\.:
-INlibrary\
LINlibrarysss 1s l‘U .
.9\111;»“-,-\
-I\library\:
-INlibrary\ -
JINlibrarysssl _spu.
.9\111;»“-,-\ t1.
-I\library\:
-INlibrary\
librarysss l,t 1., .

hrarys

hrary\:

hrary\: -

brarynssl_s l‘U

hrarys

hrary\:

hrary\: -

brarynssl_s l‘U

hrarys

hrary\:
.95\ library\.

fetch input
dumping *
aaAE: 16

fetch input
in_left:

Tibraryncyssl 8.9
brary\xyss1-8.9
hrary\xyss1-8. 9
brarysxyssl-8.

Tibraryncyssl 8.9
brary\xyss1-8.9
hrary\xyss1-8. 9
brarysxyssl-8.

Librarysxyss1-0. 2,

42 dc

83
client hello
client hello
client]\ellu

3
dumping -client
P0BB: OA B

The client is not able to connect to the server:
If the PC that hosts the server is protected by a firewall, disable it or open

port 4433.

> parse client helle
record header’
@3 68 88 39

- nh_want:
I->F _recu(d returned 57 <Bx39>

(57 hytes)

0o BO BB 81

fc b2 27 4d 8c

£0 B0 B0 Ge B0
a1 88

‘record contents’
1 @@ @@ 35 ai

9 A @1 c3 63
h2 27 4d 8c 38 ab 2e f4 41 ea

T->f _recu(> returned 5 (@x5>
<5 hytes>

8a B4

- version: 1
hello, random hytes’
2¢ 15 8c fe

client hello v3, message tuype: 22
client hello w3, message len.
client hello v3, protocol ver:

handshake

c3 63 2c 15 8¢
38 ab 2e f4 41
39 80 16 8@ 2f

(32 bytes>
42 dc 28 98 9c
5c a9 7d 24 82 hd

If using DHCP, check on HyperTerminal if the local interface gets an address

from the DHCP

Check if the server address is the same as the one set in conf_eth.h.
You can check if the client application is running using the ping command:

e.g.: ping 192.168.0.2

If this demo application has been built with HTTP_USED=1, you can run a web
browser and use the following URL: http://192.168.0.2

This will let you see the index.html page with some FreeRtos task information:

16

AVR32753

Windows Internet Explorer

(@] httpeji192,168.0.2findeshtml | v | F | A

(& http:}{192.166.0. 2findex. html "’I\ 2 | (N

Page Hits =

m
R

w

ottt

Dane

@ Inkernet

:_k Page -

¢ Taols -

*,100%

32111C-AVR-11/09

http://192.168.0.2/�

6 Reference

32111C-AVR-11/09

[1] POLARSSL
http://www.polarssl.org

[2] LWIP
http://savannah.nongnu.org/projects/lwip/

[3] FreeRTOS
http://www.freertos.org/

[4] Practical TCP/IP and Ethernet Networking for Industry.
By Deon Reynders, Edwin Wright.
ISBN-13: 978-0750658065

[5] SSL and TLS essentials: SSL & TLS Essentials: Securing the Web.
By Stephen A. Thomas
ISBN-13: 978-0471383543

[6] AVR32015: AVR32 Studio getting started
http://www.atmel.com/dyn/resources/prod documents/doc32086.pdf

AIMEL

L[]

AVR32753

17

http://www.polarssl.org/�
http://savannah.nongnu.org/projects/lwip/�
http://www.freertos.org/�
http://www.atmel.com/dyn/resources/prod_documents/doc32086.pdf�

ATMEL

7 Appnotes Revision History

Please note that the page numbers referred to in this section are referrring to this
document. The referring revision in this section is referring to the document revision.

7.1 Rev. 32111A - 11/09

1 Initial version

18 AVR32753

32111C-AVR-11/09

AIMEL

Y ()
Headquarters International
Atmel Corporation Atmel Asia Atmel Europe Atmel Japan
2325 Orchard Parkway Unit 1-5 & 16, 19/F Le Krebs 9F, Tonetsu Shinkawa Bldg.
San Jose, CA 95131 BEA Tower, Millennium City 5 8, Rue Jean-Pierre Timbaud 1-24-8 Shinkawa
USA 418 Kwun Tong Road BP 309 Chuo-ku, Tokyo 104-0033
Tel: 1(408) 441-0311 Kwun Tong, Kowloon 78054 Saint-Quentin-en- Japan
Fax: 1(408) 487-2600 Hong Kong Yvelines Cedex Tel: (81) 3-3523-3551
Tel: (852) 2245-6100 France Fax: (81) 3-3523-7581
Fax: (852) 2722-1369 Tel: (33) 1-30-60-70-00

Fax: (33) 1-30-60-71-11

Product Contact

Web Site Technical Support Sales Contact
www.atmel.com avr32 @atmel.com www.atmel.com/contacts

Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo and others, are the
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of
Microsoft Corporation in the US and/or other countries. Other terms and product names may be trademarks of others.

32111C-AVR-11/09

	Features
	1 Introduction
	2 Requirements
	3 Acronyms
	4 SSL Operations
	4.1 Major software components
	4.2 Client Operation
	4.3 Secure a transaction with SSL/TLS
	4.4 Client Software Architecture
	4.5 Server Software

	5 Running the application
	5.1 Setting HyperTerminal:
	5.2 Network configuration
	5.3 Compile Source Code
	5.4 Start SSL Server
	5.5 Running the Application
	5.6 Troubleshooting

	6 Reference
	7 Appnotes Revision History
	7.1 Rev. 32111A – 11/09

	Disclaimer

