

dsPIC30F to dsPIC33F Conversion Guidelines

Author: Richard L. Fischer

Microchip Technology Inc.

GENERAL INFORMATION

This document provides an overview of considerations for converting from dsPIC30F to dsPIC33F devices. If you are undertaking this conversion, it is recommended that you download data sheets and errata documents on these devices from our web site, www.microchip.com.

The dsPIC33F devices are 3.3 VDC operational devices. If the dsPIC30F design was originally implemented at 3.3 VDC, this would greatly simplify the conversion to the dsPIC33F family.

Both families are pin-compatible with the exception of one pin on the 64- and 80-pin devices. The dsPIC33F VDDCORE pin (pin 56 on 64-pin TQFP and pin 70 on 80-pin TQFP) must be connected to circuit ground via a $1\mu F$ capacitor. This same pin on the dsPIC30F devices is a Vss pin and hence must be tied to ground. A jumper can be used to replace the capacitor to connect to the Vss pin.

The Low-Voltage-Detect (LVD) feature on the dsPIC30F devices is not available on the dsPIC33F devices. Conversion can be simplified if the dsPIC30F LVD feature is not implemented.

The dsPIC33F devices support a Brown-out Reset (BOR) feature, but not an equivalent dsPIC30F BOR with adjustable trip points.

Both families support Programmable Power-up Timer (POR). The port I/O sink/source current is 4mA for the dsPIC33F devices versus 25mA for the dsPIC30F devices.

Run, Sleep and Idle currents are not yet characterized. Run and Idle currents will be reduced on the dsPIC33F devices versus the dsPIC30F devices.

The dsPIC33F devices have a programmable PLL, whereas the dsPIC30F PLL features x4, x8 or x16 modes.

The instruction set on the dsPIC33F and dsPIC30F devices is 100% identical. In general, Assembly and C language code developed for the dsPIC30F devices is directly portable to dsPIC33F devices using the associated device header (.h), include (.inc) and linker (.gld) support files. dsPIC33F devices support more interrupt sources, therefore the interrupt vector table length has increased. User code starts at 0x200 versus 0x100 on the dsPIC30F devices. Using the associated device linker (.gld) support file makes this change transparent.

Some peripherals have new features hence additional bits have been added in respective SFRs. Some SFR bits have moved or been renamed between the dsPIC30F and dsPIC33F devices. If the Assembly and C language code utilizes the provided device support files, code migration is straight forward.

Table 1 presents a summary of the key differences between the dsPIC30F to dsPIC33F devices. Please refer to the specific device data sheets for further information.

TABLE 1: KEY DIFFERENCES BETWEEN dsPIC30F AND dsPIC33F DEVICES

Devinberel Medule	Channels		Comments	
Peripheral Module	dsPIC30F	dsPIC33F	Comments	
Interrupt Controller	45	67	SFR bits are located in different SFRs. There are more interrupts and associated SFRs on the dsPlC33F devices. Old SFR bit names are retained for compatibility.	
Timers 16-bit	5	9	No SFR bit name changes. Four new timers on the dsPIC33F devices.	
Input Capture	5	8	No SFR bit name changes. Three new channels on the dsPIC33F devices.	
Output Compare	5	8	No SFR bit name changes. Three new channels on the dsPIC33F devices.	
10-bit 1 Msps ADC	16	0	New module on the dsPIC33F devices.	
12-bit 200 Ksps ADC	16	0	New module on the dsPIC33F devices.	

TABLE 1: KEY DIFFERENCES BETWEEN dsPIC30F AND dsPIC33F DEVICES (CONTINUED)

	Cł	nannels		
Peripheral Module	dsPIC30F	dsPIC33F	Comments	
10- to 12-bit ADC	0	32	ADxCON1 SFR: No bit name changes.	
10-bit 1.1 Msps			New modes/SFR bits added: 10/12 ADC mode bit.	
12-bit 500 Ksps			Added SFR bits to support 32 ADC channels.	
UART	2	2	UxMODE SFR: No bit name changes. New modes/ SFR bits added. UxSTA SFR: No bit name changes. New mode/SFR bit added. Features added on dsPIC33F devices: IrDA [®] , LIN support and Interrupt- on-TSR empty.	
I ² C™	1	2	No SFR bit name changes. New SFR (I2CxMSK) and address masking feature added.	
SPI	2	2	SPIxSTAT SFR: No bit name changes. SPIxCON1 SFR: No bit name changes. New bits added and some relocated to new SFR SPIxCON2. FIFO and Frame modes added.	
DCI (CODEC)	1	1	No SFR bit name changes.	
CAN	2	0	N/A	
ECAN™ Technology	0	2	New module on dsPIC33F devices.	
Motor Control PWM	8	8	No SFR bit name changes.	
QEI	1	1	No SFR bit name changes.	
I/O Ports	Ports A-G	Ports A-G	New feature added: Open Drain output on some ports.	
DMA	0	8	New feature on dsPIC33F devices.	
Clock Switching	Yes	Yes	Additional clock modes/features on dsPIC33F devices. Oscillator control SFRs are different.	
Power Savings	Yes	Yes	New Doze mode added to existing Sleep and Idle modes.	
Device Configuration	_	_	Use new device support files (.h, .inc and .gld) for support.	
PLL modes	x4, x8 and x16 PLL	Programmable PLL	See Section 8.1 of the dsPIC33F data sheet (DS70165) for system clock selection information.	
Programming Pins	1 pair	3 pairs	There are now 3 PGC/EMUC and PGD/EMUD pairs of	
Debugging Pins	4 pairs	3 pairs	pins, which can be used for both programming and debugging.	

PERIPHERALS

The dsPIC33F peripheral set is enhanced versus the first generation dsPIC30F product family. Several peripherals have identical features with some peripherals supporting additional features.

The DCI CODEC peripheral on the dsPIC33F devices is identical to the DCI peripheral featured on the dsPIC30F6011A/12A/13A/14A devices.

Note: If using the DCI peripheral on the "non-A" dsPIC30F devices, the work around called out in the dsPIC30F6011/6012/6013/6014

Rev. B2 errata (DS80198C), specifically item 12, is no longer required.

The ADC module on the dsPIC33F devices is slightly different from the dsPIC30F ADC module. The basic functionality is the same, however the dsPIC33F ADC module is selectable between 10- and 12-bit operation, supporting higher conversion rates and featuring more external ADC pins.

The dsPIC33F devices have 8 channels of DMA, which are assignable to the following peripherals: UART, SPI, ADC, CODEC Interface, Input Capture, Output Compare/Standard PWM and ECAN™ technology.

Additional status bits for determination of specific Math Exception Traps are available on the dsPIC33F devices. These bits are located in the INTCON1 SFR.

dsPIC33F digital I/O ports are 5V tolerant. New open drain features are provided on some ports. dsPIC33F analog pins configured as digital I/O pins are 3.6V tolerant. See the data sheet for further information.

FLASH PROGRAM MEMORY

Like the dsPIC30F devices, the dsPIC33F devices support Run-Time-Self-Programming (RTSP) . Table 2 lists some small RTSP differences between the two families.

TABLE 2: RTSP DIFFERENCES BETWEEN dsPIC33F AND dsPIC30F FAMILIES

Parameter	dsPIC33F	dsPIC30F	
Smallest PM Erase Size	1 Page - 512 instructions/1536 bytes	1 Row - 32 instructions/96 bytes	
Smallest PM Program Size	1 Row - 64 instructions/192 bytes	1 Row - 32 instructions/96 bytes	
Basic PM Erase Code	; Setup NVMCON for page erase	; Setup NVMCON for row erase	
Sequence	operation	operation	
·	MOV #0x4042, w0	MOV #0x4041, w0	
	MOV w0, NVMCON	MOV w0, NVMCON	
	; Init pointer for Erase Op.	; Init pointer for Erase Op.	
	MOV #tblpage(PROG_ADDR), w0	MOV #tblpage(PROG_ADDR), w0	
	MOV w0, TBLPAG	MOV w0, NVMADRU	
	MOV #tbloffset(PROG_ADDR), w0	MOV #tbloffset(PROG_ADDR), w0	
	TBLWTL w0, [w0] ; Set base	MOV w0, NVMADR	
	address of erase block	; Disable interrupts, if enabled	
	; Disable interrupts, if enabled;	; Write the KEY sequence	
	Write the KEY sequence	MOV #0x55, w0	
	MOV #0x55, w0	MOV w0, NVMKEY	
	MOV w0, NVMKEY	MOV #0xAA, w0	
	MOV #0xAA, w0	MOV w0, NVMKEY	
	MOV w0, NVMKEY	; Start the erase operation	
	; Start the erase operation	BSET NVMCON, #WR	
	BSET NVMCON, #WR	; Insert two NOPs (required)	
	; Insert two NOPs (required)	NOP	
	NOP	NOP	
	NOP	Re-enable interrupts, if needed	
	Re-enable interrupts, if needed		

TABLE 2: RTSP DIFFERENCES BETWEEN dsPIC33F AND dsPIC30F FAMILIES (CONTINUED)

Parameter	dsPIC33F	dsPIC30F
Basic PM Program Code	; Setup the address pointer to	; Setup the address pointer to
Sequence	program space	program space
(Example loading 1 write	MOV #tblpage(PROG_ADDR), w0	MOV #tblpage(PROG_ADDR), w0
latch only)	; get table page value	; get table page value
	MOV w0, TBLPAG ; load TBLPAG	MOV w0, TBLPAG ; load TBLPAG
	register	register
	MOV #tbloffset(PROG_ADDR), w0	MOV #tbloffset(PROG_ADDR), w0
	; load address LS word	; load address LS word
	; Load write data into W registers	; Load write data into W registers
	MOV #PROG_LOW_WORD, w2	MOV #PROG_LOW_WORD, w2
	MOV #PROG_HI_BYTE, w3	MOV #PROG_HI_BYTE, w3
	; Perform the table writes to load	; Perform the table writes to load
	the latch	the latch
	TBLWTL w2, [w0]	TBLWTL w2, [w0]
	TBLWTH w3, [w0++]	TBLWTH w3, [w0++]

SFR registers, NVMADR and NVMADRU, are not available or utilized for programming/erasing operations on dsPIC33F Flash program memory and data EEPROM is not supported. Likewise there is no vector location for the NVM interrupt as there is on the dsPIC30F devices. The interrupt vector location is reserved.

The dsPIC33F Program Flash Erase/Write endurance specifications differ between the dsPIC33F and dsPIC30F families. Please refer to the device data sheet for further information.

All program/erase operations of the dsPIC33F devices are self-timed like the dsPIC30F devices, therefore no additional timer is required to terminate a program/erase operation.

ELECTRICAL CHARACTERISTICS

Operating from 3.0 to 3.6 VDC and rated at 40 MIPS @ 85°C, the dsPIC33F product family is designed using 0.25 µm process technology. Therefore, the DC and AC Electrical Specifications are different from the dsPIC30F product family. Please refer to the dsPIC33F data sheet (DS70165) for further information.

PACKAGE CONVERSION CONSIDERATIONS

Table 3 presents a summary of the programming/debugging pin differences between the dsPIC30F "A" devices and the dsPIC33F devices.

Check the mechanical/package footprint of a 64-pin TQFP dsPIC30F and a 64-pin TQFP dsPIC33F. Layout PCB to accommodate common 10x10x1 mm package.

Check the mechanical/package footprint of the 80-pin TQFP dsPIC30F and 80-pin TQFP dsPIC33F. Layout PCB to accommodate a common 12x12x1 mm package.

TABLE 3: PROGRAMMING/DEBUGGING PIN DIFFERENCES

Programming/Debugging Pins	dsPIC30F	dsPIC33F	dsPIC30F	dsPIC33F
Programming/Debugging Pins	64-pin	64-pin	80-pin	80-pin
PGC/EMUC + PGD/EMUD	RB6 + RB7	_	RB1 + RB0	_
EMUC1/EMUD1	RC14 + RC13	_	RC14 + RC13	_
EMUC2/EMUD2	RD0 + RD1	_	RD0 + RD1	_
EMUC3/EMUD3	RF6 + RF3	_	RF6 + RF8	_
PGC1/EMUC1 + PGD1/EMUD1	_	RB6 + RB7	_	RB6 + RB7
PGC2/EMUC2 + PGD2/EMUD2	_	RC14 + RC13	_	RC14 + RC13
PGC3/EMUC3 + PGD3/EMUD3		RB1 + RB0	_	RB1 + RB0

Legend: PGC - Primary Programming Clock Pin;

PGD - Primary Programming Data Pin

EMUCx - Debugging Clock Pin (where x = 1, 2 or 3) EMUDx - Debugging Data Pin (where x = 1, 2 or 3)

PROGRAMMING SUPPORT

No high voltage is required or provided by the MPLAB® ICD 2 or MPLAB PM 3 tools when programming the dsPIC33F devices. The ~12.5 VDC currently supplied by MPLAB ICD 2 or MPLAB PM 3, when programming the dsPIC30F devices, is not required for the dsPIC33F devices.

Note: Possible damage to the MCLR pin will be sustained if more than 5.5 VDC is applied.

DEVELOPMENT TOOLS AND BOARDS

MPLAB IDE, MPLAB C30, MPLAB ICD 2 and MPLAB PM3 tools support the dsPIC33F product family of devices. See Table 4 below for information on tool version support.

TABLE 4: DEVELOPMENT TOOL SUPPORT FOR THE dsPIC33F FAMILY

Development Tools	dsPIC33F
MPLAB [®] IDE	MPLAB IDE 7.22 or later
MPLAB C30	MPLAB C30 1.33.01 or later with specific language support files
MPLAB ICD 2 Programmer/Debugger	Yes
MPLAB PM3 Device Programmer	Yes
MPLAB ICE 4000	No

The dsPICDEM™ 80-pin Starter Development Board (DM300019) and the Explorer 16 Development Board (DM240001) support the dsPIC33F silicon.

dsPIC33FJ256GP710I/PF based 100-to-80-pin Plug-in-Modules (PIMS), part number MA330012, are used to support the dsPICDEM 80-pin Starter Development Board.

dsPIC33FJ256GP710I/PF based 100-pin Plug-in-Modules (PIMS), part number MA330011, are used to support the Explorer 16 Development Board.

APPLICATION LIBRARIES

All advanced application libraries developed for the dsPIC30F product family support the dsPIC33F product family. Several libraries have been tested and released. Others are scheduled for testing and release.

APPENDIX A: REVISION HISTORY

Revision A (01/2006)

Original version of the document.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and Zena are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOO® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea - Gumi

Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Penang

Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869

Fax: 44-118-921-5820