
RE46C122

CMOS Ionization Smoke Detector ASIC with Interconnect and Timer Mode

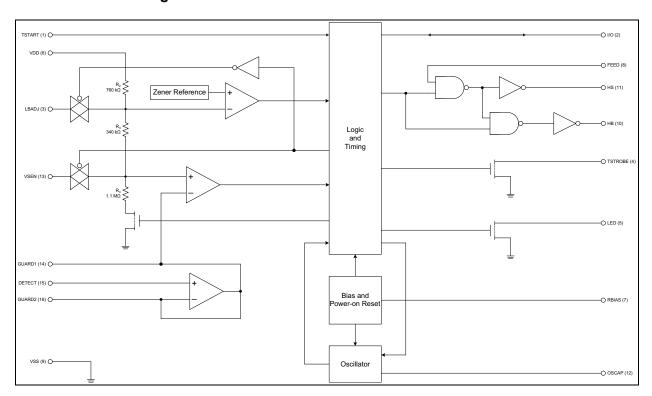
Features

- > 1500V Electrostatic Discharge (ESD) Protection (HBM) on all Pins
- · Guard Outputs for Ion Detector Input
- · ±0.75 pA Detect Input Current
- Internal Reverse-battery Protection
- · Internal Low-battery Detection
- Power-up Low-battery Test
- Low Quiescent Current Consumption (< 6.5 μA)
- · Interconnect up to 40 Detectors
- · 10-minute Timer for Sensitivity Control
- · Available in RoHS Compliant Lead-free Packaging
- · Packaging:
 - 300 mil. 16-Lead PDIP
- · Compatible with Allegro A5367

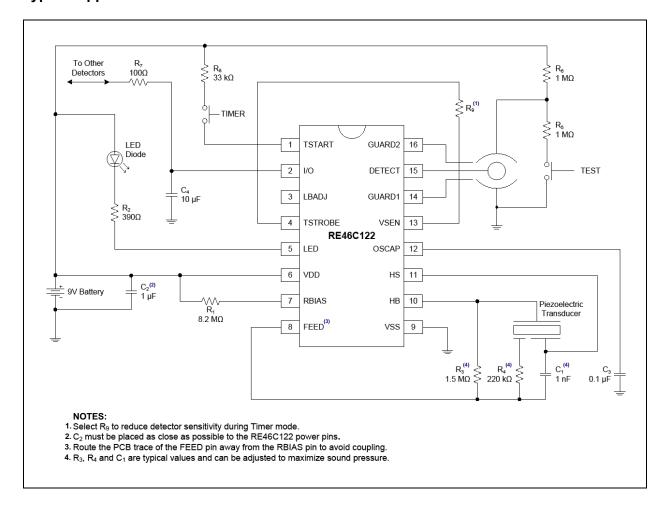
Pin Configuration

General Description

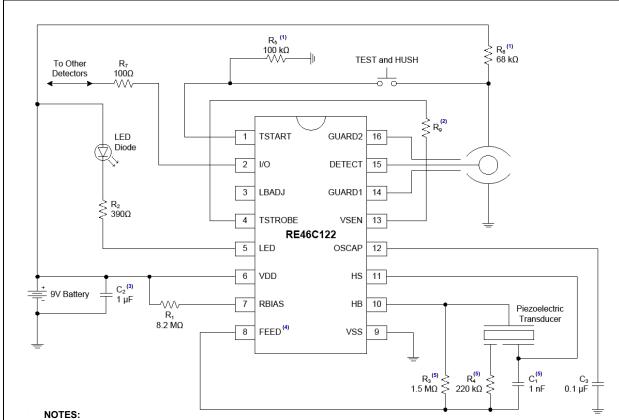
RE46C122 is a low-power CMOS ionization smoke detector integrated circuit (IC). Together with a few external components, this circuit provides all the required features for an ionization type smoke detector.


An internal oscillator strobes power to the smoke detector circuitry for 10.5 ms every 1.66s to keep standby current to a minimum. While in standby, RE46C122 performs a check for low-battery condition every 40 seconds. The temporal horn pattern supports the NFPA 72 emergency evacuation signal.

The interconnect pin (I/O) enables the connection of multiple detectors so that when one smoke detector alarms, all units sound together.


An internal 10-minute timer allows the use of a separate button for reduced sensitivity mode.

Although RE46C122 is designed for smoke detection using an ionization chamber, the device can be used in a variety of security applications.


Functional Block Diagram

Typical Application

Typical Single Button Application

- 1. Select R5 and R6 for the correct level to test the ion chamber. To initiate the timer, the voltage on the TSTART pin must be > V_{IH}. Consider that the TSTART pin has an internal 180 k Ω nominal pull-down resistor when selecting the R_5 and R_6 resistances.
- 2. Select R₉ to reduce detector sensitivity during Timer mode.
- 3. C₂ must be placed as close as possible to the RE46C122 power pins.
 4. Route the PCB trace of the FEED pin away from the RBIAS pin to avoid coupling.
- 5. R₃, R₄ and C₁ are typical values and can be adjusted to maximize sound pressure.

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings[†]

Supply Voltage (V _{DD})	
Input Voltage Range except FEED (V _{IN})	
FEED Input Voltage Range (V _{INFD})	10V to + 22V
l/O Input Voltage Range (V _{IO1})	0.3V to 17V
Reverse Battery Time (t _{RB})	
Input Current except FEED (I _{IN})	
Operating Temperature (T _A)	10°C to +60°C
Storage Temperature (T _{STG})	55°C to +125°C
Maximum Junction Temperature (T _J)	

† Notices:

- 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
- 2: Although this product uses CMOS technology with static protection, proper ESD prevention procedures must be used when handling this product. Damage can occur when exposed to extremely high static electric charge.

1.2 Electrical Specifications

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS

DC Electrical Characteristics: Unless otherwise specified, all parameters apply at T_A = +25°C, V_{DD} = 9V, OSCAP = 0.1 μ F, R_{BIAS} = 8.2 $M\Omega$ and V_{SS} = 0V.

Parameter	Symbol	Pin	Min.	Typical	Max.	Units	Conditions		
Power Supply									
Supply Voltage	V _{DD}	VDD	6	_	12	V	Operating		
Supply Current	I _{DD1}	VDD	_	5	6.5	μA	R_{BIAS} = 8.2 MΩ, OSCAP = 0.1 μF		
	I _{DD2}	VDD	_	_	9	μA	R_{BIAS} = 8.2 MΩ, OSCAP = 0.1 μF, V_{DD} = 12V		
Input Voltage High	V _{IH1}	FEED	6.2	4.5	_	V	_		
	V _{IH2}	I/O	3	_	_	V	No Local Alarm, I/O as Input		
	V _{IH3}	TSTART	4.5	_	_	V	_		
Input Voltage Low	V _{IL1}	FEED	_	4.5	2.7	V	_		
	V _{IL2}	I/O	_	_	1	V	No Local Alarm, I/O as Input		
	V _{IL3}	TSTART	_	_	2.5	V	_		
Input Leakage Low	I _{LDET1}	DETECT	_	_	-0.75	pA	V_{DD} = 9V, DETECT = V_{SS} , 0-40% RH		
	I _{LDET2}	DETECT	_	_	-1.5	pA	V _{DD} = 9V, DETECT = V _{SS} , 85% RH (Note 1)		
	I _{LFD}	FEED	_	_	50	μA	FEED = -10V		

Note 1: Sample test only

- 2: Production tested at room temperature with guardbanded limits.
- 3: Not 100% production tested

RE46C122

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)

DC Electrical Characteristics: Unless otherwise specified, all parameters apply at T_A = +25°C, V_{DD} = 9V, OSCAP = 0.1 μ F, R_{BIAS} = 8.2 M Ω and V_{SS} = 0V.

Parameter	Symbol	Pin	Min.	Typical	Max.	Units	Conditions
Input Leakage High	I _{HDET1}	DETECT	_	_	0.75	pA	V_{DD} = 9V, DETECT = V_{DD} , 0-40% RH
	I _{HDET2}	DETECT	_	_	1.5	pА	V _{DD} = 9V, DETECT = V _{DD} , 85% RH (Note 1)
	I_{HFD}	FEED		_	50	μΑ	FEED = 22V
	I _{IOL2}	I/O	_	_	150	μΑ	No Alarm, V _{IO} = 17V
Output Off Leakage High	I _{OHZ}	TSTROBE, LED	1		1	μΑ	Outputs Off
Input Pull-down Current	I _{PD1}	TSTART	20	50	80	μΑ	TSTART = 9V
Output Voltage High	V _{OH1}	HB, HS	6.3	_	_	V	I _{OH} = -16 mA, V _{DD} = 7.2V
Output Voltage Low	V _{OL1}	HB, HS	_	_	0.9	V	I _{OL} = 16 mA, V _{DD} = 7.2V
	V _{OL2}	TSTROBE	_	_	0.5	V	I _{OL} = 500 μA
	V _{OL3}	LED	_	_	1	V	I _{OL} = 10 mA, V _{DD} = 7.2V
Output Current	I _{IOL1}	I/O	25	_	60	μA	No Alarm, V _{IO} = V _{DD} – 2V
	I _{IOH1}	I/O	-4	_	-16	mA	Alarm, $V_{IO} = V_{DD} - 2V$ or $V_{IO} = 0V$
	I _{IODMP}	I/O	5	_	_	mA	At the Conclusion of Local Alarm or Test, V _{IO} = 1V
Low-battery Voltage	V_{LB}	VDD	7.2	7.5	7.8	V	$T_A = -10^{\circ}\text{C to } +60^{\circ}\text{C (Note 2)}$
Internal Sensitivity	V _{SET1}	VSEN	48.5	50	51.5	%V _{DD}	_
Set Voltage	V _{SET2}	LBADJ	_	65.5	_	%V _{DD}	_
Offset Voltage	V _{GOS1}	GUARD1, DETECT	-50	_	50	mV	Guard Amplifier
	V _{GOS2}	DETECT, GUARD2	-50	_	50	mV	Guard Amplifier
	V _{GOS3}	VSEN, DETECT	-50	_	50	mV	Smoke Comparator
Common Mode Voltage	V _{CM1}	GUARD1, DETECT	2	_	V _{DD} – 0.5	V	Guard Amplifier (Note 3)
	V _{CM2}	VSEN, DETECT	0.5	_	V _{DD} – 2	V	Smoke Comparator (Note 3)
Common Mode Impedance	Z _{OUT}	GUARD1, GUARD2	_	10	_	kΩ	Guard Amplifier Outputs (Note 3)
Hysteresis	V _{HYS}	VSEN	90	130	170	mV	No Alarm to Alarm Condition

Note 1: Sample test only

2: Production tested at room temperature with guardbanded limits.

3: Not 100% production tested

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS

AC Electrical Characteristics: Unless otherwise specified, all parameters apply at T_A = +25°C, V_{DD} = 9V, OSCAP = 0.1 μ F, R_{BIAS} = 8.2 M Ω and V_{SS} = 0V. All timing except oscillator period (t_{PER}) and oscillator pulse width (t_{PW}) are guaranteed by functional tests.

Parameter	Symbol	Pin	Min.	Typical	Max.	Units	Conditions
Oscillator Time	Base						
Oscillator Period	t _{PER1}	OSCAP	1.34	1.67	2	s	No Alarm Condition
	t _{PER2}	OSCAP	37.5	41.5	45.8	ms	Alarm Condition
Oscillator Pulse Width	t _{PW}	LED	9.4	10.5	12.9	ms	Operating
LED Indication							
LED On Time	t _{LON}	LED	9.4	10.5	12.9	ms	Operating
LED Off Time	t _{LOF1}	LED	32	40	48	S	Standby, No Alarm
	t _{LOF2}	LED	0.8	1	1.2	s	Alarm Condition
	t _{LOF3}	LED	8	10	12	s	Timer Mode, No Alarm
Horn Indication							
Horn On Time	t _{HON1}	HB, HS	450	500	550	ms	Operating, Alarm Condition (Note 1)
	t _{HON2}	HB, HS	9.4	10.5	12.9	ms	Low Battery, No Alarm
Horn Off Time	t _{HOF1}	HB, HS	450	500	550	ms	Operating, Alarm Condition (Note 1)
	t _{HOF2}	HB, HS	1.35	1.5	1.65	S	Operating, Alarm Condition (Note 1)
	t _{HOF3}	HB, HS	32	40	48	s	Low Battery, No Alarm
I/O Charge Dump Duration	t _{IODMP}	I/O	1.34	1.67	2	S	At the Conclusion of Local Alarm or Test
I/O Delay	t _{IODLY1}	I/O	_	3	_	s	From the Start of Local Alarm to I/O Active
I/O Filter	t _{IOFILT}	I/O	_	_	450	ms	I/O Pulse Width Guaranteed to be Filtered. I/O as Input, No Local Alarm
Remote Alarm Delay	t _{IODLY2}	I/O	0.45	_	2.2	S	No Local Alarm, I/O as Input, from I/O Active to Horn Active
Timer Period	t _{TPER}	TSTROBE	8	10	12	min	No Alarm

Note 1: See timing diagram for HFPA72 Temporal Horn Pattern in Figure 3-1.

TABLE 1-3: TEMPERATURE CHARACTERISTICS

DC Electrical Characteristics: Unless otherwise specified, all parameters apply at V _{DD} = 9V and V _{SS} = 0V (typical application).								
Parameter	Symbol	Min.	Typical	Max.	Units	Conditions		
Temperature Ranges								
Specified Temperature Range	T _A	-10	_	+60	°C	_		
Operating Temperature Range	T _A	-10	_	+60	°C	_		
Storage Temperature Range	T _{STG}	-55	_	+125	°C	_		
Thermal Package Resistances								
Thermal Resistance, 16-Lead PDIP	θ_{JA}	_	70	_	°C/W	_		

R	F	1	6	C1	22
K	_	┰	v	V I	

2.0 PIN DESCRIPTION

Table 2-1 describes the pins of RE46C122.

TABLE 2-1: RE46C122 PIN FUNCTION

Pin Number	Symbol	Description
1	TSTART	Timer Mode Start. When transitioning from high to low, this pin invokes Timer mode, initiating a 10-minute timer. This pin has an internal pull-down resistor.
2	I/O	Interconnect Pin. Use this bidirectional pin to connect many detectors in a single system. If one unit goes into alarm, the I/O pin is driven high causing all the interconnected detectors to alarm. This pin has an internal pull-down resistor.
3	LBADJ	Low-Battery Adjustment. Use this pin to modify the low-battery set point by connecting a resistor between the pin and V_{DD} or V_{SS} .
4	TSTROBE	Timer Strobe. Once Timer Mode is initiated by the TSTART pin, the open-drain NMOS on the TSTROBE pin is strobed on with the internal clock. Connect a resistor to this pin to modify the detector sensitivity for the timer period.
5	LED	LED Driver Pin. Open-drain NMOS output used to drive a visible LED.
6	VDD	This pin connects to the positive power supply.
7	RBIAS	Set the internal bias current by connecting a resistor between this pin and V_{DD} .
8	FEED	This pin connects to the feedback electrode through a current limiting resistor. When the horn is enabled, this pin drives the buffered output HS pin and the complementary output HB pin. If not used, ensure this pin connects to V_{DD} or V_{SS} .
9	VSS	This pin connects to the negative power supply.
10	НВ	Horn Brass, Inverted Output. This pin connects to the metal electrode of a piezoelectric transducer.
11	HS	Horn Silver Output. This pin is a complementary output to the HB pin and connects to the ceramic electrode of the piezoelectric transducer.
12	OSCAP	Set the oscillator period ($t_{\mbox{\footnotesize{PER}}}$) by connecting a capacitor between this pin and $V_{\mbox{\footnotesize{SS}}}$.
13	VSEN	Use this pin to set an external smoke comparator reference by connecting external resistors to V_{DD} or V_{SS} .
14	GUARD1	Guard amplifier output 1. This allows for measurement of the DETECT pin without loading the ionization chamber.
15	DETECT	This pin connects to the collector electrode of the ion smoke chamber.
16	GUARD2	Guard amplifier output 2. This allows for measurement of the DETECT pin without loading the ionization chamber.

R	F	1	6	C1	22
K	_	┰	v	V I	

3.0 DEVICE DESCRIPTION

3.1 Introduction

RE46C122 is a low-power CMOS ionization smoke detector integrated circuit (IC). Together with a few external components, this circuit provides all the required features for an ionization type smoke detector.

Note: All timing references are nominal values. Refer to Table 1-1 and Table 1-2 for limits.

3.2 Internal Timing

With external components as indicated in the Typical Application diagram, the oscillator period becomes t_{PER1} = 1.67 seconds while in standby. The detection circuitry is powered up for 10.5 ms every 1.66s, and the status of the smoke comparator is latched. Additionally, every 40 seconds, the LED driver is turned on for 10.5 ms and the status of the low-battery comparator is latched. The smoke comparator status is not checked during the low-battery test or low-battery horn warning chirp or when the horn is active due to an alarm condition.

If RE46C122 detects an alarm condition, the oscillator period increases to t_{PER2} = 41.5 ms.

Due to the low currents used in the oscillator, ensure that the OSCAP pin connects to a low leakage type capacitor. Oscillator accuracy depends mainly on the tolerance of the bias resistor connected to the RBIAS pin and the oscillator capacitor connected to the OSCAP pin.

3.3 Smoke Detection Circuitry

The smoke comparator takes the value of the ionization chamber voltage and compares it to a voltage derived from a resistor divider across V_{DD} . This divider voltage is available externally on the VSEN pin. When smoke is detected, the divider voltage is internally increased by 130 mV nominal to provide hysteresis and make the detector less sensitive to false triggering.

Use the VSEN to modify the internal set point for the smoke comparator by connecting external resistors to V_{DD} or V_{SS} . Nominal values for the internal resistor divider are indicated on the Functional Block Diagram. While these internal resistor values can vary up to $\pm 20\%$, the resistor matching is typically less than 2% on any single device. Transmission switches on the VSEN and LBADJ pins prevent any interaction from the external adjustment resistors.

To reduce surface leakage, the guard amplifier and outputs are always active and within 50 mV of the DETECT pin voltage. The guard outputs also allow for the measurement of the DETECT input without loading the ionization chamber.

3.4 Low-Battery Detection

An internal Zener reference is compared to the voltage divided V_{DD} power supply. The battery is checked under load using the LED low-side driver output since a low-battery status is latched at the conclusion of the 10.5 ms LED pulse. Use the LBADJ pin to modify the low-battery set point by connecting a resistor between the pin and V_{DD} or V_{SS} . Transmission switches on the VSEN and LBADJ pins prevent any interaction from the external adjustment resistors.

3.5 LED Pulse

The LED pulses on for 10.5 ms every 40 seconds while in standby. When an alarm condition is detected, the LED pulses on for 10.5 ms every second.

3.6 Interconnect

Use the I/O pin to interconnect many detectors into a single system. If one unit goes into alarm, the I/O pin is driven high. This high signal causes all the interconnected detectors to alarm. The LED flashes for 10.5 ms every second on the signaling unit, while it is inhibited on the units that are in alarm due to the I/O high signal. An internal sink device on the I/O pin helps to discharge the interconnect line. This charge dump device is active for one clock cycle (1.67s) after the detector exits the alarm condition.

The interconnect input (I/O pin) has a 500 ms nominal digital filter. This allows to interconnect other types of alarm devices, such as carbon monoxide detectors, that can have a pulsed interconnect signal.

3.7 Testing

At power-up, all internal registers are reset. By holding the FEED and OSCAP pins low at power-up, the low-battery set point can be tested. The HB pin changes state as V_{DD} passes through the low-battery set point.

By holding the OSCAP pin low at power up, the internal power strobe becomes active. While functional testing can be accelerated by driving the OSCAP pin with a 4 kHz square wave, maintain the 10.5 ms strobe period to ensure the proper operation of the analog circuitry. Refer to the timing diagrams in Figure 3-1 and Figure 3-2.

3.8 Timer Mode

The transition of the TSTART pin from high to low initiates Timer mode. During this 10-minute period, the open-drain NMOS on the TSTROBE pin is strobed on with the internal clock. Connect a resistor to the TSTROBE pin to modify the detector sensitivity for the duration of the timer period.

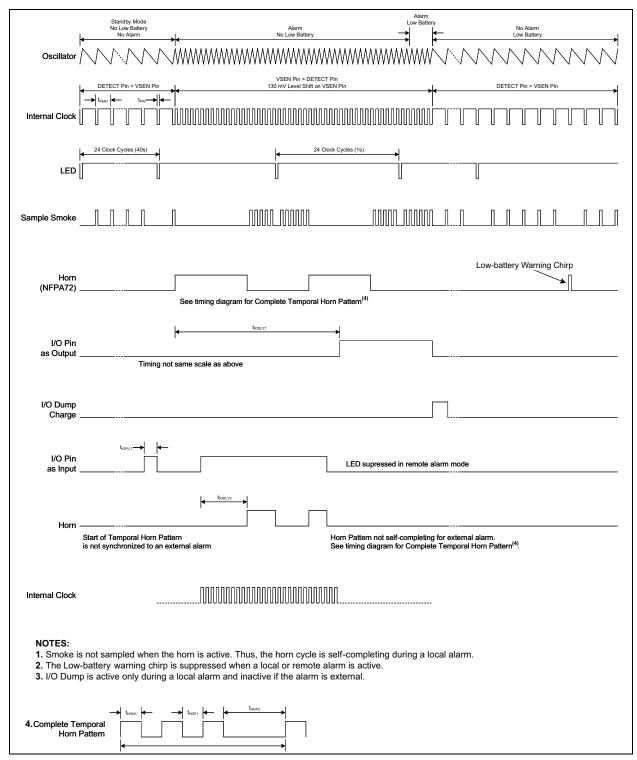
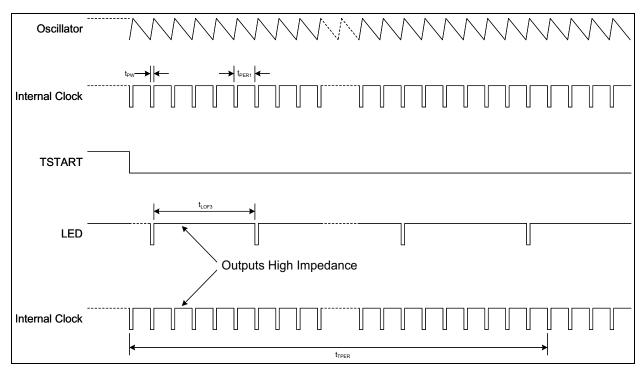
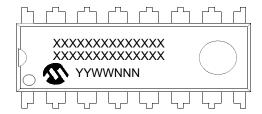
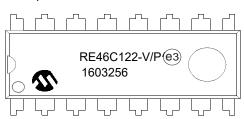


FIGURE 3-1: RE46C122 Timing Diagram – Non-Timer Mode.




FIGURE 3-2: RE46C122 Timing Diagram – Timer Mode.

R	F	1	6	C1	22
K	_	┰	v	V I	


4.0 PACKAGING INFORMATION

4.1 Package Marking Information

16-Lead PDIP (300 mil.)

Example:

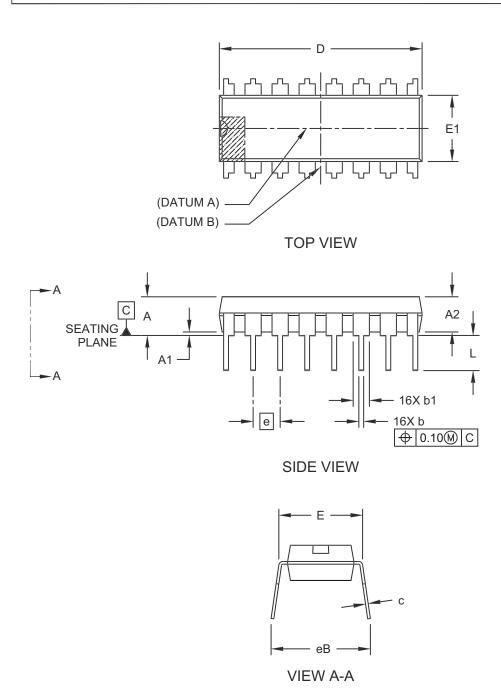
Legend: XX...X Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

(e3) Pb-free JEDEC designator for Matte Tin (Sn)

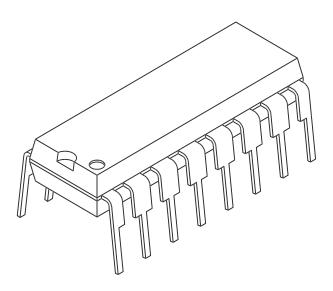
This package is Pb-free. The Pb-free JEDEC designator (e3)


can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

4.2 Package Drawings

16-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-00017 Rev C (P) Sheet 1 of 2

16-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		16	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	-	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-00017 Rev C (P) Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Revision C (April 2025)

- Removed mentions of Underwriters Laboratory Specifications UL217 and UL268.
- Updated Functional Block Diagram, Typical Application and Typical Single Button Application.
- Updated Figure 3-1 and Figure 3-2.
- Added Section 2.0, "Pin Description".
- Updated Section 3.0, "Device Description".
- Added Section 4.0, "Packaging Information".
- Added Product Identification System section.

Revision B (June 2009)

· Undocumented changes.

Revision A (May 2009)

· Initial release of this document.

N	∙.	TEC.
IN	u	I E 3:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	<u>X</u> Package	XX Number of Pins	<u>X</u> Lead Free	a) RE460	les: C122E16F	= CMOS Ionization Smoke Detector ASIC, Plastic Dual In-Line PDIP, 16-Lead, Lead Free
Device:	RE46C122 =	CMOS Ionization Smoke	Detector ASIC			
Package:	E = Plasti	c Dual In-line (P), 300 mil	. Body (PDIP)	Note 1:	Tape and	Reel identifier only appears in the
Number of Pins:	16 = 16-Le	ad			identifier is	ort number description. This is used for ordering purposes and ted on the device package. Check Microchip Sales Office for package
Lead Free:	F = Lead	Free Packaging				with the Tape and Reel option.

D	16	~	1	22
П	40			ZZ

Microchip Information

Trademarks

The "Microchip" name and logo, the "M" logo, and other names, logos, and brands are registered and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or subsidiaries in the United States and/or other countries ("Microchip Trademarks"). Information regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legalinformation/microchip-trademarks.

ISBN: 979-8-3371-0236-8

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code.
 Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.