
AT89LP 
EEPROM 
Emulation

Application Note

 3707A–MICRO–10/09
Emulating EEPROM Using
AT89LP On-Chip Flash Data Memory

1. Introduction
Many embedded systems rely on nonvolatile parameters that are preserved across
reset or power-loss events. In some systems this static information is used to initialize
the system to a correct state at start-up. In other systems it is used to log system his-
tory or accumulated data. Traditionally these tasks have been implemented using
EEPROM; first with off-chip EEPROM and later in on-chip EEPROM as levels of sys-
tem integration have increased.

This application note describes how to emulate the behavior of an on-chip EEPROM
using the on-chip Flash data memory of Atmel’s AT89LP series of microcontrollers.
Flash data memory is an alternative to EEPROM that is well suited for large parame-
ter sets. Flash access routines are provided in both MCS®51 assembly and the C
programming language. These routines are meant to replace existing code; they do
not take full advantage of Flash memory performance and are not recommended for
new designs.

2. Theory of Operation
Microcontrollers with nonvolatile memories have traditionally used Flash memory for
program storage and EEPROM for data storage. Some members of the AT89LP fam-
ily of microcontrollers include an on-chip Flash memory for nonvolatile data storage.
Using this memory is not quite as simple as accessing standard internal RAM. This
section details basic information about Flash memory operation and constraints.

2.1 Flash Memory Basics
Flash memory consists of independent cells each representing a single data bit. The
flash cells are based on floating gate transistor technology: an electrical charge
“trapped” on the floating gate determines the logic value of the cell. “Erasing” a cell
charges the floating gate, allowing the cell to read as logic one. “Programming” a cell
discharges the floating gate, bringing the logic value to zero. Therefore it is only possi-
ble to program (discharge) a cell that was previously erased (charged).

Bit cells are grouped into data bytes, but bits within the byte can be programmed indi-
vidually. Since only the cells being programmed are discharged, the remaining
unprogrammed cells remain charged. Any unprogrammed cell can be programmed at
a later stage. Therefore programming a byte that is already programmed, without
erasing it in between, will result in a bit-wise AND between the old value and the new
value. If the byte is not erased in advance, it may not be possible to program it to the
intended value. For example, assuming that a byte was FEh and was then pro-
grammed to 01h; the result would be 00h since the LSB cannot be changed from zero
to one by a program operation.



Flash memory is arranged in pages of multiple bytes. An erase operation acts on an entire page;
that is, all the bits of all the bytes in the page are charged at one time. A program operation can
be performed on the entire page; that is, one or more bytes, up to the maximum page size, can
have some or all of their bits discharged at one time. If a single bit in the page must change from
zero to one, the entire page must be erased and all bytes reprogrammed.

Traditional EEPROM memory is similar to Flash memory except that the “Erase” and “Program”
operations are merged into a single atomic “Write” operation that acts on a single byte. The
“Write” operation first erases (charges) all bits in a byte and then programs (discharges) those
bits that must be zero. Therefore an EEPROM can update a single byte without regard to its pre-
vious value or the value of its neighbors. However, most EEPROMs cannot update multiple
bytes simultaneously.

A comparison of EEPROM and Flash memories is summarized in Table 2-1.

2.2 Data Constraints
The byte-wide Flash data memory easily supports 8-bit scalar values such as the “char” type.
Wider data types can also be supported with some considerations detailed below. Data arrays
are beyond the scope of this document. Please see the application note “AT89LP Flash Data
Memory” for more detailed information on generic data storage in Flash memory.

One advantage Flash data memory has over traditional EEPROM is the ability to program multi-
ple bytes at one time. This makes support for larger data types much more efficient than in
EEPROM. However, to achieve the highest efficiency some constraints on the data size and
location must be observed. Within the scope of this document we will assume that all data obeys
the following constraints:

1. All data types are scalar values or structures of scalars (no arrays).

2. The size of the largest data type is equal to or less than the page size (AT89LP828) or 
half page size (AT89LP6440).

3. Data is aligned in memory such that an entire data value resides within a single page 
(AT89LP828) or half page (AT89LP6440), i.e. multiple byte data types must not straddle 
page/half-page boundaries.

By following these constraints we ensure that each individual data unit can be written with a sin-
gle programming operation. Larger or unaligned data types are also supported by Flash data
memory but their implementation is left as an exercise for the reader.

Table 2-1. Comparison of EEPROM and Flash Memories

Feature EEPROM FLASH

Minimum Erase Size single byte one page (multiple bytes)

Minimum Write Size single byte single bit

Maximum Write Size single byte one page (multiple bytes)

Read Size byte byte

Read Speed fast fast

Write Speed very slow (milliseconds) slow (10s of microseconds)
2
3707A–MICRO–10/09

AT89LP EEPROM Emulation



AT89LP EEPROM Emulation
3. Architectural Overview
The following section provides a general overview of the architectural details of the Flash data
memory on AT89LP microcontrollers. For more information see a specific device’s datasheet.

3.1 Memory Organization
The on-chip Flash data memory is mapped into the 16-bit external memory address space
(XDATA) of an AT89LP microcontroller as shown in Figure 3-1. The Flash data memory is
referred to as the FDATA memory space and is accessed with the MOVX @DPTR instructions.
Note that MOVX @Ri instructions will not access FDATA. MOVX instructions to FDATA require
a minimum of 4 clock cycles.

By default FDATA is not mapped on to the XDATA space. The EXRAM bit in the AUXR SFR
forces all XDATA address to access external memory and must be cleared before accessing
FDATA. To enable FDATA, the Data Memory Enable bit (DMEN) in the MEMCON SFR must be
set to “1”. When DMEN = 0, FDATA is not accessible. When DMEN = 1, FDATA will be mapped
at the bottom of XDATA, above any internal Extra RAM (EDATA). The IAP bit in MEMCON
enables the self programming feature for the CODE memory and must also be cleared before
accessing FDATA.

Figure 3-1. External Data Memory Map

FDATA is organized by pages. For example, FDATA on AT89LP828 has 16 pages of 64 bytes
each, mapped from 0200h–03FFh, while AT89LP6440 has 64 pages of 128 bytes, mapped from
1000h–2FFFh. To facilitate page programming, AT89LP devices include a temporary page buf-
fer to store data to be written to a page. The size of the page buffer determines the maximum
number of bytes that may be programmed at one time. AT89LP828 has a full-page buffer of 64
bytes as shown in Figure 3-2. AT89LP6440, on the other hand, has only a half-page buffer of 64
bytes. Therefore, two write cycles are required to fill the entire 128-byte page, one for the low
half page (00H–3FH) and one for the high half page (40H–7FH) as shown in Figure 3-3.

Extra RAM
(EDATA)

Flash Data
(FDATA)

0000

FFFF

External Data
(XDATA)

External Data
(XDATA)

Extra RAM
(EDATA)

External Data
(XDATA)

FFFF FFFF

EXRAM = 1 EXRAM = 0
DMEN = 0

EXRAM = 0
DMEN = 1
3
3707A–MICRO–10/09



Figure 3-2. Page Programming Structure (EX: AT89LP828)

Figure 3-3. Half Page Programming Structure (EX: AT89LP6440)

The page buffer is reset to the all 0xFF state after any programming operation. Therefore any
unloaded locations will not be programmed. The buffer obeys the same rules as the memory
cells in that only zeros may be loaded. Loading the same location with different data will result in
a bitwise AND between the old and new values. Loading 0xFF to any buffer location leaves the
buffer unchanged. The provided routines make use of this behavior to optimize the buffer inser-
tion routines. Note that due to architectural differences, bitwise ANDing is not allowed on the
AT89LP6440; however, 0xFF can still be loaded to any location.

3.2 Access Protocol
The FDATA address space accesses an internal nonvolatile data memory. This address space
can be read just like XDATA by issuing a MOVX A,@DPTR; however, writes to FDATA require a
more complex protocol and take several milliseconds to complete. The AT89LP828 and
AT89LP6440 use an idle-while-write architecture where the CPU is placed in an idle state while
the write occurs. When the write completes, the CPU will continue executing with the instruction
after the MOVX @DPTR,A instruction that started the write. All peripherals will continue to func-
tion during the write cycle; however, interrupts will not be serviced until the write completes.

3.2.1 Read Operation
To enable read access to the Flash data memory, the DMEN bit (MEMCON.3) must be set to
one, IAP (MEMCON.7) must be cleared to zero, and EXRAM (AUXR.1) must be cleared to zero.
IAP and EXRAM are zero by default after reset. Then any MOVX A,@DPTR instruction targeting
the FDATA address range will return a byte from the data memory.

; Flash Data Read Example
MOV MEMCON, #08h ; DMEN=1, IAP=0
MOV DPTR, #SOME_ADDR ; load pointer to FDATA
MOVX A, @DPTR ; fetch byte

00 3F

Data Memory Page N

00 3F

Page Buffer

Low Half Page

00 3F

Data Memory High Half Page

40 7F

00 3F

Page Buffer
4
3707A–MICRO–10/09

AT89LP EEPROM Emulation



AT89LP EEPROM Emulation
3.2.2 Write Operation
To enable write access to the nonvolatile data memory, the MWEN bit (MEMCON.4) must also
be set to one. When MWEN = 1, DMEN = 1, IAP = 0 and EXRAM = 0, MOVX @DPTR,A may be
used to write to FDATA. The LDPG bit (MEMCON.5) allows multiple data bytes to be loaded to
the temporary page buffer. While LDPG = 1, MOVX @DPTR,A instructions will load data to the
page buffer, but will not start a write sequence. Note that a previously loaded byte must not be
reloaded prior to the write sequence as a bit-wise AND will occur between the data values. To
write the buffer into the memory, LDPG must first be cleared and then a MOVX @DPTR,A with
the final data byte is issued. The address of the final MOVX determines which page will be writ-
ten. If a MOVX @DPTR,A instruction is issued while LDPG = 0 without loading any previous
bytes, only a single byte will be written. The page buffer is reset after each write operation. Fig-
ures 3-4 and Figure 3-5 show the difference between byte writes and page writes (not to scale). 

Figure 3-4. FDATA Byte Write

; Flash Data Byte Write Example (Write two bytes)
MOV MEMCON, #18h ; DMEN=1,MWEN=1,IAP=0,LDPG=0
MOV DPTR, #SOME_ADDR ; load pointer to FDATA
MOV A, #SOME_DATA ; load data to be written
MOVX @DPTR, A ; write byte
MOV DPTR, #OTHER_ADDR ; load another pointer to FDATA
MOV A, #OTHER_DATA ; load data to be written
MOVX @DPTR, A ; write byte

Figure 3-5. FDATA Page Write

; Flash Data Page Write Example (Write five bytes)
MOV MEMCON, #38h ; DMEN=1,MWEN=1,IAP=0,LDPG=1
MOV DPTR, #SOME_ADDR ; load pointer to FDATA
MOV A, #DATA1 ; load data to be written
MOVX @DPTR, A ; load byte
MOV A, #DATA2 ; load data to be written
INC DPTR ; next location

MWEN

DMEN

tWC

LDPG

IDLE

MOVX

tWC

MWEN

DMEN

tWC

LDPG

IDLE

MOVX
5
3707A–MICRO–10/09



MOVX @DPTR, A ; load byte
MOV A, #DATA3 ; load data to be written
INC DPTR ; next location
MOVX @DPTR, A ; load byte
MOV A, #DATA4 ; load data to be written
INC DPTR ; next location
MOVX @DPTR, A ; load byte
ANL MEMCON, #0DFh ; LDPG=0
MOV A, #DATA5 ; load data to be written
INC DPTR ; next location
MOVX @DPTR, A ; load byte and write

3.2.3 Erase Operation
The auto-erase bit AERS (MEMCON.6) can be set to one to perform a page erase automatically
at the beginning of any write sequence. The page erase will erase the entire page. On
AT89LP6440 this means both the low and high half pages are erased. Since the write operation
paired with the auto-erase can only program one of the half pages, a second write cycle without
auto-erase is required to update the other half page.

A page erase operation, without writing any data, can be performed by setting AERS and writing
a dummy byte of FFh to any byte in the page of interest. Remember than write operations only
program zeroes, ones leave the data untouched.

; Flash Page Erase Example
MOV MEMCON, #58h ; DMEN=1,MWEN=1,IAP=0,LDPG=0,AERS=1
MOV DPTR, #SOME_ADDR ; load pointer to FDATA
MOV A, #0FFh ; load dummy data to be written
MOVX @DPTR, A ; start erase

Table 3-1. MEMCON – Memory Control Register

MEMCON = 96H Reset Value = 0000 00XXB

Not Bit Addressable

IAP AERS LDPG MWEN DMEN ERR – WRTINH

Bit 7 6 5 4 3 2 1 0

Symbol Function

IAP In-Application Programming Enable. When IAP = 1 and the IAP Fuse is enabled, programming of the CODE/SIG space 
is enabled and MOVX @DPTR instructions will access CODE/SIG instead of EDATA or FDATA. Clear IAP to disable 
programming of CODE/SIG and allow access to EDATA and FDATA.

AERS Auto-Erase Enable. Set to perform an auto-erase of a Flash memory page (CODE, SIG or FDATA) during the next write 
sequence. Clear to perform write without erase.

LDPG Load Page Enable. Set to this bit to load multiple bytes to the temporary page buffer. Byte locations may not be loaded 
more than once before a write. LDPG must be cleared before writing.

MWEN Memory Write Enable. Set to enable programming of a nonvolatile memory location (CODE, SIG or FDATA). Clear to 
disable programming of all nonvolatile memories.

DMEN Data Memory Enable. Set to enable nonvolatile data memory and map it into the FDATA space. Clear to disable 
nonvolatile data memory.

ERR Error Flag. Set by hardware if an error occurred during the last programming sequence due to a brownout condition (low 
voltage on VCC). Must be cleared by software.

WRTINH Write Inhibit Flag. Cleared by hardware when the voltage on VCC has fallen below the minimum programming voltage. 
Set by hardware when the voltage on VCC is above the minimum programming voltage. 
6
3707A–MICRO–10/09

AT89LP EEPROM Emulation



AT89LP EEPROM Emulation
4. Implementation
This application note provides four routines in both assembly and C:

• write_eeprom_byte – Update one data byte on a full-page device (AT89LP828).

• write_eeprom_byte2 – Update one data byte on a half-page device (AT89LP6440).

• write_eeprom_word – Update one data word (2 bytes) on a full-page device 

• write_eeprom_word2 – Update one data word (2 bytes) on a half-page device .

4.1 Firmware Description
The provided routines emulate the behavior of a traditional EEPROM, that is they modify a mem-
ory location without affecting the other values in the memory. To create this behavior in a Flash
memory, the entire page containing the location of interest must be saved to a buffer, the page is
erased, and then the saved values with the new value inserted are written back to the page. To
increase the Flash endurance and save execution time, data checks are performed so that
unnecessary write or erase operations are skipped.

Each routine follows the same basic flow (See Figure 4-1). First the old and new value are com-
pared. If they are equal then no update is required. If they are not equal then a bit-wise AND is
performed to determine if an erase is required. If an erase is not required (ANDing old and new
is equal to new) the new value is programmed (this optimization does not apply to
AT89LP6440). Otherwise the temporary page buffer is loaded with the old contents of the page,
inserting the new value at its proper location. An autoerase-and-program sequence is initiated
on the correct page by writing a dummy 0xFF byte to the correct address. Afterwards the new
value is verified and the status is returned. The saving and restoring of registers/SFRs at the
start/end of the routines are left as exercises for the reader.

The main difference between the full-page and half-page versions (See Figure 4-2) is the han-
dling of the page reload for the autoerase sequence. While the full-page version requires only
the temporary buffer and a single write for this purpose, the half-page version must complete
two write sequences (one for each half page) and requires a buffer allocated in one of the vola-
tile memories to store one half-page while programming the other. This buffer can be located in
the IDATA, EDATA or XDATA spaces.

Routines for 16-bit word values are provided as examples of larger data types. These routines
are easily extensible to other data types. As the data type of every location in a page may be
unknown, the page is cast to an 8-bit data type for the reload process.

4.2 Requirements
The following requirements must be considered for this application:

• The memory page size is limited to 256 bytes or less (Assembly routines only).

• If an interrupt service routine that also writes to FDATA can interrupt the provided routines, 
then that interrupt, or global interrupts, must be disabled prior to executing the update to 
prevent collisions in the temporary page buffer.

• If an interrupt service routine that uses MOVX @DPTR,A to access other memories can 
interrupt the provided routine it must save and restore the MEMCON and AUXR registers to 
preserve the state of EXRAM, DMEN, MWEN, LDPG, AERS and IAP.

• The erase-write endurance of an entire memory page is limited by the total number of 
updates occurring per page, not necessarily its most frequently changing member. If 
7
3707A–MICRO–10/09



endurance is a concern, see the application note “AT89LP Flash Data Memory” for methods 
of managing endurance.

Figure 4-1. Write EEPROM Byte Flowchart (AT89LP828)
Write EEPROM Byte

Enable FDATA access 
in MEMCON

new data == 
old data?

NOYES

Get difference mask
(AND old and new data)

Any bits 
need 

erasing?
NOYES

Perform FDATA Write 
Operation

Set LDPG in MEMCON

Zero Page Address

Address == 
target?

NOYES

Load new data Reload old data

Next Address

End of Page? YESNO

Perform FDATA Erase 
& Write Operation

Clear LDPG in 
MEMCON

Return zero

Verify Data

Data Written 
Correctly?

YESNO

Return non-zero Return zero
8
3707A–MICRO–10/09

AT89LP EEPROM Emulation



AT89LP EEPROM Emulation
Figure 4-2. Write EEPROM Byte 2 Flowchart (AT89LP6440)

Write EEPROM Byte

Enable FDATA access 
in MEMCON

new data == 
old data?

NO YES

Perform FDATA Write 
Operation

Set LDPG in MEMCON

Zero Page Address

Address == 
target?

NOYES

Store new data to RAM Store old data to RAM

Next Address

End of 
Half-Page?

YES

NO

Perform FDATA Erase 
& Write Operation

Clear LDPG in 
MEMCON

Return zero

Verify Data

Data Written 
Correctly?

YES

NO

Return non-zero

Return zero

Set LDPG in MEMCON

Address == 
target?

NOYES

Load new data
to temp buffer

Reload old data
to temp buffer

Next Address

End of 
Half-Page?

YES

NO

Zero Page Address

Next Address

End of 
Half-Page?

YES

Clear LDPG in 
MEMCON

Load RAM data
to temp buffer

NO
9
3707A–MICRO–10/09



5. Appendix A – Assembly Routines
Note that most third party assemblers currently do not support the special MOVX A, @/DPTR and MOVX @/DPTR, A
instructions. These instructions may be emulated with the following substitutions:

;; for MOVX A, @/DPTR use:

DB 0A5h

MOVX A, DPTR

;; for MOVX @/DPTR, A use:

DB 0A5h

MOVX @DPTR, A

5.1 write_eeprom_byte()
;-------------------------------------------------------------------------
;- EEPROM Byte Write Emulation (Full Page Version)
;-
;- Arguments:
;-  ACC - data to be written (modified)
;- DPTR0 - address to write in FDATA (not modified)
;- Return value:
;-  ACC - 0=success, !0=failure
;- Register usage:
;-  B - temp variable
;- R7 - loop counter
;- R6 - save DPL0
;- R5 - save DPH0
;- Modifies: PSW, MEMCON
;-------------------------------------------------------------------------

write_eeprom_byte:

MOV MEMCON, #18h ; set DMEN, MWEN ; clear IAP, LDPG
MOVB, A
MOVX A, @DPTR ; fetch old value
CJNE A, B, bitwise   ; if (old != new) bitwise
CLR A ; else return(SUCCESS)
RET

bitwise:

ANL A, B ; try AND function between old and new
CJNE A, B, erase_byte ; 0->1 needs erase
SJMP write_byte ; else just write

erase_byte:

ORL MEMCON, #60h ; set LDPG, AERS
MOV R5, DPH0 ; save high address
MOV R6, DPL0 ; save low address
ANL DPL0, #(0FFh-(PAGESIZE-1)); zero back page address
MOV R7, #PAGESIZE

load_byte:

MOV A, R6
CJNE A, DPL0, reload_byte  ; is this the byte of interest?
MOV A, B
SJMP next_byte

reload_byte:

MOVX A, @DPTR
10
3707A–MICRO–10/09

AT89LP EEPROM Emulation



AT89LP EEPROM Emulation
next_byte:

MOVX @DPTR, A
INC DPTR
DJNZ R7, load_byte

ANL MEMCON, #0DFh ; clear LDPG
MOV DPH0, R5
MOV DPL0, R6
MOV A, #0FFh

write_byte:

MOVX @DPTR, A

verify_byte:

MOVX A, @DPTR
CLR C
SUBB A, B
RET

5.2 write_eeprom_word()
;-------------------------------------------------------------------------
;- EEPROM Word Write Emulation (Full Page Version)
;- 
;- Arguments:
;- R2,R3 - data to be written (not modified)
;- DPTR0 - address to write in FDATA (not modified)
;- Return value:
;-  ACC - 0=success, !0=failure
;- Register usage:
;-  B - temp variable
;- R7 - loop counter
;- R6 - save DPL0
;- R5 - save DPH0
;- R4 - temp variable
;- Modifies: PSW, MEMCON
;---------------------------------------------------------------------------

write_eeprom_word:

MOV MEMCON, #38h ; set DMEN, MWEN, LDPG ; clear IAP
MOV R5, DPH0 ; save high address
MOV R6, DPL0 ; save low address
MOVX A, @DPTR ; fetch old low value
MOV R4, A
MOV B, R2
CJNE A, B, bitwise1  ; if (old != new) bitwise
INC DPTR
MOVX A, @DPTR ; fetch old high value
MOV B, R3
CJNE A, B, bitwise2  ; if (old != new) bitwise
CLR A ; else return(SUCCESS)
RET

bitwise1:

ANL A, R2 ; try AND function between old and new high
CJNE A, B, erase_word ; 0->1 needs erase
INC DPTR
MOVX A, @DPTR ; fetch old high value
MOV B, R3

bitwise2:
11
3707A–MICRO–10/09



ANL A, R3
CJNE A, B, erase_word
MOV DPL0, R6
MOV A, R2
MOVX @DPTR, A
INC DPTR
MOV A, R3
MOVX @DPTR, A
SJMP write_word ; else just write

erase_word:

ORL MEMCON, #60h ; set LDPG, AERS
ANL DPL0, #(0FFh-(PAGESIZE-1)); zero back page address
MOV R7, #PAGESIZE

load_word:

MOV A, R6
CJNE A, DPL0, reload_word  ; is this the byte of interest?
MOV A, R2
MOVX @DPTR, A
INC DPTR
DEC R7
MOV A, R3
SJMP next_word

reload_word:

MOVX A, @DPTR

next_word:

MOVX @DPTR, A
INC DPTR
DJNZ R7, load_word

write_word:

ANL MEMCON, #0DFh ;  clear LDPG
MOV DPH0, R5
MOV DPL0, R6
MOV A, #0FFh
MOVX @DPTR, A

verify_lo:

MOVX A, @DPTR
CLR C
SUBB A, R2
JZ verify_hi
RET

verify_hi:

INC DPTR
MOVX A, @DPTR
CLR C
SUBB A, R3
MOV DPL0, R6
RET
12
3707A–MICRO–10/09

AT89LP EEPROM Emulation



AT89LP EEPROM Emulation
5.3 write_eeprom_byte2()
;-------------------------------------------------------------------------
;- EEPROM Byte Write Emulation Routine (Half Page Version)
;-
;- Arguments:
;-  ACC - Data to write (modified)
;- DPTR0 - Address to write (pointer not modified)
;- DPTR1 - Address of temp buffer (pointer not modified)
;- Return value:
;-  ACC - 0=success, !0=failure
;- Register usage:
;-  B - temp variable
;- R7 - loop counter
;- R6 - save DPL0
;- R5 - save DPH0
;- R4 - save DPL1
;- R3 - save DPH1
;- R2 - DPL0 for high half page
;- Modifies: PSW, DPCF, MEMCON
;-------------------------------------------------------------------------

write_eeprom_byte2:

MOV MEMCON, #18h ; set DMEN, MWEN ; clear IAP,LDPG
MOV B, A ; save new value
MOVX A, @DPTR ; fetch old value
CJNE A, B, erased_byte ; if (old != new) then erase
CLR A ; else return(SUCCESS)
RET

erased_byte:

CJNE A, #0FFh, erase_byte ; already erased?
SJMP write_byte ; then just write

erase_byte:

MOV DPCF, #0C0h ; config post increment dptrs
MOV R3, DPH1 ; save high address
MOV R4, DPL1 ; save low address
MOV R5, DPH0 ; save high address
MOV R6, DPL0 ; save low address
ANL DPL0, #PAGEMASK ; zero back page address
MOV R7, #(PAGESIZE/2) ; load half page loop counter

save_byte:

MOV A, R6 ; get original pointer low byte
CJNE A, DPL0, save_new_byte ; is this the byte of interest?
MOV A, B ; get new value
INC DPTR ; update pointer
SJMP save_next_byte

save_new_byte:

MOVX A, @DPTR ; retrieve existing value

save_next_byte:

MOVX @/DPTR, A ; store value to buffer
DJNZ R7, save_byte ; next byte
ORL MEMCON, #60h ; set LDPG, AERS
MOV DPCF, #0 ; disable post increment
MOV R1, DPH0 ; save start of upper half page
MOV R2, DPL0
MOV R7, #(PAGESIZE/2) ; load half page loop counter
13
3707A–MICRO–10/09



load_byte:

MOV A, R6 ; get original pointer low byte
CJNE A, DPL0, reload_byte ; is this the byte of interest?
MOV A, B ; get new value
SJMP load_next_byte

reload_byte:

MOVX A, @DPTR ; retrieve existing value

load_next_byte:

MOVX @DPTR, A ; store value to temp buffer
INC DPTR ; update pointer
DJNZ R7, load_byte ; next byte
ANL MEMCON, #0DFh ;  clear LDPG
MOV DPH0, R5 ; restore upper half pointer
MOV DPL0, R2
MOV A, #0FFh ; dummy data
MOVX @DPTR, A ; initiate write to upper half page
ORL MEMCON, #20h ; set LDPG
MOV R7, #(PAGESIZE/2)
MOV DPH1,R3 ; restore high address
MOV DPL1,R4 ; restore low address
MOV DPCF, #0C0h ; post increment

restore_byte:

MOVX A, @/DPTR
MOVX @DPTR, A
DJNZ R7, restore_byte
MOV DPH1,R3 ; restore high address
MOVD PL1,R4 ; restore low address
MOV DPCF, #0
ANL MEMCON, #09Fh ;  clear LDPG, AERS
MOV DPH0, R5
MOV DPL0, R6
MOV A, #0FFh

write_byte:

MOVX @DPTR, A

verify_byte:

MOVX A, @DPTR
CLR C
SUBB A, B
RET

5.4 write_eeprom_word2()
;-------------------------------------------------------------------------
;- EEPROM Word Write Emulation Routine (Half Page Version)
;-
;- Arguments:
;- R0,R1 - Data to be written (not modified)
;- DPTR0 - Address to write
;- DPTR1 - Address of 64-byte buffer
;- Return value:
;-  ACC - 0=success, !0=failure
;- Register usage:
;-  B - temp variable
;- R7 - loop counter
;- R6 - save DPL0
;- R5 - save DPH0
14
3707A–MICRO–10/09

AT89LP EEPROM Emulation



AT89LP EEPROM Emulation
;- R4 - save DPL1
;- R3 - save DPH1
;- R2 - DPL0 for high half page
;- Modifies: PSW, DPCF, MEMCON
;-------------------------------------------------------------------------

write_eeprom_word2:

MOV MEMCON, #38h ; set DMEN, MWEN, LDPG ; clear IAP
MOV R5, DPH0
MOV R6, DPL0
MOV B, R0
MOVX A, @DPTR ; fetch old value
CJNE A, B, erase_word ; if (old != new) then erase
MOV B, R1
INC DPTR
MOVX A, @DPTR ; fetch old value
CJNE A, B, erase_word ; if (old != new) then erase
CLR A ; else return(SUCCESS)
RET

erase_word:

MOV DPCF, #0C0h ; post increment
MOV R3, DPH1 ; save high address
MOV R4, DPL1 ; save low address
ANL DPL0, #PAGEMASK ; zero back page address
MOV R7, #(PAGESIZE/2)

save_word:

MOV A, R6
CJNE A, DPL0, save_new_word ; is this the word of interest?
MOV A, R0
MOVX @/DPTR, A
INC DPTR
MOV A, R1
INC DPTR
SJMP save_next_word

save_new_word:

MOVX A, @DPTR

save_next_word:

MOVX @/DPTR, A
DJNZ R7, save_word
ORL MEMCON, #60h ; set LDPG, AERS
MOV DPCF, #0
MOV R1, DPH0
MOV R2, DPL0
MOV R7, #(PAGESIZE/2)

load_word:

MOV A, R6
CJNE A, DPL0, reload_word  ; is this the word of interest?
MOV A, R0
MOVX @DPTR, A
INC DPTR
MOV A, R1
SJMP load_next_word

reload_word:

MOVX A, @DPTR
15
3707A–MICRO–10/09



load_next_word:

MOVX @DPTR, A
INC DPTR
DJNZ R7, load_word
ANL MEMCON, #0DFh ;  clear LDPG
MOV DPH0, R5
MOV DPL0, R2
MOV A, #0FFh
MOVX @DPTR, A
ORL MEMCON, #20h ; set LDPG
MOV R7, #(PAGESIZE/2)
MOV DPH1,R3 ; save high address
MOV DPL1,R4 ; save low address
MOV DPCF, #0C0h ; post increment

restore_word:

MOVX A, @/DPTR
MOVX @DPTR, A
DJNZ R7, restore_word
MOV DPCF, #0

write_word:

ANL MEMCON, #09Fh ;  clear LDPG, AERS
MOV DPH0, R5
MOV DPL0, R6
MOV A, #0FFh
MOVX @DPTR, A

verify_word:

MOVX A, @DPTR
CLR C
SUBB A, B
JNZ done
INC DPTR
MOVX A, @DPTR
CLR C
SUBB A, B
MOV DPL0, R6

done:

RET
16
3707A–MICRO–10/09

AT89LP EEPROM Emulation



AT89LP EEPROM Emulation
6. Appendix B – C Routines

6.1 write_eeprom_byte()
/*-------------------------------------------------------------------------
* EEPROM Byte Write Emulation (Full Page Version)
*
* ptr - address of byte in FDATA to write
* byte - value to write
*-------------------------------------------------------------------------
*/

char write_eeprom_byte(unsigned char xdata *ptr, unsigned char byte) {

unsigned char xdata *tmp;
unsigned char i, tmp1;
unsigned int adr;

tmp1 = *ptr; // fetch old data value
adr = (int)ptr; // cast pointer to int for arithmetic

MEMCON = 0x18; // DMEN=1 MWEN=1 LDPG=0

if (byte == tmp1) {
/* no update required */
return(0);

} else if (byte == (tmp1 & byte)) {
/* erase not required, just write */
*ptr = byte;

} else {
/* reload & erase page */
MEMCON |= 0x60; // LDPG=1 AERS=1
tmp = (unsigned char xdata *)(adr & ~(PAGESIZE-1));// zero page
for (i=PAGESIZE; i>0; i--) {
if( tmp == ptr) { // is this the byte of interest?
*tmp = byte;  // load new data

} else {
*tmp = *tmp;  // reload old data

}

tmp++;  // next byte

}

MEMCON &= 0xDF; // LDPG=0
*ptr = 0xff; // initiate page write

}

/* verify value */
tmp1 = *ptr;
return(tmp1 != byte);

}

17
3707A–MICRO–10/09



6.2 write_eeprom_word()
/*-------------------------------------------------------------------------
* EEPROM Word Write Emulation (Full Page Version)
*
* ptr - address of word in FDATA to write
* word - value to write
*-------------------------------------------------------------------------
*/

void write_eeprom_word(unsigned int xdata *ptr, unsigned int word) {

unsigned char xdata *tmp;
unsigned int xdata *wp;
unsigned int i, tmp1;
unsigned int adr;

tmp1 = *ptr; // fetch old value
adr = (int)ptr; // cast pointer to int for arithmetic

MEMCON = 0x38; // DMEN=1 MWEN=1 LDPG=0

if (word == tmp1) {
/* no update required */
return(0);

} else if (word == (tmp1 & word)) {
/* erase not required, just write */
*ptr = word;

} else {
/* reload & erase page */
MEMCON |= 0x60; // LDPG=1 AERS=1
tmp = (unsigned char xdata *)(adr & ~(PAGESIZE-1));// zero page
for (i=PAGESIZE; i>0; i--) {
if( tmp == (unsigned char xdata *)ptr) { // is this the word of interest?
wp = (unsigned int xdata *)tmp;
*wp = word; // load new data
tmp = (unsigned char xdata *)(wp + 1); // next word

} else {
*tmp = *tmp;  // reload old data
tmp++;  // next byte

}

}

MEMCON &= 0xDF; // LDPG=0
*((unsigned char xdata *)ptr) = (unsigned char)0xff; // initiate page write

}

/*verify value */
tmp1 = *ptr;
return(tmp1 != word);

}

18
3707A–MICRO–10/09

AT89LP EEPROM Emulation



AT89LP EEPROM Emulation
6.3 write_eeprom_byte2()
/*------------------------------------------------------------------------
* EEPROM Byte Write Emulation (Half Page Version)
*
* ptr - address of byte in FDATA to write
* byte - value to write
* buf - address of half page buffer in XRAM
*-------------------------------------------------------------------------
*/

char write_eeprom_byte2(unsigned char xdata *ptr, unsigned char byte,

           unsigned char xdata *buf) {

unsigned char xdata *tmp;
unsigned char xdata *sav, *lowp;
unsigned char i, tmp1;
unsigned int adr;

tmp1 = *ptr; // fetch old value
adr = (int)ptr; // cast pointer to int for arithmetic

MEMCON = 0x18; // DMEN=1 MWEN=1 LDPG=0

if (byte == tmp1) {
/* no update required */
return(0);

} else {
/* reload & erase page */
MEMCON |= 0x60; // LDPG=1 AERS=1
tmp = (unsigned char xdata *)(adr & ~(PAGESIZE-1));// zero page
lowp = tmp;
sav = buf;
/* save low half page to RAM buffer */
for (i=PAGESIZE/2; i>0; i--) {
if( tmp == ptr) {
*sav = byte;

} else {
*sav = *tmp;

}

tmp++;
sav++;

}

sav = tmp;
/* reload high half page to temp buffer */
for (i=PAGESIZE/2; i>0; i--) {
if( tmp == ptr) {
*tmp = byte;

} else {
*tmp = *tmp;

}

tmp++;

}

MEMCON &= 0xDF; // LDPG=0
*sav = 0xff; // write high half page
MEMCON &= 0xBF; // AERSG=0
MEMCON |= 0x40; // LDPG=1
sav = buf;
19
3707A–MICRO–10/09



tmp = lowp;
/* load low half page from RAM */
for (i=PAGESIZE/2; i>0; i--) {
*tmp = *sav;
tmp++;

}

MEMCON &= 0xDF; // LDPG=0
*lowp = 0xff; // write low half page

}
/* verify value */
tmp1 = *ptr;
return(tmp1 != byte);

}

6.4 write_eeprom_word2()
/*------------------------------------------------------------------------
* EEPROM Word Write Emulation (Half Page Version)
*
* ptr - address of word in FDATA to write
* word - value to write
* buf - address of half page buffer in XRAM
*-------------------------------------------------------------------------

* /

void write_eeprom_word2(unsigned int xdata *ptr, unsigned int word,

           unsigned char xdata *buf) {

unsigned char xdata *tmp;
unsigned char xdata *sav, *lowp;
unsigned int xdata *wp;
unsigned int i, tmp1;
unsigned int adr;

tmp1 = *ptr; // fetch old value
adr = (int)ptr; // cast pointer to int for arithmetic

MEMCON = 0x38; // DMEN=1 MWEN=1 LDPG=0
if (word == tmp1) {
/* no update required */
return(0);

} else {
/* reload & erase page */
MEMCON |= 0x60; // LDPG=1 AERS=1
tmp = (unsigned char xdata *)(adr & ~(PAGESIZE-1));// zero page
lowp = tmp;
sav = buf;
/* save low half page to RAM buffer */
for (i=PAGESIZE/2; i>0; i--) {
if( tmp == (unsigned char xdata*)ptr) {
wp = (unsigned int xdata *)sav;
*wp = word;
sav = (unsigned char xdata *)(wp + 1); // next word
wp = ((unsigned int xdata *)tmp ;
tmp = (unsigned char xdata *)(tmp + 1); // next word

} else {
*sav = *tmp;
20
3707A–MICRO–10/09

AT89LP EEPROM Emulation



AT89LP EEPROM Emulation
tmp++;
sav++;

}

}

sav = tmp;
/* reload high half page to temp buffer */
for (i=PAGESIZE/2; i>0; i--) {
if( tmp == (unsigned char xdata *)ptr) {
wp = (unsigned int xdata *)tmp;
*wp = word;
tmp = (unsigned char xdata *)(wp + 1); // next word

} else {
*tmp = *tmp;
tmp++;

}

}

MEMCON &= 0xDF; // LDPG=0
*sav = 0xff; // write high half page
MEMCON &= 0xBF; // AERSG=0
MEMCON |= 0x40; // LDPG=1
sav = buf;
tmp = lowp;
/* load low half page from RAM */
for (i=PAGESIZE/2; i>0; i--) {
*tmp = *sav;
tmp++;

}

MEMCON &= 0xDF; // LDPG=0
*lowp = 0xff; // write low half page

}

/* verify value */
tmp1 = *ptr;
return(tmp1 != word);

}

7. Revision History

Revision A – October 2009 • Initial Release
21
3707A–MICRO–10/09



3707A–MICRO–10/09

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00 
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
mcu@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.


	1. Introduction
	2. Theory of Operation
	2.1 Flash Memory Basics
	2.2 Data Constraints

	3. Architectural Overview
	3.1 Memory Organization
	3.2 Access Protocol
	3.2.1 Read Operation
	3.2.2 Write Operation
	3.2.3 Erase Operation


	4. Implementation
	4.1 Firmware Description
	4.2 Requirements

	5. Appendix A – Assembly Routines
	5.1 write_eeprom_byte()
	5.2 write_eeprom_word()
	5.3 write_eeprom_byte2()
	5.4 write_eeprom_word2()

	6. Appendix B – C Routines
	6.1 write_eeprom_byte()
	6.2 write_eeprom_word()
	6.3 write_eeprom_byte2()
	6.4 write_eeprom_word2()

	7. Revision History

