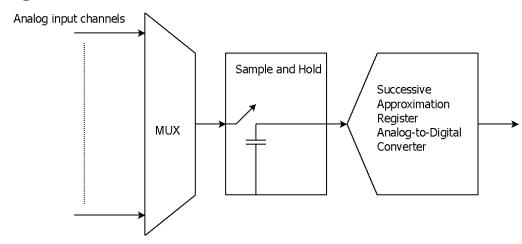
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series

1 Introduction

This application note outlines the steps necessary to optimize analog to digital conversions on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. The ADC is useful in measuring output voltages of i.e. analog sensors and converting them to digital values. There are however considerations during design and implementation which impacts the conversion quality.

32-bit **AVR**® Microcontrollers

Application Note


Rev. 32135A-AVR32-11/09

2 System Model

Figure 2-1. ADC controller Schematic

3 Acquisition Time (Sample and Hold)

A number of steps are required during an analog-to-digital conversion. When an analog-to-digital conversion begins, one channel select switch is closed (MUX), allowing the sample and hold capacitor to charge. The channel select switch is then opened. The charge applied to the sample and hold capacitor is then converted into a digital representation by the successive approximation register.

The acquisition time is related to the sample and hold time which is configurable with a dedicated SHTIM bit field in the Mode Register MR. SHTIM can be set from 0x0 to 0xF and consequently change the sample and hold time from the following equation:

Sample & Hold Time = (SHTIM+3) / ADCClock

The ADC Clock frequency is selected in the PRESCAL field of the MR register.

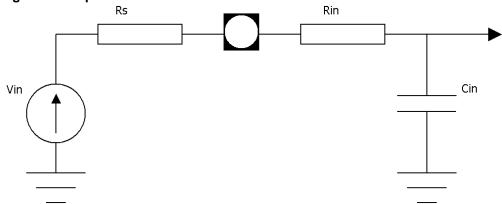
For example: given

SHTIM = 0x0

ADCClock = 5 MHz (Max Freq for 10 bits resolution)

Then the sampling time is:

Ts (Sample & Hold Time) = (0+3) / 50000000


= 600 ns

Note that SHTIM will directly impact the conversion rate of the ADC as it comes in addition to the conversion time itself.

2

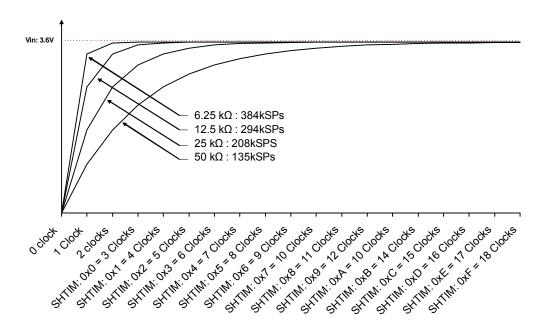
4 How to select the Source Impedance

Figure 4-1. Equivalent schematic

The external resistance of the source (Rs) feeding the sample and hold capacitor will determine the charging value. The goal to achieve is to have the sample and hold capacitance charged to a voltage value $Vin \pm (Vin/Resolution)$ at the end of the sampling period.

The Worst case appears when Cin is completely discharged and Vin is maximum ADC input voltage. To account for these two worst-case, it is important that the source impedance does not exceed a maximum value.

The capacitor charging time is related to the RC value and the input voltage.


We want :

Considering the Rin value as negligible (see electrical characteristics section of the datasheet), we see that Rs is directly impacted by the S/H time and vary from ~ $7k\Omega$ (SHTIM= 0) to $43k\Omega$ (SHTIM= 15).

Figure 4-2. Charging Time vs. Rs when ADC clock @5MHz

5 Solutions

To remain compliant with the sampling time constraint, the solutions are:

- 1. Minimize the total source impedance seen by the analog input channels:
 - The maximum value of the total source impedance should be around 43kOhms in order to reach the Vin-1LSB (given SHTIM set to the maximum 0xF). Nevertheless, the smaller the total source impedance, the faster the acquisition time. Therefore the sensor should be chosen with the lowest output impedance. The figure 4-2 can be used as reference.
 - Adding an impedance adapter interface (operational amplifier ...) between the Analog source and the ADC input can be another alternative to lower the total source impedance.
- 2. Slow down the ADC clock frequency:

The period time is increased, therefore the sample and hold time is consequently raised, allowing for a more complete charge of the capacitor. Nevertheless in this case the quantity of sample per second is decreased.

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong

Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support avr32@atmel.com Sales Contact

www.atmel.com/contacts

Literature Request www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, AVR[®], AVR[®] logo and others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.