
7817D–AVR32–05/11

32-bit Atmel
Microcontroller

Application Note
AVR32709: AVR32 UC3 Audio Decoder Over USB

Features
• Software MP3 Decoder
• FAT File System
• Music played over USB (USB Host mass storage class)
• Standalone - Low Memory Footprint (Code & RAM) and no Operating System

dependency
• Audio output over I2S using SSC controller or internal Audio Bitstream DAC
• Local Control with a keypad

1. Introduction
This application note will help the reader to use the Atmel® AVR® UC3 Audio Decoder
over USB software. This software includes a software MP3 decoder, a file system,
and a USB Host mass storage class support.

For more information about the AVR UC architecture, please refer to the appropriate
documents available from http://www.atmel.com/avr.

2. License
The MP3 decoder MAD is distributed under the terms of the GPL.

The source-code for the UC3-specific parts of the libmad decoder are available from
[1] and binaries can be built from [2]. For a complete audio application note, this is
available under NDA only.
The JPEG decoder (I JG) l i cense can be found in /SERVICES/P IC-
TURES/JPG/IJG/license.txt.
The memory manager (d lma l loc) l i cense can be found in
/SERVICES/MEMORY/MEMORY_MANAGER/DLMALLOC/license.txt

Notes: 1. http://git.buildroot.net/buildroot/tree/package/multimedia/libmad/libmad-0.15.1b-
optimization.patch.avr32

2. http://git.buildroot.net/buildroot/tree/package/multimedia/libmad

3. Requirements
The software provided with this application note requires several components:

• A computer running Microsoft® Windows® 2000/XP/Vista or Linux®

• AVR32Studio and the GNU toolchain (GCC) or IAR Embedded Workbench for
AVR32 compiler.

• A JTAGICE mkII or AVROne! debugger

http://www.arm.com

4. Theory of Operation

4.1 Overview
Today, embedded MP3 decoders are everywhere for consumers listening to audio content on
mobile devices.

4.1.1 MP3
MPEG-1 Audio Layer 3, more commonly referred to as MP3, is a digital audio encoding format
using a form of lossy data compression. Several bit rates are specified in the MPEG-1 Layer 3
standard: 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256 and 320Kbit/s, and the avail-
able sampling frequencies are 32, 44.1 and 48KHz. A sample rate of 44.1KHz is almost always
used. 128 Kbit/s bitrate files are slowly being replaced with higher bitrates like 192Kbit/s, with
some being encoded up to MP3's maximum of 320Kbit/s.

A tag in a compressed audio file is a section of the file that contains metadata such as the title,
artist, album, track number or other information about the file's contents.

The chosen MP3 decoder here is MAD (libmad), a high-quality MPEG audio decoder. It currently
supports MPEG-1 and the MPEG-2 extension to Lower Sampling Frequencies, as well as the
so-called MPEG 2.5 format. All three audio layers (Layer I, Layer II, and Layer III a.k.a. MP3) are
fully implemented. MAD does not yet support MPEG-2 multichannel audio (although it should be
backward compatible with such streams).

4.2 Block diagram
The following block diagram describes the UC3 interfacing the USB stick and output the audio
stream from the key to the external DAC. The user can control the player using a keypad, run-
ning a customisable Human-Machine Interface (HMI).

Figure 4-1. Block diagram

AT32UC3

GUI Controller

SPI

USB

Clocks

12 MHz
11.2896 MHz

O
S
C SDRAM

/ SRAM

EBI

Amplifier

DAC
Head
set

ABDAC

SSC/I2S
2
7817D–AVR32–05/11

AVR32709

AVR32709
4.3 Software architecture
The following figure shows the basic software architecture of the application:

Figure 4-2. Software architecture

The application does not require any operating system to run. The main() function is in charge of
calling the software «tasks» (using a scheduler) that make audio decoding, HMI, and USB man-
agement possible. There are 5 tasks:

• The communication task (shown in bold on the graph) contains the HMI of the application.
This task holds the real intelligence of the user application and interfaces directly with
the Audio Interface. This is the task that the user should modify for his own
application.

• Audio Interface task: This task handles dynamic support for any new plugged device types.
For example, if a new device using another class than the mass storage class is plugged, and
of course if this class is supported by the application, then, this task will tell the audio
interface to link the "Audio Interface" API to a low level API that supports this class. All the
mechanism in place to dynamically link an API to this abstract API is located in the file:
/SERVICES/AUDIO/AUDIO_PLAYER/audio_interface.[c|h]
In this application, only the USB mass storage class is implemented, therefore, this function
is not used.

• The last task is macro used for feature tasks. In the MP3 audio player over USB, the modules
involved will be the MP3 decoder, the USB stack and the host mass storage task:

– The MP3 codec task: This task is in charge of the Audio Decoding management.

– The USB task: This task handles the USB stack and events.

– The Host Mass Storage task: This task will check for new devices connection and
initialize them using the USB Mass Storage class.

The main loop of the application is a simple free-running task scheduler:

Mass Storage Audio
interface

ai_usb_ms.c

Audio Interface
audio_interface.c

USB Host
task

usb_host_task.c

Audio Player application
main.c

DRIVERS
usart.c spi.c twi.c ssc_i2s.c flashc.c pm.c gpio.c

Communication
task (HMI)

com_task.c

iPod Audio Interface
not delivered

FAT
/SERVICES/FAT/*.

Audio Decoding

WAV decoding
not delivered

MP3 decoding
/SERVICES/AUDIO/MP3/

GUI
USER_INTERFACE/GUI/

Controller
USER_INTERFACE/

CONTROLLER/

Task (specific)

AI Codec
Task

codec_xxx_task.c

Host Mass Storage
Task

host_mass_storage_task.c

USB Task
usb_task.c

WMA decoding
not delivered
3
7817D–AVR32–05/11

while (TRUE)
{
ai_task();
com_task();
task();

}

Note that the Audio Interface can also support iPod® audio decoding through the USB Audio
class. More information can be provided to MFi certified customers..
4
7817D–AVR32–05/11

AVR32709

AVR32709
5. Audio Interface API
Note that the audio player is a generic audio player interface and is designed to support multiple
audio formats besides MP3.

5.1 Overview
The Audio Interface (AI) manages disk navigation, audio navigation and audio control (see
below). Thus, the user does not have to directly interface with the File System and audio control
APIs. This greatly simplifies the software architecture.

The Audio Interface can be used in 2 different ways:

• Using “asynchronous” functions, which result/effect may not be produced in one single
iteration. Using these functions usually leads to the use of state-machines in the user
firmware (since one must wait for the completion of a command before launching a new one),
and has the advantage of reducing the risks of audio underrun. Asynchronous functions
always have the “ai_async” prefix. Note that only one asynchronous function can be used at
a time.

• Using “synchronous” functions, which are executed immediately. This drastically simplifies
the user firmware architecture (no use of state-machines since the synchronous AI functions
are immediately executed) but *may* produce audio underrun since the execution time of
these functions may be too long. Synchronous functions just have the “ai_” prefix.

All functions of the Audio Interface have a synchronous and asynchronous interface. For exam-
ple, the command which returns the number of drives is:

• ai_async_nav_drive_nb() in the asynchronous interface.

• ai_nav_drive_nb() in the synchronous interface.

Using asynchronous functions shall be the preferred solution in order to avoid audio
underruns.

5.2 Audio Interface Architecture
The AI commands to interface the audio player are divided into three categories:

• Disk navigation (Disk Nav) to browse into the tree architectures of the USB device.

• Audio navigation (Audio Nav) to manage a list of playable songs.

• Audio Control (Audio CTRL) to control the audio stream (play/pause/fast forward/...).
5
7817D–AVR32–05/11

Figure 5-1. Audio Player Navigators Overview

5.2.1 Disk Navigator: “browse into the tree architectures of the mass storage device”
The “Disk Navigator” is similar to a file explorer. It is used to navigate in the tree architectures of
the connected USB device. It will hide all files whose extension differs from *.mp3, *.pls, *.smp or
*.m3u. Note that the file extension filtering is automatically updated according to the modules
selected (MP3, playlists, ...).

The “Disk Navigator” is totally independent from the “Audio Navigator”.

The commands associated with this module are used to navigate into the disks/directories and
to synchronize the selected file/folder with the “Audio Nav” module. This synchronization is
made with these two commands ai_nav_getplayfile and ai_audio_nav_playfile. See “Disk
Navigation” on page 8. for a complete list of commands.

5.2.2 Audio Navigator: “manage a list of playable songs”
The “Audio Navigator” deals with a list of files. This list is defined once a ai_audio_nav_playfile
command is executed. This command sets the list of files to be played according to the current
selection in the “Disk Navigator“ and to the “Audio Navigator” ai_audio_nav_expmode_set
option.

When the ai_audio_nav_playfile command is executed:

• if the “Disk Navigator” is currently pointing on a playlist (*.m3u), then only the files of this
playlist will be included in the “Audio Navigator” file list.

• if the “Disk Navigator” is currently pointing on a disk or a file, then the file list will depend on
the audio explorator mode (set by the ai_audio_nav_expmode_set command):

GETPLAYFILE

PLAYFILE Audio
CTRL

Audio Nav Disk Nav

Navigators
6
7817D–AVR32–05/11

AVR32709

AVR32709
Table 5-1. ai_audio_nav_expmode_set command behavior

• if the “Disk Navigator” is currently pointing on a folder, the audio navigator will not enter into it.
It will look for the first file that is in the current directory and build its file list according to the
previous rules.

• if the “Disk Navigator” is not pointing on any files or folders (which is the case after a mount or
a goto), a directory or a playlist is selected, then it will select the first file of the file list.

Note that the playing order can be changed at compilation time by enabling a define. This is fully
explained in Section 5.8.3 “Example 3 - Change the playing order” on page 17.

Once the file list is set, two main commands are available to navigate into it:

• ai_audio_nav_next (select next file) and

• ai_audio_nav_previous (select previous file).

Options can also be defined to the “Audio Navigator” (to change the repeat mode, enable/dis-
able the shuffle mode).

To synchronize back the “Disk Navigator” with the “Audio Navigator”, i.e. make the “Disk Naviga-
tor” selecting the file played by the “Audio Navigator”, the command ai_nav_getplayfile can be
used. See “Audio Navigation” on page 10. for a complete list of commands.

5.2.3 Audio Control: “control the audio stream (play/pause/fast forward/...)”
This module controls the audio stream of the selected file (selected by the “Audio Navigator”).
Commands like play/pause/stop/fast forward/fast rewind… are available. See “Audio Control” on
page 13. for a complete list of commands.

5.3 Limitations

5.3.1 Speed
Speed navigation (such as file browsing) in directories may be affected if:

• A High-bitrate file is played at the same time.

• Directories have many files.

• The playlist includes many files.

Explorer mode Behavior

AUDIO_EXPLORER_MODE_DISKS
Builds a file list off all playable songs of all disks, and start playing
from the selected file.

AUDIO_EXPLORER_MODE_DISK
Builds a file list off all playable songs of the current disk only, and
start playing from the selected file.

AUDIO_EXPLORER_MODE_DIRONLY
Builds a file list off all playable songs that are contained in the
current directory, and start playing from the selected file. Sub
directories are ignored.

AUDIO_EXPLORER_MODE_DIRSUB
Builds a file list off all playable songs that are contained in the
current directory and its sub-directories, and start playing from the
selected file.
7
7817D–AVR32–05/11

5.4 Disk Navigation
The exploration is based on a selector displacement. The file list is the list of the files in the cur-
rent directory according to the extension filter (.mp3, .m3u, .pls, .smp, ...)

The “file list”:

• is updated when you exit or enter a directory or a disk.

• starts with the directories then the files.

• is sorted in the creation order.

Table 5-2. Disk Navigator Commands

Command Name Input
Output

Description
Return Extra result

ai_get_product_id Product ID
Returns the product identifier (USB PID) of the connected
device (if available).

ai_get_vendor_id Vendor ID
Returns the vendor identifier (USB VID) of the connected
device (if available).

ai_get_serial_number
Length of the
serial number in
bytes

Serial number
Returns the serial number of the connected device (if
available).

ai_nav_drive_nb Number of drive Returns the number of disks available.

ai_nav_drive_set
Drive
number

True or false
Selects the disk but does not mount it: (0 for drive 0, 1 for
drive 1...).
Returns false in case of error.

ai_nav_drive_get Drive number Returns the selected disk number.

ai_nav_drive_mount True or false
Mounts the selected disk.
Returns false in case of error.

ai_nav_drive_total_space
Capacity of the
drive

Returns the total space, in bytes, available on the device.

ai_nav_drive_free_space
Free space on
the drive

Returns the free space, in bytes, available on the device.

ai_nav_dir_root True or false
Initializes the file list on the root directory.
Return false in case of error.

ai_nav_dir_cd True or false
Enters in the current directory selected in file list.
Return false in case of error.

ai_nav_dir_gotoparent True or false

Exits current directory and goes to parent directory. Then
selects the folder from which it just exits, rather than
selecting the first file of the parent directory. This
simplifies navigation since the user firmware does not
have to memorize this information.
Returns false in case of error.

ai_nav_file_isdir True or false
Returns true if the selected file is a directory, otherwise
returns false.

ai_nav_file_goto
Position

in file list
True or false

Goes to a position in file list (0 for position 0, 1 for position
1...).
Returns false in case of error.

ai_nav_file_pos File position
Returns the file position of the selected file in the current
directory.
Returns FS_NO_SEL if no file is selected.
8
7817D–AVR32–05/11

AVR32709

AVR32709
ai_nav_file_nb
Number of audio
files

Returns the number of audio files in the file list. Audio
files are all the files which extensions matches *.mp3 or
*.wma (it depends on the file format supported). There is
a specific command for playlist files, see below.

ai_nav_dir_nb
Number of
directories

Returns the number of directories in the file list.

ai_nav_playlist_nb
Number of
playlists

Returns the number of playlists in the file list.
The playlists are all the files matching with the extension
*.m3u, *.pls and *.smp.

ai_nav_dir_name
Length of the
string in bytes

UNICODE name Returns the name of the current directory.

ai_nav_file_name
Length of the
string in bytes

UNICODE name Returns the name of the selected file.

ai_nav_file_info_type File type Returns the type of the audio file selected.

ai_nav_file_info_version Version number
Returns the version of the metadata storage method used
for the selected audio file if available, otherwise, returns
0.

ai_nav_file_info_title
Length of the
string in bytes

UNICODE title
Returns the title of the selected audio file if available,
otherwise, returns an empty string.

ai_nav_file_info_artist
Length of the
string in bytes

UNICODE artist
Returns the artist’s name of the selected audio file if
available, otherwise, returns an empty string.

ai_nav_file_info_album
Length of the
string in bytes

UNICODE album
Returns the album’s name of the selected audio file if
available, otherwise, returns an empty string.

ai_nav_file_info_year Year
Returns the year of the selected audio file if available,
otherwise, returns 0.

ai_nav_file_info_track
Length of the
string in bytes

UNICODE info
Returns the track information of the selected audio file if
available, otherwise, returns an empty string.

ai_nav_file_info_genre
Length of the
string in bytes

UNICODE genre
Returns the genre of the selected audio file if available,
otherwise, returns an empty string.

ai_nav_file_info_duration
Duration of the
track

Returns the total time of the selected audio file in
milliseconds if available, otherwise, returns 0.

ai_nav_file_info_image
Max image
size

Image size
-True of false
- A pointer on the
image data

Returns information and a pointer on a bitmap of the
embedded cover art of the selected audio file. Return
false in case of error.

ai_nav_getplayfile True or false

Selects the file selected by the audio navigator.
This command is the only link between these two
navigators.
Return false in case of error.

Table 5-2. Disk Navigator Commands

Command Name Input
Output

Description
Return Extra result
9
7817D–AVR32–05/11

5.5 Audio Navigation
This navigator sets the list of files to be played. It can be seen as a «playlist».
Before accessing this navigator, an ai_audio_nav_playfile command must be issued.

Table 5-3. Audio Navigator Commands

Command Name Input
Output

Description
Return Extra result

ai_audio_nav_playfile True or false

This command sets the audio file list according to the
current mode of the audio navigator and plays (or sets
to pause) the file selected in the disk navigator.
In other words, it synchronizes the audio navigator with
the disk navigator and plays (or sets to pause) the
selected file from the disk navigator.
Note that this command returns immediatly and does
not wait until the current track is completly played.
This commands does not change the current options
(repeat/random/expmode).
It is the opposite of the command ai_nav_getplayfile.
Return false in case of error.

ai_audio_context_save
Structure
Context

- True or false

- The length of
the structure
in bytes

Gives complete audio context (player state, play time,
repeat, random, file played, explorer mode).

ai_audio_context_restore
Structure
Context

True or false Restores an audio context (eventually restart playing).

ai_audio_nav_next True or false
Jump to next audio file available in the list.
The next song file is chosen according to the current
options (repeat/random/mode).

ai_audio_nav_previous True or false
Jumps to previous audio file available in the list.
The next song file is chosen according to the current
options (repeat/random/mode).

ai_audio_nav_eof_occur True or false
This routine must be called once a track ends.
It will choose, according to the options
(repeat/random/expmode), the next file to play.

ai_audio_nav_nb

Number of
audio files
present in the
list

Returns the number of audio files present in the list.

ai_audio_nav_getpos File position Returns the file position of the selected file in the list.

ai_audio_nav_setpos File position True or false Goes to a position in the list.

ai_audio_nav_repeat_get
Ai_repeat_mo
de

Returns the current repeat mode (no repeat, repeat
single, repeat folder, repeat all).

ai_audio_nav_repeat_set
Ai_repeat_m
ode

Sets the current repeat mode (no repeat, repeat single,
repeat folder, repeat all).

ai_audio_nav_shuffle_get
Ai_shuffle_mo
de

Returns the current shuffle mode (no shuffle, shuffle
folder, shuffle all).

ai_audio_nav_shuffle_set
Ai_shuffle_m
ode

Sets the current shuffle mode (no shuffle, shuffle folder,
shuffle all).

ai_audio_nav_expmode_get
Ai_explorer_
mode

Returns the current explorer mode (all disks, one disk,
directory only, directory + sub directories).
10
7817D–AVR32–05/11

AVR32709

AVR32709
5.5.1 Modes used by the interface

5.5.1.1 Ai_repeat_mode
Defines the repeat modes:

• AUDIO_REPEAT_OFF: no repeat.

• AUDIO_REPEAT_TRACK: repeat the current track.

• AUDIO_REPEAT_FOLDER: repeat the current folder.

• AUDIO_REPEAT_ALL: repeat the list of files.

5.5.1.2 Ai_shuffle_mode
Defines the shuffle/random mode:

• AUDIO_SHUFFLE_OFF: no shuffle.

• AUDIO_SHUFFLE_FOLDER: shuffle into the current folder.

• AUDIO_SHUFFLE_ALL: shuffle into the list of files.

ai_audio_nav_expmode_set
Ai_explorer_
mode

Sets the current explorer mode (all disks, one disk,
directory only, directory + sub directories).
This mode cannot be changed while an audio file is
being played.

ai_audio_nav_getname
Length of the
string in bytes

UNICODE
name

Returns the name of selected file.

ai_audio_nav_file_info_type File type Returns the type of the audio file selected.

ai_audio_nav_file_info_version
Version
number

Returns the version of the metadata storage method
used for the selected audio file if available, otherwise,
returns 0.

ai_audio_nav_file_info_title
Length of the
string in bytes

UNICODE
title

Returns the title of the selected audio file if available,
otherwise, returns an empty string.

ai_audio_nav_file_info_artist
Length of the
string in bytes

UNICODE
artist

Returns the artist’s name of the selected audio file if
available, otherwise, returns an empty string.

ai_audio_nav_file_info_album
Length of the
string in bytes

UNICODE
album

Returns the album’s name of the selected audio file if
available, otherwise, returns an empty string.

ai_audio_nav_file_info_year Year
Returns the year of the selected audio file if available,
otherwise, returns 0.

ai_audio_nav_file_info_track
Length of the
string in bytes

UNICODE
info

Returns the track information of the selected audio file if
available, otherwise, returns an empty string.

ai_audio_nav_file_info_genre
Length of the
string in bytes

UNICODE
genre

Returns the genre of the selected audio file if available,
otherwise, returns an empty string.

ai_audio_nav_file_info_duration
Duration of
the track

Returns the total time of the selected audio file in
milliseconds if available, otherwise, returns 0.

ai_audio_nav_file_info_image
Max image
size

Image size

-True of false
- A pointer on
the image
data

Returns information and a pointer on a bitmap of the
embedded cover art of the selected audio file. Returns
false in case of error.

Table 5-3. Audio Navigator Commands

Command Name Input
Output

Description
Return Extra result
11
7817D–AVR32–05/11

5.5.1.3 Ai_explorer_mode
Defines the explorer mode (see Section 5.8.3 “Example 3 - Change the playing order” on page
17 for more information.
12
7817D–AVR32–05/11

AVR32709

AVR32709
5.6 Audio Control
The audio controller is used to control the audio stream of the audio file selected by the audio
navigator.

5.7 Using Asynchronous or Synchronous API
Using synchronous function is straightforward. Once finished, synchronous functions returns,
with or without a result.

Using asynchronous function is more complicated: they may not produce the requested task in a
single shot. Thus these functions need some other functions to properly operate:

• void ai_async_cmd_task(void): This function is the entry point of all
asynchronous commands. It must be called to
execute the current state of the internal state
machine of the current asynchronous function.

• Bool is_ai_async_cmd_finished (void): This function returns TRUE if the last command
is finished.

• U8 ai_async_cmd_out_status(void): Returns the status of the last executed command
(CMD_DONE, CMD_EXECUTING or
CMD_ERROR).

Table 5-4. Audio Control Commands

Command Name Input
Output

Description
Return Extra result

ai_audio_ctrl_stop
True or
false

Stops the audio.

ai_audio_ctrl_resume
True or
false

Plays or resumes play after an ai_audio_ctrl_pause or an
ai_audio_ctrl_stop command.

ai_audio_ctrl_pause
True or
false

Pauses the audio.

ai_audio_ctrl_time
Elapsed
time

Returns the elapsed time of the audio track being played.

ai_audio_ctrl_status Status
Returns the status of the audio controller (stop, play, pause, a
new audio file is being played, the current folder has changed).

ai_audio_ctrl_ffw Skip time
True or
false

Fast forwards the audio until the skip time has been reached.
Then, it will continue to play the rest of the audio file.
The skip time passed in parameter is in second.

ai_audio_ctrl_frw Skip time
True or
false

Fast rewinds the audio until the skip time has been reached.

Then, it will set the audio player in play mode.
The skip time passed in parameter is in second.

ai_audio_ctrl_start_ffw
True or
false

Sets the audio player into fast forward mode.

Function not implemented yet.

ai_audio_ctrl_start_frw
True or
false

Sets the audio player into fast rewind mode.

Function not implemented yet.

ai_audio_ctrl_stop_ffw_frw
True or
false

Stops fast forwarding/rewinding and set the audio player into the
previous mode (play or pause).

Function not implemented yet.
13
7817D–AVR32–05/11

• U32 ai_async_cmd_out_u32(void): if the last executed command should return a 32-
bit result or less, this function will return this
value.

• U64 ai_async_cmd_out_u64(void): if the last executed command should return a 64-
bit result, this function will return this value.

• U16 ai_async_cmd_out_SizeArrayU8 (void): if the last executed command should return an
extra result (e.g. a song name), this function
returns the size in bytes of the extra result (no
size limit).

• U8* ai_async_cmd_out_PtrArrayU8 (void): Returns a pointer to the extra result (assuming
that the last executed command returns an extra
result). This pointer can be freed by the
application with the
ai_async_cmd_out_free_ArrayU8() function.

• void ai_async_cmd_out_free_ArrayU8 (void):This function may be called to free the
allocated buffer which holds the extra-result.
Note that the Audio Interface will automatically
do this before executing a new command that
need extra-results. This ensures that the
application will not have memory leakage.
Allowing the application calling this function will
free the extra-results sooner and improve
allocated memory usage.

The following picture shows the flow of the asynchronous function use.
14
7817D–AVR32–05/11

AVR32709

AVR32709
Figure 5-2. Asynchronous function flow

5.8 Examples
The following examples are using a disk with the following contents:

Let’s take this disk as disk number 0 for the system.

Launch an asynchronous
command (e.g.

ai_async_nav_drive_nb())

did the function
return TRUE?

Error: previous
command not

completed

No

Yes

ai_async_cmd_task()

is_ai_async_cmd_
finished ?

Yes

No

ai_async_cmd_out_u32()
or ai_async_cmd_out_u32()

or ai_async_cmd_out_PtrArrayU8()
& ai_async_cmd_out_SizeArrayU8()

ai_async_cmd_
out_status =TRUE

No An error occured
while processing

the command

Yes

did the function execute
correctly ?

Launch execution of the
command...

...until its full completion

Take function results
15
7817D–AVR32–05/11

5.8.1 Example 1 - Play “file1.mp3”
Table 5-5. Example: play “file1.mp3”

5.8.2 Example 2 - Play while browsing
Table 5-6. Example: play while browsing

Command
Order Command Name

0 ai_nav_drive_nb(): returns 1 disk.

1 ai_nav_drive_set(0): selects the disk 0.

2 ai_nav_drive_mount(): mounts the select disk 0.

3 ai_nav_file_goto(0): goes to file position 0

4 ai_nav_file_name(): returns the name dir1

5 ai_nav_file_isdir(): returns true, the current file is a directory.

6 ai_nav_file_goto(1): goes to file position 1

7 ai_nav_file_name(): returns the name dir2

8 ai_nav_file_goto(2): goes to file position 2

9 ai_nav_file_name(): returns the name file1.mp3

10 ai_audio_nav_playfile(): selects the file selected by the file navigator (file1.mp3)

11 ai_audio_ctrl_resume(): plays the selected file.

12 Wait for 10 seconds to listen to the begining of the playback.

13 ai_nav_file_goto(3): goes to file position 3

14 ai_nav_file_name(): returns the name file2.wma

Command
Order Command Name

0 ai_nav_drive_nb(): returns 1 disk.

1 ai_nav_drive_set(0): selects the disk 0.

2 ai_nav_drive_mount(): mounts the select disk 0.

3
ai_audio_nav_playfile(): selects a file in the audio navigator. By default it will seek inside the
directories to play the first file which is “file5.wma” in our case.

4 ai_audio_ctrl_resume(): plays the selected file.

5
ai_nav_getplayfile(): synchronizes the disk navigator with the audio navigator. Now the disk
navigator is pointing on the “file5.wma” file.

6
ai_nav_file_nb() + ai_nav_dir_nb() + ai_nav_playlist_nb(): gets the total number of entries
(files+folder+playlist) in the current directory (dir3).

7 ai_nav_file_goto(0): goes to file position 0

8
ai_nav_file_name(): returns the name “file5.wma“. (Notice the difference with Figure 5.8.1 -
step #4)

9 ai_nav_file_goto(1): goes to file position 1

10 ai_nav_file_name(): returns the name “file6.mp3“

11 ai_audio_ctrl_stop(): stops the audio
16
7817D–AVR32–05/11

AVR32709

AVR32709
5.8.3 Example 3 - Change the playing order
The p lay ing o rde r can be changed a t comp i la t ion t ime by enab l ing the
NAV_AUTO_FILE_IN_FIRST define (Section 6.5 “Project Configuration” on page 25).

Table 5-7. Playfile sequence

If the NAV_AUTO_FILE_IN_FIRST define is not set, the sequence will play audio files in the fol-
lowing order:

Table 5-8. Playfile sequence with NAV_AUTO_FILE_IN_FIRST undefined

Otherwise, if this define is set, the sequence will play audio files starting with files on the root:

Table 5-9. Playfile sequence with NAV_AUTO_FILE_IN_FIRST defined

Command
Order Command Name

0 ai_nav_drive_nb(): returns 1 disk.

1 ai_nav_drive_set(0): selects the disk 0.

2 ai_nav_drive_mount(): mounts the select disk 0.

3 ai_audio_nav_playfile(): selects a file in the audio player.

4 ai_audio_ctrl_resume(): plays the selected file.

Order File name Parent directory path

0 file5.wma /dir1/dir3/

1 file6.mp3 /dir1/dir3/

2 file4.mp3 /dir1/

3 file7.mp3 /dir2/

4 file1.mp3 /

5 file2.wma /

6 file3.wma /

Order File name Parent directory path

0 file1.mp3 /

1 file2.wma /

2 file3.wma /

3 file4.mp3 /dir1/

4 file5.wma /dir1/dir3/

5 file6.mp3 /dir1/dir3/

6 file7.mp3 /dir2/
17
7817D–AVR32–05/11

6. Source Code Architecture

6.1 Package
The AUDIO-PLAYER-<board(s)>-<feature(s)>-<version>.zip contains projects for GCC (or
AVR32Studio) and IAR.

Default hardware configuration of the project is to run on Atmel AVR32 UC3 Evaluation Kits,
although any board can be used (refer to section 6.4.7 “Board Definition Files” on page 21).

6.2 Documentation
For full source code documentation, please refer to the auto-generated Doxygen source code
documentation found in:

• /APPLICATIONS/AUDIO-PLAYER/readme.html

6.3 Projects / Compiler
The IAR™ project is located here:
- /APPLICATIONS/AUDIO-PLAYER/<part>-<board>-<feature(s)>/IAR/

The GCC makefile is located here:
- /APPLICATIONS/AUDIO-PLAYER/<part>-<board>-<feature(s)>/GCC/

An AVR32Studio project can be easily created by following the steps from the “AVR32769: How
to Compile the standalone AVR32 Software Framework in AVR32 Studio V2” application note.

6.4 Implementation Details
The following describes the code implementation of the MP3 audio player running on the
EVK1105. Other available packages are similar so you will find usefull information here that
applies to every project configurations.

6.4.1 Main()
The main() function of the program is located in the file:

• /APPLICATIONS/AUDIO-PLAYER/main.c

This function will:

• Initialize audio output - refer to section 6.4.8 “Audio Rendering Interface” on page 21

• Do the clock configuration

• Call the USB task -refer to section 6.4.5.1 “USB” on page 20

• Call the USB host Mass-Storage task. This task will check for new devices connection and
initialize them using the USB Mass Storage protocol.

• Call the communication task (HMI) - refer to 6.4.4 “HMI Communication Task Example” on
page 19.

• Call the decoder task to perform MP3 decoding - refer to sections 6.4.2 “MP3 Decoder” on
page 19
18
7817D–AVR32–05/11

AVR32709

AVR32709
The /APPLICATIONS/AUDIO-PLAYER/ contains the following files:

• ./main.c: contains the main() function.

• ./com_task.c,h: HMI core. See Section 6.4.4 “HMI Communication Task Example” on page
19 for more details.

– ./USER_INTERFACE/CONTROLLER/joystick_controller.c: HMI using a joystick
interface as a controller.

– ./USER_INTERFACE/GUI/et024006dhu_gui.c: HMI using a LCD screen as a
display.

• ./codec_mp3_task.c: handle the MP3 decoding task.

• ./CONF/*.h and ./<part>-<board>-<features>/conf_audio_player.h: configuration file for
audio, communication interface, memory and navigation explorer. Please refer to section 6.5
“Project Configuration” on page 25 for more information on the configuration files.

6.4.2 MP3 Decoder
The MP3 decoder source files are located in:

• /SERVICES/AUDIO/MP3/LIBMAD/: AVR32 port of LibMAD MP3 decoder

A library of the decoder is provided in /UTILS/LIBS/LIBMAD/AT32UC/.

ID3 is supported up to version 2.4. The ID3 reader source is located in:

• /SERVICES/AUDIO/MP3/ID3/reader_id3.c,h

6.4.3 Audio Player API
The Audio Interface API is located in:

• /SERVICES/AUDIO/AUDIO_PLAYER/audio_interface.h

The Mass Storage Audio Interface can be found in:

• /SERVICES/AUDIO/AUDIO_PLAYER/AI_USB_MS/

– ./ai_usb_ms.c,h: Mass Storage Audio interface.

– ./ai_usb_ms_mp3_support.c,h: add support to the MP3 file format in the audio
interface.

– ./host_mass_storage_task.c,h: USB host mass storage task.

Refer to Section 5. “Audio Interface API” on page 5 for more details.

6.4.4 HMI Communication Task Example
The included firmware implements an HMI example using a joystick and a SPI-driven LCD:
(source code i s loca ted under /APPLICATIONS/AUDIO-PLAYER-MASS-
STORAGE/USER_INTERFACE/).

All the HMI is based on a pair of files, com_task.[c|h], which implements all mechanisms used to
communicate between the internal APIs of the audio player and the user’s HMI. An abstraction
layer is used to attach easily all kinds of controller and graphical user interface to this communi-
cation task. It has been done to easily port the application to another board.
19
7817D–AVR32–05/11

6.4.4.1 Controller
The controller is the module that makes the link between the driver and the abstraction layer
used to ensure compatibility with the communication task. It is based on mainly two API groups:
‘setup’ and ‘events’. Al l the APIs are defined in the f i le /APPLICATIONS/AUDIO-
PLAYER/USER_INTERFACE/CONTROLLER/controller.h.

The function controller_init is used to initialize the controller. It may be used or not, depending on
the controller implementation.

All the other functions are boolean functions, returning true if an event has been raised or false
otherwise. Their name is explicit and follows the following naming convention:

Bool controller_<view>_<event>(void);

Where <view> corresponds to the current view when the event should be taken into account. If
no value is set to this field, the event is applied to all views.

The <event> is a short name describing the current event for which the function applies to.

This example uses a joystick controller. The source code relative to this module is available in
the f i l e /APPLICATIONS/AUDIO-
PLAYER/USER_INTERFACE/CONTROLLER/joystick_controller.c.

6.4.4.2 Graphical User Interface
This module is used to display to the user the high level audio player data. It acts as a display
and when combined with the controller it provides to the user a full control of the application.

This module is similar to the controller in terms of API groups.

The initialization function is called gui_init and takes into parameters all useful frequencies that
can be used to initialize the display.

The ‘event’ group (to keep the same architecture as the controller), is composed of only one
function: gui_update. This function is called at every occurrence of the main loop and takes into
parameters flags, describing which part of the view have to be updated. The resetting of these
flag is let to the GUI module so that is can achieve the update of the display asynchronously and
does not have to update every component at once.

The example provides a graphical LCD display module that implements both a navigation and a
p layback v iew . A l l t he code i s based on the f i l es /APPLICATIONS/AUDIO-
PLAYER/USER_INTERFACE/GUI/[et024006dhu_gui.c|sdram_loader.c].

6.4.5 AT32UC3A Drivers
The firmware uses the AVR32 UC3 driver library available in

• /UTILS/LIBS/DRIVERS/AT32UC3A/.

The source code can be found into /DRIVERS.

6.4.5.1 USB
The USB low level driver is located in:

• /DRIVERS/USB/

The USB mass storage service is located in:

• /SERVICES/USB/CLASS/MASS_STORAGE/
20
7817D–AVR32–05/11

AVR32709

AVR32709
6.4.6 FAT File System
The FAT12/16/32 files is located in the directory /SERVICES/FAT/.

6.4.7 Board Definition Files
The application is designed to run on Atmel Evaluation Kits. All projects are configured with the
fol lowing define: BOARD=EVKxxxx. The EVKxxxx def ini t ion can be found in the
/BOARDS/EVKxxxx directory.

6.4.7.1 Board customization

• For ‘IAR’ project, open the project options (Project -> Options), choose the «C/C++
Compiler», then «Preprocessor». Modify the ‘BOARD=EVKxxxx’ definition by
‘BOARD=USER_BOARD’.

• For ‘GCC’, just modify in the ‘config.mk’ file (/APPLICATIONS/AUDIO-PLAYER/<part>-
<board>-<feature(s)>/GCC/) the DEFS definition with ‘-D BOARD=USER_BOARD’.

• For ‘AVR32 Studio’, open the project properties (Project -> Properties), go in the «C/C++
build», then «Settings», «tool settings» and «Symbols». Modify the ‘BOARD=EVKxxxx’
definition by ‘BOARD=USER_BOARD’.

The HMI can be easily changed. See Section 6.4.4 “HMI Communication Task Example” on
page 19 for more details.

6.4.8 Audio Rendering Interface
The audio DAC mixer source code is lodated in
/SERVICES/AUDIO/AUDIO_MIXER/audio_mixer.c,h.

6.4.8.1 I2S using SSC module
The /COMPONENTS/AUDIO/CODEC/TLV320AIC23B/ directory contains the driver for the
external DAC TLV320AIC23B.

The UC3 communicates with the TLV320AIC23B with the Two Wire Interface (TWI). The UC3 is
the TWI master.

The AVR32 SSC module generates I2S frames using internal DMA (PDCA) to free CPU cycles
for audio decoding.

Each time a new song is played, the SSC module is configured corresponding to the sample rate
of the new song. The SSC clocks are composed of a bit clock and a frame sync:

• The bit clock is the clock used to transmit a bit from the audio stream. For a 44.1 KHz sample
rate, the bit clock will be 44100 x 2 (stereo) x 16 (bits per channel) i.e. 1.411 MHz.

• The Frame sync is equal to the sample rate frequency, i.e. 44.1 KHz taking the same
example.

To get accurate 44.1KHz audio frequency samples, an external 11.2896 MHz oscillator is used
as input to an internal PLL and source the CPU/HSB/PBA/PBB frequency with 62.0928 MHz.

The TLV320AIC23B uses a master clock (MCLK) of 11.2896 MHz, outputed by the UC3 through
a generic clock. Then, the generic clock output (PA07) is connected to the MCLK of the
TLV320AIC23B.

The SSC clock divider in CMR register is given by:

SSC.CMR.DIV = Round (FPBA / (2 x(FSampleRateSetPoint x NumberChannel x BitsPerSamples))
21
7817D–AVR32–05/11

The real frequency sample rate output by the SSC is given by:

FActualSampleRate= FPBA / (2 x SSC.CMR.DIV x NumberChannel x BitsPerSamples)

Note: Note: NumberChannel = 2, BitsPerSamples = 16, FPBA = 62.0928 MHz

The music interval in semitones is:

MusicInterval (semitones) = LOG((FActualSampleRate / FSampleRateSetPoint) / (2 1/12))

Table 6-1. Samples rate with SSC module

For further information, please refer to the “AVR32788: AVR®32 How to use the SSC in I2S
mode” application note.

6.4.8.2 ABDAC
The ABDAC driver is located in /DRIVERS/ABDAC.

The ex te rna l amp l i f i e r d r i ve r (TPA6130A) i s l oca ted in
/COMPONENTS/AUDIO/AMP/TPA6130A.

The AVR32 ABDAC module is using the internal DMA (PDCA) to free CPU cycles for audio
decoding.

To get accurate audio frequency samples, the two external oscillators 12 MHz (OSC1) and
11.2896 MHz (OSC0) are used to source (directly or through a PLL) the ABDAC generic clock.

The PLL0 output frequency is 62.0928 MHz. The PLL1 output frequency is 48 MHz (used for
USB).

When used, the ABDAC generic clock divider is given by:

ABDAC generic clock divider = Round (FGCLKInput / (2 x 256 x (FSampleRateSetPoint)) -1)

Refer to /DRIVERS/ABDAC/abdac.c for the configuration of the ABDAC generic clock.

Table 6-2. Samples rate with ABDAC module

Sample rate
set point (Hz) Actual Sample Rate (Hz) Relative Error (%)

Music Interval
(semitones)

8000 8018 0.23 0.04

11025 11025 0.00 0.00

16000 15095 -0.59 -0.10

22050 22050 0.00 0.00

32000 32340 1.06 0.18

44100 44100 0.00 0.00

48000 48510 1.06 0.18

Sample rate
set point (Hz)

ABDAC Generic
clock input
frequency

Actual Sample
Rate (Hz) Relative Error (%)

Music Interval
(semitones)

8000 PLL0 8085 1.06 0.18

11025 OSC1 11025 0.00 0.00

16000 PLL1 15625 -2.34 -0.41

22050 OSC1 22050 0.00 0.00
22
7817D–AVR32–05/11

AVR32709

AVR32709
6.4.9 SDRAM Loader
Graphical data like images consume a lot of space in RAM and flash which could be used by the
application instead. Because of that, the images that are used by the audio player application
GUI are stored in DataFlash and are loaded to SDRAM upon startup. The reason for having the
data in the SDRAM, rather than in flash, is the speed improvement that leads to faster updates
of the display with new content.

The SDRAM loader module uses a memory manager to manage the SDRAM memory space.
This memory manager can also be used in the application to allocate memory from SDRAM
instead of the internal SRAM.

The following sections give a short introduction to the parts involved in the SDRAM loader
module.

The SDRAM loader source code i s loca ted in /APPLICATIONS/AUDIO-
PLAYER/USER_INTERFACE_GUI/sdram_loader.c,h.

6.4.9.1 Dataflash
The DataFlash is formatted with a FAT16 file system and it currently contains graphical data that
is used by the audio player application in the GUI implementation. The graphical data is stored
as BMP files and the used format is RGB565 which can be used directly on the display when
swapped from little endian to big endian. Other BMP formats are currently not implemented but
this can be extended if needed.

The FAT file system makes it easy for developers to upgrade the content with new files or even
use it for other applications like a web-server. An upgrade of the content can be done by using a
mass storage example application.

The BMP picture used in the application are stored into the /PICTURES directory.

To customize the GUI, the bitmap files can be updated and must be saved to the ‘Windows bit-
map image’ format using a ‘16-bit R5 G6 B5’ encoding. This can be done using ‘GIMP’, the GNU
Image Manipulation Program (see http://www.gimp.org/).

6.4.9.2 Loading Process
The SDRAM loader consists of two files, sdram_loader.c and sdram_loader.h, in the directory
APPLICATIONS/AUDIO-PLAYER/USER_INTERFACE/GUI. In these files the images are speci-
fied that should be loaded to SDRAM and how they should be converted. A configuration that
loads three images to SDRAM could look like this:

typedef struct {

 const wchar_t *name;

 void *start_addr;

} ram_file_t;

…

32000 PLL1 31250 -2.34 -0.41

44100 OSC1 44100 0.00 0.00

48000 PLL1 46875 -2.34 -0.41

Sample rate
set point (Hz)

ABDAC Generic
clock input
frequency

Actual Sample
Rate (Hz) Relative Error (%)

Music Interval
(semitones)
23
7817D–AVR32–05/11

http://www.gimp.org/

#define STARTUP_IMAGE 0

#define DISK_NAV_IMAGE 1

#define AUDIO_PLAYER_IMAGE 2

#define NUMBER_OF_IMAGES 13

ram_file_t ram_files[NUMBER_OF_IMAGES] = {

 { .name = L"/AVR32_start_320x240_RGB565.bmp"},

 { .name = L"/disk_nav_320x240_RGB565.bmp"},

 { .name = L"/audio_player.bmp"}

};

The ram_files array is used throughout the GUI to get access to the image data. In order to load
other data than RGB565 BMP data to SDRAM the module needs to be modified.

The SDRAM loader module is called once during the initialization of the graphical user interface.
When called it initializes the SDRAM interface and reads the raw image data from specified BMP
files into SDRAM. To get the raw image data the BMP header must be read to get the image
size and the offset of the data in the file. The copy process does also a conversion from the little
endian to the big endian data ordering and because of that the final image data can be dumped
directly into the display buffer.

A single call to the SDRAM module is enough to do the initialization and load process:

void load_sdram_data(int hsb_hz);

The sole parameter is the HSB frequency in hertz which is needed to initialize the SDRAM tim-
ings. The above function is called starting from main in the following order:

main() -> com_task() -> gui_init() -> sdram_load_data()

6.4.9.3 SDRAM Memory Management
The images could be placed at specified locations in SDRAM and thus make a memory man-
agement unneeded, but on the other hand it is often better to do memory management to
remove the task of keeping track of the data in memory from the developer.

The audio player uses a separate memory manager to manage the SDRAM memory (this mem-
ory manager can also replace the default memory manager in the Newlib library if needed).

The source f i l es o f the memory manager a re loca ted in /SERVICES/MEM-
ORY/MEMORY_MANAGER/DLMALLOC/ and the addit ional conf igurat ion of i t is
/APPLICATIONS/AUDIO-PLAYER/CONF/conf_dlmalloc.h.

The memory manager is initialized in the SDRAM loader module and it is configured to use the
whole SDRAM memory. After the initialization memory can be allocated from the SDRAM with
the mspace_malloc call. Memory from the internal SRAM can be allocated with the default mal-
loc call.

6.4.10 JPEG Decoder
The JPEG decoder is used for the MP3 cover art file support.

The source code of the IJG JPEG decoder is located under /SERVICES/PICTURES/JPG/IJG/.
Documentation of the library can be found in
/SERVICES/PICTURES/JPG/IJG/libjpeg.doc and an overview in the README file.

The IJG license text can be found in /SERVICES/PICTURES/JPG/IJG/license.txt.
24
7817D–AVR32–05/11

AVR32709

AVR32709
The JPEG decoder application source are located under /APPLICATIONS/AUDIO-
PLAYER/JPG/. This is a layer that handles the data input and output of the JPEG library. It also
handles the error handling to jump out of the library in case of a critical error. Since the JPEG
decoding is done in the SDRAM, the memory management back-end of the library is located
here too, which normally would be included in the library itself. The memory management back-
end is modified to use the SDRAM with the DLMALLOC memory manager (in /SER-
VICES/MEMORY/MEMORY_MANAGER/DLMALLOC/) instead of the standard malloc
implementation.

6.5 Project Configuration
There are two different configuration files. The one related to the audio player itself, located
under /APPLICATIONS/AUDIO-PLAYER/<part>-<board>-<feature(s)>/conf_audio_player.h, is
mostly a high level configuration file and can be customized to support certain configurations or
enable/disable audio player features. The rest of the configuration files are located under the
/APPLICATIONS/AUDIO-PLAYER/CONF/ directory and should be modified to change, sepa-
ratly, audio player’s module configurations.

Configuration files are not linked to ‘IAR’, ‘GCC’ or ‘Avr32Studio’ projects. The user can alter any
of them, then rebuild the entire project in order to reflect the new configuration.

6.5.1 High level configuration file: /APPLICATIONS/AUDIO-PLAYER/<part>-<board>-
<feature(s)>/conf_audio_player.h.

• DEFAULT_DACS, specifies the default audio DAC used for the audio output. 3 values are
possible: AUDIO_MIXER_DAC_AIC23B for the I2S interface , AUDIO_MIXER_DAC_ABDAC
for the internal DAC (ABDAC module) , and AUDIO_MIXER_DAC_PWM_DAC to use PWM
channels (external low-pass filter is required).

• USE_AUDIO_PLAYER_BUFFERIZATION, set to ‘ENABLED’ to support navigation while
playing feature, it will use extra memory to buffer decoded samples in order to prevent audio
blips while the user navigates in the disk architecture for example. The memory address and
size can be configured in the file ‘conf_buff_player.h’ (see bellow). Note that using the audio
sample bufferization will not ensure that every audio blip will be covered. It will always
depends on the speed of the USB device connected, its file system, the operations
requested. The default buffer size is set to 128K.

• SUPPORT_MP3, SUPPORT_PLAYLISTS, SUPPORT_EMBEDDED_COVER_ARTS: a set
of defines that can be enabled or disabled to reduce audio player features. Note that the use
of the embedded cover arts requires RAM in order to decode embedded JPEG pictures.
Therefore it needs an external memory to handle this feature.

6.5.2 Low level configuration files: /APPLICATIONS/AUDIO-PLAYER/CONF/*.h.

6.5.2.1 conf_access.h
This file contains the possible external configuration of the memory access control. It configures
the abstract layer between the memory and the application and specifies the commands used in
order to access the memory. For example, this file will define the functions to be called for a
SD/MMC memory access.

6.5.2.2 conf_audio_interface.h
A set of configuration flags to enable/disable internal features of the audio player.
25
7817D–AVR32–05/11

6.5.2.3 conf_audio_mixer.h
Configures all parameters relative to the audio DACs. This file is made to support multiple con-
figurations and can be easily upgraded to handle new DACs.

6.5.2.4 conf_buff_player.h
Defines the starting address and the size of the memory used to bufferize audio samples (if the
feature is enabled).

6.5.2.5 conf_dmalloc.h
Configuration of malloc/free functions.

6.5.2.6 conf_explorer.h
It defines the configuration used by the FAT file system. The configuration is also applied to the
playlist handler and the file navigation. The main parameters are:

• NAV_AUTO_FILE_IN_FIRST, must be define in order to play first the files at the root of a
directory instead of the one inside the subdirectories.

• FS_NAV_AUTOMATIC_NBFILE, this flag can be set to DISABLE in order to speed up the
response of the ai_audio_nav_playfile command. On the other hand, the three commands
ai_audio_nav_getpos, ai_audio_nav_getpos and ai_audio_nav_nb will not be available
anymore. It will also affect the use of the explorer modes, if different from “all disks” and “one
disk”.

6.5.2.7 conf_jepg_decoder
Configuration of the JPEG decoder.

6.5.2.8 conf_pwm_dac.h
Configuration of the PWM DAC (which PWM channel is used, which pins are concerned).

6.5.2.9 conf_tlv320aic23b.h
Configuration of the external I2S DAC (which pins are used and which configuration interface).

6.5.2.10 conf_usb.h
Configuration file used for the USB.

6.5.2.11 conf_version.h
Internal version of the firmware.

6.6 Compiling the application
The following steps show you how to build the embedded firmware according to your
environment.

6.6.1 If you are using AVR32 Studio

• Please refer to the application note “AVR32769: How to Compile the standalone AVR32
Software Framework in AVR32 Studio V2”
26
7817D–AVR32–05/11

AVR32709

AVR32709
6.6.2 If you are using the standalone GCC with the AVR32 GNU Toolchain

• - Open a shell, go to the /APPLICATIONS/AUDIO-PLAYER/<part>-<board>-<feature(s)>/GCC/
directory and type:
make rebuild program run

6.6.3 If you are using IAR Embedded Workbench® for Atmel AVR32

• - Open IAR and load the associated IAR project of this application (located in the directory
/APPLICATIONS/AUDIO-PLAYER/<part>-<board>-<feature(s)>/IAR/).

• - Press the “Debug” button at the top right of the IAR interface.
The project should compile. Then the generated binary file is downloaded to the microcontroller to finally switch to

the debug mode.

• - Click on the “Go” button in the “Debug” menu or press F5.
27
7817D–AVR32–05/11

7. FAQ
Q: What is the maximum number of playlist links supported?

A: The file system supports up to 65535 links inside a playlist.

Q: What are the supported text formats?

A: The file system supports the ASCII, UTF8 and UNICODE (UTF16LE & UTF16BE) text
formats.

Q: How are the directories and files sorted inside the disk?

A: The logical structure is the same as an explorer view. Directory and files are sorted using their
creation order.

Q: Which file systems are supported?

A: FAT 12/16/32.

Q: What is the maximum of files supported in a directory?

A: There is no limitation in the firmware for the supported number of files and directories. The
only limitation is due to the FAT file system:

– for FAT12/16 root directory only: up to 256 files (short names),

– for FAT12/16/32 up to 65535 files (short names) per directory.

Q: What is the minimum RAM requirement to run this application?

A: The default application is using external SDRAM to support all features. This application can
run with 64K of RAM (internal size on AT32UC3A0512) by disabling the audio bufferization and
the cover art support. Audio blips will be present if the user try to navigate in the disk while a
track is played. The SDRAM loader also uses external SDRAM memory for graphical data.

Q: What kind of license apply to the software?

A: Atmel provides the audio decoder software library free of charge. But some digital audio for-
mats, including MP3 and WMA, contains technology that is patented, and a license for these
patents must be obtained before the library can be used.

Atmel provides application note ”AVR32722 How to license audio and video codecs” on the
www.atmel.com website. This serves as a guide to give Atmel® customers information about, as
well as an overview over, the licensing of patents that cover technologies such as MP3 and
WMA.
28
7817D–AVR32–05/11

AVR32709

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581

© 2011 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR® and others are registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-
tions intended to support or sustain life.
7817D–AVR32–05/11

	Features
	1. Introduction
	2. License
	3. Requirements
	4. Theory of Operation
	4.1 Overview
	4.1.1 MP3

	4.2 Block diagram
	4.3 Software architecture

	5. Audio Interface API
	5.1 Overview
	5.2 Audio Interface Architecture
	5.2.1 Disk Navigator: “browse into the tree architectures of the mass storage device”
	5.2.2 Audio Navigator: “manage a list of playable songs”
	5.2.3 Audio Control: “control the audio stream (play/pause/fast forward/...)”

	5.3 Limitations
	5.3.1 Speed

	5.4 Disk Navigation
	5.5 Audio Navigation
	5.5.1 Modes used by the interface
	5.5.1.1 Ai_repeat_mode
	5.5.1.2 Ai_shuffle_mode
	5.5.1.3 Ai_explorer_mode

	5.6 Audio Control
	5.7 Using Asynchronous or Synchronous API
	5.8 Examples
	5.8.1 Example 1 - Play “file1.mp3”
	5.8.2 Example 2 - Play while browsing
	5.8.3 Example 3 - Change the playing order

	6. Source Code Architecture
	6.1 Package
	6.2 Documentation
	6.3 Projects / Compiler
	6.4 Implementation Details
	6.4.1 Main()
	6.4.2 MP3 Decoder
	6.4.3 Audio Player API
	6.4.4 HMI Communication Task Example
	6.4.4.1 Controller
	6.4.4.2 Graphical User Interface

	6.4.5 AT32UC3A Drivers
	6.4.5.1 USB

	6.4.6 FAT File System
	6.4.7 Board Definition Files
	6.4.7.1 Board customization

	6.4.8 Audio Rendering Interface
	6.4.8.1 I2S using SSC module
	6.4.8.2 ABDAC

	6.4.9 SDRAM Loader
	6.4.9.1 Dataflash
	6.4.9.2 Loading Process
	6.4.9.3 SDRAM Memory Management

	6.4.10 JPEG Decoder

	6.5 Project Configuration
	6.5.1 High level configuration file: /APPLICATIONS/AUDIO-PLAYER/<part>-<board>- <feature(s)>/conf_audio_player.h.
	6.5.2 Low level configuration files: /APPLICATIONS/AUDIO-PLAYER/CONF/*.h.
	6.5.2.1 conf_access.h
	6.5.2.2 conf_audio_interface.h
	6.5.2.3 conf_audio_mixer.h
	6.5.2.4 conf_buff_player.h
	6.5.2.5 conf_dmalloc.h
	6.5.2.6 conf_explorer.h
	6.5.2.7 conf_jepg_decoder
	6.5.2.8 conf_pwm_dac.h
	6.5.2.9 conf_tlv320aic23b.h
	6.5.2.10 conf_usb.h
	6.5.2.11 conf_version.h

	6.6 Compiling the application
	6.6.1 If you are using AVR32 Studio
	6.6.2 If you are using the standalone GCC with the AVR32 GNU Toolchain
	6.6.3 If you are using IAR Embedded Workbench® for Atmel AVR32

	7. FAQ

