
ENT-AN1015

Application Note

Using the SparX-III Serial GPIO/LED Controller

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 2

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability
of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of
the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi
have been subject to limited testing and should not be used in conjunction with mission-critical equipment or
applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and
complete all performance and other testing of the products, alone and together with, or installed in, any end-products.
Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s
responsibility to independently determine suitability of any products and to test and verify the same. The information
provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such
information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights,
licenses, or any other IP rights, whether with regard to such information itself or anything described by such information.
Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any
changes to the information in this document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing
and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF
solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-
tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn
more at www.microsemi.com.

VPPD-03049

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2012–2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are registered
trademarks of Microsemi Corporation.
All other trademarks and service marks
are the property of their respective
owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 3

Revision History

The revision history describes the changes that were implemented in the document. The changes
are listed by revision, starting with the most current publication.

1.1 Revision 1.0
Revision 1.0 was the first publication of this document.

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 4

Contents

Revision History .. 3
1.1 Revision 1.0 .. 3

2 Using the SparX-III Serial GPIO/LED Controller .. 7
2.1 SparX-III Serial GPIO ... 7
2.2 Using Serial GPIO for Serial LED ... 8

2.2.1 SparX-III Serial LED Benefits ... 9
2.2.2 SparX-III Serial Output/LED Example ... 10
2.2.3 Configuring for Serial Output/LED Timing ... 13
2.2.4 Serial Output Modes ... 14
2.2.5 Software Example for Serial Output/LED... 16

2.3 Using Serial GPIO Input .. 17
2.3.1 Common Settings for Serial Input and Output .. 18
2.3.2 Serial Input Bit Order and Format ... 18
2.3.3 Serial Input and Interrupts .. 19
2.3.4 Serial GPIO Input for LOS ... 19
2.3.5 SparX-III Serial Input Examples .. 20

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 5

Figures

Figure 1 Serial GPIO Timing .. 8
Figure 2 Serial GPIO Output Timing with Disabled Bits ... 8
Figure 3 SparX-III vs. SparX-I on Serial LEDs for a 24/26 Port Switch ... 10
Figure 4 48 LEDs plus 8 Serial Outputs... 12
Figure 5 Serial Output Bits Shifting Through the Serial Register Chain ... 13
Figure 6 Link Active Mode Timing .. 16
Figure 7 Serial Input Data Register .. 19
Figure 8 Serial Input Interrupt Masks .. 19
Figure 9 Serial Input, Example 1 .. 21
Figure 10 Serial Input, Example 2 .. 21
Figure 11 Input Data with Loopback .. 22

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 6

Tables

Table 1 Blinking Modes .. 15

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 7

2 Using the SparX-III Serial GPIO/LED Controller

The Microsemi SparX-III family of devices features a power serial GPIO controller. By using a serial
interface, the serial GPIO controller significantly extends the number of available GPIOs with a
minimum number of additional pins on the device. The serial GPIO controller can be used for serial
LEDs, status and control of SFP modules, or provide additional customized inputs and outputs.

This application note describes the use of the serial GPIO controller along with examples of how to
implement the serial LED feature as well as control and monitor SFP modules.

The name “SparX-III” is used throughout the document to represent the Microsemi Ethernet switch
family, which includes VSC7420, VSC7421, VSC7422, VSC7424, VSC7425, VSC7426, and VSC7427.

2.1 SparX-III Serial GPIO
The serial GPIO controller uses a 4-pin serial interface to significantly extend the number of available
general purpose I/O pins. The serial GPIO controller has both serial input and serial output functions.

Figure 1 shows the input/output timing of the serial GPIO controller. Serial data is output on the
SG_DO pin which is clocked by the SG_CLK pin in bursts. After each burst, there is an assertion of the
SG_LD signal. Serial data can be output as a single burst or as continuous bursts separated by a
configurable burst gap. The burst gap is configured to between 0 and 33 ms in steps of
approximately 1 ms. At the same time, as shifting out serial data on SG_DO, the serial GPIO
controller also samples the SG_DI input. The values sampled on SG_DI are made available to
software, or forwarded to SparX-III port modules if LOS operation is configured.

When the controller is used for serial LEDs, each single bit in the SG_DO stream corresponds to a
different LED. A single burst of data is a frame of data for all the LEDs at a certain moment. External
serial to parallel shift registers are needed to convert the serial data to parallel signals for driving
LEDs. External parallel to serial shift registers should be used for serial input. SG_LD latches parallel
input values to the shift registers while SG_CLK shifts them to the SparX-III device bit by bit.

SG_LD can be used to assure that outputs are stable when serial data is being shifted through the
shift registers. This can be done by using the SG_LD signal to load the serial data onto the parallel
output pins after the burst has completed for load capable shift registers. If the serial GPIO
controller is only used for serial LED output, then SG_LD is optional because it is usually acceptable
for outputs to toggle when serial data is updated (for instance, shifted through the chain). When the
shift frequency is fast enough, the shifts through the chain are not perceptible to the human eye. It
is very easy to make the shift frequency fast enough because the clock frequency of SG_CLK is
programmable.

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 8

Figure 1 Serial GPIO Timing

The maximum length of a burst is 128 bits long. By default, it is organized into 32 ports each with 4
bits per port. However, each port can be enabled or disabled individually. The port width (number of
bits per port) is also centrally configurable, so all enabled ports will have the same width. When a
port and/or a bit is disabled, the corresponding SG_CLK is omitted.

The following illustration shows the timing of the serial GPIO output stream when port width is set
to 2.

Figure 2 Serial GPIO Output Timing with Disabled Bits

2.2 Using Serial GPIO for Serial LED
Ethernet switches generally use LEDs to indicate link status for all their ports. Normally, more than
one LED per port is used because there is a lot of information to be shown (link status, speed,
duplex, activity, and so on). Thus, one can imagine there are a lot of LEDs on the front panel of a 24
port Ethernet switch. Traditional designs use a parallel LED scheme which means there is a
dedicated pin for each LED provided from Ethernet chipset. The large number of LED pins not only
increases the cost of the chipset, but may also increase the cost of the printed circuit board (PCB), as
more layers may be required to route all the LED traces to the front panel. If the LEDs are placed on
a separate LED board, such that all the parallel LED signals must be bridged over from the main
board containing the Ethernet switch to the LED board through ribbon wires, it may reduce the
reliability of the system.

pN-1
b2

pN
b3SIO_dat_o

SIO_dat_i

SIO_clk

SIO_ld

28ns

pN
b2

pN
b1

pN
b0

pN-1
b3

p0
b3

p0
b2

p0
b1

p0
b0

p0
b0

p0
b1

p0
b2

p1
b1

p0
b3

p1
b0

p1
b2

pN
b0

pN
b1

pN
b2

pN
b3

pN
b3

pN
b2

p0
b0

p0
b1

Burst gap

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 9

To solve the problem, a serial LED scheme has recently been adopted by customers. Serial LEDs use
only two pins, a serial data line, and a serial clock line to send out a serial stream of LED status bits.
This is then converted to parallel signals externally through a chain of serial to parallel shift registers.
The shift registers can be placed at the appropriate locations of the board to ease the layout of the
board. The number of wires between the main board and LED board are reduced significantly for
use of a LED board.

2.2.1 SparX-III Serial LED Benefits
Serial LED is not a new feature for Microsemi Ethernet products. Serial LED had already been
introduced years ago, dating back to SparX-I and most Microsemi Ethernet PHYs. However, by using
the serial GPIO controller, SparX-III does improve serial LED support in several aspects and offers the
following benefits for customers:

• For the old generation SparX-I, and all Microsemi PHY products, the serial LED interface only
supported the internal PHY ports (ports 8 thru 15 for VSC7390/89/91). Thus for a 24 port switch
application consisting of a 24-port switch with 8 integrated PHYs and two additional 8-port PHY
devices, there would be three separate serial LED chains, one from each switch/PHY device.
There is a downside when SGMII/SerDes interfaces on SparX-I are used for driving SFP modules
directly without a PHY, no serial LEDs can be supported for these ports and there are limited
parallel GPIO pins on SparX-I available for that purpose. In contrast, SparX-III supports up to 128
serial outputs from the serial GPIO controller which can be used for serial LEDs for both internal
PHY ports and external PHY ports. In addition, customized LEDs such as a temperature alarm,
fan speed indication, software alive indications, etc., can all be supported by the 2-pin serial LED
interface offered from the serial GPIO controller.

• For SparX-I switches and all Microsemi PHYs, the bit number and order of the serial LED stream
is fixed. They support 8 ports with 12 LED status bits per port resulting in a 96 bit serial LED
stream for SparX-I and Microsemi 8 port PHYs. That means no matter how many ports are
enabled and how many LEDs per port are needed the hardware must have 96 bits of shift
registers for each serial LED chain. This is obviously not cost optimized. With SparX-III, the
number of ports enabled and the number of bits per port in the serial LED bit stream is
programmable. So for a 24 port switch application with 2 LEDs per port there are only 48 (24
times 2) bit shift registers needed. Contrast that with the SparX-I solution which required 288
(96 times 3) bit shift registers.

The following illustration shows the serial LED comparison between SparX-I and SparX-III for a 24/26
port switch.

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 10

Figure 3 SparX-III vs. SparX-I on Serial LEDs for a 24/26 Port Switch

2.2.2 SparX-III Serial Output/LED Example
Serial LEDs only make use of serial outputs from the serial GPIO controller. If serial LEDs use less
than the total 128 bits, the unassigned bits can be used for other general purpose outputs such as
output signals for controlling TxDisable signals for SFP modules or driving a 7-segment display for
showing the die temperature of the chipset.

The external circuits for the SparX-III serial LED implementation are as simple as a single chain of
serial to parallel shift registers. The number of shift registers must equal the number of enabled
ports times the port width.

There are different 74 series serial to parallel shift registers with different features to choose from to
meet customers’ needs. A common requirement is that the shift register should shift in data on the
rising edge of the clock. The following lists commonly used serial to parallel shift registers.

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 11

• 74164–-an 8-bit serial to parallel shift register without load capability and tri-state output. It can
be used for serial LED.

• 74594–-an 8-bit serial to parallel shift register with load capability. It uses a separate load signal
to latch shift register values to the storage register. The storage register holds the values for the
parallel output pins. The 74594 can be used for outputs which are not tolerant of output
toggling during shifting (for instance, TxDisable output for SFP modules) so SG_LD can be used
to load data after a complete burst. The 74594 has independent shift and storage register clear
inputs. These clear inputs can be connected to the system reset signal to make sure the parallel
outputs are in a known state after reset. The 74594 does not support tri-state outputs as the
outputs are always enabled.

• 74595–-an 8-bit serial to parallel shift register with load capability and tri-state outputs. The
74595 also uses a separate load signal to latch shift register values to the storage register similar
to the 74594. The difference is that tri-state outputs are controlled by an output enable (/OE)
signal. When the 74595 is used for serial LEDs, it is possible to pulse gate the parallel LED
outputs by using a pulse width modulation (PWM) control signal. There is a PWM output on
SparX-III with programmable clock frequency and duty cycle. The signal is initially for the
purpose of controlling fan speed. If the PWM output is not used for controlling fan speed, the
user may connect it to the /OE input of the 74595 to adjust the brightness of the LEDs. By
changing the duty cycle of the signal, the LED brightness will change. Please note that the clear
input for the 74595 only clears the shift register, but not the storage register. So the storage
register is undefined until the first load pulse is applied, and the shift register values are loaded
to the storage register.

The following illustration shows a system with 48 serial LEDs and 8 general purpose outputs. Six
74HC164 (D0 through D5) are used for the 48 LEDs, and a 74HC594 (D6) is used for the 8 general
purpose outputs.

28 serial GPIO ports are enabled, and the port width is set to 2. Serial GPIO port0 through port23 are
used for serial LEDs (port0 bit0 for LED_0, port0 bit1 for LED_1, port1 bit0 for LED_2, port1 bit1 for
LED3, …, port 23 bit 0 for LED_46, and port 23 bit1 for LED_47). Serial GPIO port24 through port27
are used for general purpose outputs (port 24 bit0 for GPO_0, port_24 bit1 for GPO_1, …, port 27
bit0 for GPO_6, and port27 bit1 for GPO_7).

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 12

Figure 4 48 LEDs plus 8 Serial Outputs

The following illustration shows a burst of serial output data being shifted through the shift register
chain. The bit order within the serial stream is in default order, the highest bit (port27 bit1) is shifted
out at the first clock, followed by port27 bit0, port26 bit1, …, port0 bit1, and port0 bit0. The register
bits in grey hold values from the last burst of data, or default values following reset.

T1 represents the time when only one clock has been sent out. Port27 bit1 is sent out on SG_DO
along with the first clock. It will be latched into LED_0, but the destination of port27 bit1 is GPO_7
(the last bit in the shift register chain). It is only at T56 that port27 bit1, together with all other bits,
have finally reached their destination through the whole chain. After the assertion of SG_LD, port27
bit1 can then be latched from the shift register to the storage register and output on pin GPO_7. All
shift registers hold their values during the burst gap until the next burst of clock and data.

LED_0 thru LED47 are not stable from T1 to T56. However, the human eye cannot detect the
toggling if the serial clock is fast enough, and the burst gap is long enough.

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 13

Figure 5 Serial Output Bits Shifting Through the Serial Register Chain

2.2.3 Configuring for Serial Output/LED Timing
Several timing parameters must be configured to customize the serial GPIO controller to meet the
customer’s requirements and match the customer’s hardware. The parameters include the number
of ports (the enabled/disabled state for each of the 32 ports), port width, serial clock frequency,
burst gap, signal polarity, and bit ordering. The relevant registers for configuring the timing of the
serial GPIO output are as follows:

• SIO_PORT_CONFIG
• SIO_PORT_ENABLE
• SIO_CONFIG
• SIO_CLOCK

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 14

Please refer to the SparX-III datasheet for detailed descriptions of each register. Only the serial LED
timing-related register fields and their usages are as follows:

• Clock frequency of the serial GPIO output clock (signal SG_CLK)—SG_CLK is used for both serial
input and output. The clock frequency of that signal is configured through register
SIO_CLOCK::SIO_CLK_FREQ (bits 11:0). The resulting SG_CLK frequency is the system clock
divided by the register value. Given that the system clock of SparX-III is 250 MHz, and if
SIO_CLK_FREQ is set to 0xA, the output frequency will be 25 MHz. A faster SIO_CLK makes LED
toggling along the shift register chain less noticeable. The customer must ensure that the
configured SG_CLK frequency is within the specification of the selected shift register devices.
Setting SIO_CLK_FREQ to 0 disables clock division, resulting in SIO_CLK being 250 MHz. Setting
SIO_CLK_FREQ to 1 is illegal.

• Serial GPIO burst gap—the burst gap length is programmable through register
SIO_CONFIG::SIO_BURST_GAP (bits 11:7) in approximately 1 ms steps. Setting the register field
to 0 results in a 1 ms burst gap and 0x1F results in a 33 ms burst gap. Burst gap can also be
disabled by setting register bit SIO_CONFIG::SIO_BURST_GAP_DIS. In that case, frames of serial
output data follow one by one without a gap between them. A shorter burst gap results in serial
outputs being updated more frequently and thus a better visual effect for a blinking LED,
especially when the LED is blinking at a fast frequency (such as, 20 Hz). The cost is a little more
power consumption.

• Serial GPIO burst mode—SparX-III serial GPIO supports both single burst and continuous bursts.
In single burst mode, a frame of serial data is only sent out once on demand (after register bit
SIO_CONFIG::SIO_SINGLE_SHOT is set), which is not very useful for dynamic serial LED
applications with blinks. Continuous bursts mode is usually used for serial LED applications, so
register SIO_CONFIG::SIO_AUTO_REPEAT should be set to enable that mode.

• Port_number and port width—these parameters decide how many bits will be present in every
frame of serial data. Port number is configured through a 32-bit register, SIO_PORT_ENABLE,
with each bit corresponding to a port. Ports can be individually enabled/disabled by
setting/clearing the corresponding bit in the register. Port width is configured centrally for all
ports through register SIO_CONFIG::SIO_PORT_WIDTH (bits 3:2). When set to 0, only bit0 for
each enabled port is enabled. When SIO_CONFIG::SIO_PORT_WIDTH is set to 2, all 4 bits (bit3,
bit2, bit1, and bit0) are enabled.

• Serial LED output bit order—the default order of the output bit stream is in the order of portN
bit3, portN bit2, …, port0 bit1, port0 bit0 (see Figure 1). This can be reversed by setting register
SIO_CONFIG::SIO_REVERSE_OUTPUT, and the bit order changes to port0 bit0, port0 bit1, …,
portN bit2, portN bit3.

• SG_LD polarity—the polarity of the serial data load signal, SG_LD, can be programmed to be
active high or low through register bit SIO_CONFIG::SIO_LD_POLARITY. The purpose is for
adapting to different types of load capable shift registers.

2.2.4 Serial Output Modes
Serial output modes are the supported behaviors for each individual LED. Serial output mode is
programmed for each serial output bit through a group of registers–SIO_PORT_CONFIG[n]. There
are 32 registers in total. SIO_PORT_CONFIG[n] corresponds to a serial output portn. Only bits 11:0 of
a SIO_PORT_CONFIG are used for programming serial output mode for 4 bits. For example,
SIO_PORT_CONFIG[0]::BIT_SOURCE_3(bits 11:9) are used to configure the serial output mode for
port0 bit3, SIO_PORT_CONFIG[0]::BIT_SOURCE_2(bits 8:6) are used to configure the serial output
mode for port0 bit2, SIO_PORT_CONFIG[0]::BIT_SOURCE_1(bits 5:3) are used to configure the serial
output mode for port0 bit1 and SIO_PORT_CONFIG[0]::BIT_SOURCE_1(bits 2:0) are used to
configure the serial output mode for port0 bit0.

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 15

The three bits for each serial output bit are coded for the following 8 serial output modes:

• Force “0”
• Force “1”
• Blinking mode 0
• Blinking mode 1

• Link activity blinking mode 0
• Link activity blinking mode 1
• Link activity blinking mode 0 inversed polarity
• Link activity blinking mode 1 inversed polarity

Mode 1 and mode 2 are forced modes. They are used to assign a fixed value to the corresponding
output bit in the serial output stream. The fixed value when converted to parallel by the external
shift registers will result in a fixed voltage level for turning on/off the connected LED according to
the polarity of the external LED. The forced modes are used to display static events like link status
(linkup or linkdown), speed (10M, 100M, 1000M), and duplex of an Ethernet port.

Note: The hardware does not collect link status, speed, and duplex information from any Ethernet port and
map the serial output bits automatically. Software must get that information and program the output
mode field. For example, when serial output port 0 bit1 is intended to be used as link 1000M indication
for Ethernet port module0, software must check link status for Ethernet port module0 periodically. Only
when software detects Ethernet port module0 establishes a link in 1000M speed, it will then update
SIO_PORT_CONFIG[0]::BIT_SOURCE_1 to 0 to turn on the LED, assuming the external LED circuit is active
low.

Mode 3 and mode 4 are two blink modes. Blinking modes are used to make the serial output bits to
blink at a fixed rate. SparX-III serial GPIO controller features two blink modes that can be set
independently. The following table shows the supported blinking frequencies. Two blink modes are
able to convey different information and can be programmed at different blinking frequencies so
that some LEDs can blink faster than the others, which is useful to give different levels of alarm by
using different blinking frequency, for example.

Table 1 Blinking Modes

Mode Description

Blink mode 0 0: 20 Hz blink frequency
1: 10 Hz blink frequency
2: 5 Hz blink frequency
3: 2.5 Hz blink frequency

Blink mode 1 0: 20 Hz blink frequency
1: 10 Hz blink frequency
2: 5 Hz blink frequency
3: Burst toggle

Blinking frequencies for blink mode 0 and 1 can be programmed through register
SIO_CONFIG::SIO_BMODE_0 (bits 19:18) and SIO_CONFIG::SIO_BMODE_1 (bits 21:20).

If more than one Ethernet switch/PHY are used in a system, the LED blinking pattern from between
these devices can go out of sync, and this can sometimes be annoying. SparX-III offers a solution to
the problem by providing a blink counter reset bit (register SIO_CONFIG::SIO_BLINK_RESET) to
synchronize the blink patterns between different devices. This is more effective when the different
devices run from the same clock source; otherwise the devices will slowly drift apart, thus a blinking
counter reset needs to be done periodically.

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 16

Modes 5 through 8 are link active modes. For serial output mode 1 through 4, the serial output ports
have no direct relation to the Ethernet port modules. Bits in serial output port 0 can be used for
LEDs for any port module as they are basically controlled by software. However, it is not true for the
link active modes. Link active modes are used to make the output blink when there is activity on the
corresponding port module (both Tx or Rx). The mapping between serial output port and Ethernet
port module is 1:1 (static mapping). Serial output port 0 is connected to port module 0, serial output
1 is connected to port module 1, and so on.

The link active modes use an envelope signal to gate the selected blinking pattern (blink mode 0 or
blink mode 1). When the envelope signal is asserted, the output will blink. When the envelope signal
is de-asserted, the output will be fixed at 0 (blink mode 5 and 6) or 1 (blink mode 7 and 8). Blink
modes 5 and 6 can be used for a Link/activity LED when the hardware LED is active low. Blink modes
7 and 8 can be used for Link/activity LED when the hardware LED is active high.

To ensure that even a single packet makes a visual blink, an activity pulse from the port module will
be extended to a minimum of 100 ms. If another packet is sent while the envelope signal is asserted,
it will be extended by another 100 ms, as shown in the following illustration.

Figure 6 Link Active Mode Timing

2.2.5 Software Example for Serial Output/LED
A code example is given for supporting a 24 port switch. With two LEDs per port are used in the
example. LED0 (corresponds to bit0 in the serial stream) is 10/100link/activity and LED1
(corresponds to bit1 in the serial stream) is 1000link/activity. The blink frequency for LED0 and LED1
are at 5 Hz. Additionally, a software alive LED and a die temperature alarm LED are also presented.
The software alive LED blinks at 0.5 Hz to indicate that the software is running while the die
temperature alarm LED has 3 states:

• UnAlarm (Alarm LED off)—temperature below alarm_threshold_0
• Alarm_level_1 (LED blink at 2.5 Hz)—temperature between alarm_threshold_0 and

alarm_threshold_1
• Alarm_level_2 (LED blink at 5 Hz)—temperature above alarm_threshold_1

In this example, assume all LEDs have been designed as active low by hardware. The following code
initializes the serial GPIO and sets the serial output mode for all the LEDs dynamically:
Write(SIO_CLOCK::SIO_CLK_FREQ, 0x64); /* Set SG_CLK to be 2.5M,250M/100 = 2.5M */

Write(SIO_CONFIG::SIO_BURST_GAP, 0x1f); /* set length of burst gap to be 33ms */

Write(SIO_PORT_ENABLE,0x1ffff); /* enable 25 serial output ports, the 25th port is for

software alive and alarm LED */

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 17

Write(SIO_CONFIG::SIO_PORT_WIDTH, 1); /* set port width to 2 */

Write(SIO_CONFIG::SIO_BMODE_1, 2); /* set blink mode 1 frequency at 5Hz, used for

10/100link/activity, 1000Link/activity and temperature Alarm_level_2 */

Write(SIO_CONFIG::SIO_BMODE_0, 3); /* set blinking mode 0 frequency at 2.5Hz used for

temperature Alarm_level_1 */

/* Turn off all LED, assume the hardware design for all LEDs are active low */

for (n = 0, n <25, n++) {

Write(SIO_PORT_CONFIG[n]::BIT_SOURCE_0, 1); /* force off for LED0 */

Write(SIO_PORT_CONFIG[n]::BIT_SOURCE_1, 1); /* force off for LED1 */

}

Write(SIO_CONFIG::SIO_AUTO_REPEAT, 1); /* enable continuous bursts mode */

/* Checking port status and setting link/activity LED mode every 100ms */

While(timer_100ms expired){

for (n = 0, n <24, n++) {

 if(link status for port[n] changed) {

 if(port[n] linkup && port[n] speed == 10M/100M){

Write(SIO_PORT_CONFIG[n]::BIT_SOURCE_0, 5); /* Activate LED0 for 10/100Link/activity */

Write(SIO_PORT_CONFIG[n]::BIT_SOURCE_1, 1); /* turn off LED1 */

 }

 else if(port[n] linkup && port[n] speed == 1000M){

 Write(SIO_PORT_CONFIG[n]::BIT_SOURCE_1, 5); /* Activate LED1 for 1000Link/activity */

 Write(SIO_PORT_CONFIG[n]::BIT_SOURCE_0, 1); /* turn off LED0 */

 }

 else if(port[n] linkdown)){

 Write(SIO_PORT_CONFIG[n]::BIT_SOURCE_0, 1); /* turn off LED0 */

 Write(SIO_PORT_CONFIG[n]::BIT_SOURCE_1, 1); /* turn off LED1 */

 }

 else{ /* No link status change, no action */ }

 }

 }

}

/* Invert alive LED and update temperature Alarm status once per second */

While(timer_1s expired){

 Write(SIO_PORT_CONFIG[24]::BIT_SOURCE_0,(SIO_PORT_CONFIG[24]::BIT_SOURCE_0 + 1)&1);

 /* invert alive LED */

 If(T<alarm_threshold_0){

 Write(SIO_PORT_CONFIG[24]::BIT_SOURCE_1, 1); /* turn off temperature alarm LED */

 }

 else if(alarm_threshold_0<=T<alarm_threshold_1){

 Write(SIO_PORT_CONFIG[24]::BIT_SOURCE_1, 2); /* set alarm LED in blinking mode 0 -- 2.5Hz */

 }

 else{

 Write(SIO_PORT_CONFIG[24]::BIT_SOURCE_1, 3); /* set alarm LED in blinking mode 1 -- 5Hz */

 }

 }

2.3 Using Serial GPIO Input
As previously described, the SparX-III serial GPIO controller has both output and input function
blocks. Serial input uses a serial interface to extend the number of general purpose input pins. The
extended input pins can be used to monitor status from SFP modules. There are three status outputs
from each SFP module, Tx_fault, Module_detect, and LOS. The required number of general purpose

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 18

input pins could be large if customers support a lot of SFP modules in their design. Besides SFP
module status monitoring, the serial GPIO input can also be used for push buttons, DIP switch
configurations, and more. Additional inputs make the switch more configurable and intelligent.

2.3.1 Common Settings for Serial Input and Output
The serial input block works simultaneously with the output block. When serial output data is being
shifted out on SG_DO, serial input data is at the same time being shifted into the switch through
SG_DI. The serial input data will be stored in register S_IN0 thru S_IN3 for software to read.

Serial input and output of the serial GPIO controller share several common settings:

• Same configurations for serial GPIO clock frequency and burst gap. Please note SG_LD assertion
is followed immediately after a burst of serial clock (SG_CLK). It is not until the next burst of
serial clock that the latched serial inputs can be shifted from the external shift registers into the
switch. Longer burst gaps result in longer input latency. The maximum input latency could be
33ms (maximum burst gap). Although it is possible to disable burst gap by setting register bit
SIO_CONFIG::SIO_BURST_GAP_DIS to reduce input latency, but that would cause problems for
the serial LEDs (outputs) if shift registers without load capability are used (e.g., 74164). Burst
gap optimization must address requirements of both serial inputs and outputs. Refer to Section
3.3 on configurations for serial GPIO clock and burst gap.

• Same configurations for serial GPIO port number (serial ports enabled/disabled) and port width.
The serial port/bit enabling/disabling is effective for both input and output. Refer to Section 3.3
for configurations on port number and port width.

• Serial GPIO burst mode: Once enabled single burst and continuous bursts are effective for both
serial input and output. Single burst mode enables the software to read serial input at any time.
But due to the input latency described earlier in order to sample the input values by single burst
mode, two consecutive single burst commands must be issued. The first burst will result in the
input values being latched by the external serial to parallel registers, while the second burst will
shift the input values into the switch. Set register bit SIO_CONFIG::SIO_SINGLE_SHOT to trigger
a single burst. This register is self cleared.

• Polarity of SG_LD: Both serial input and serial output use the same load signal, SG_LD. For serial
output SG_LD is used to latch shift register values to the parallel output pins. For serial input
SG_LD is used to load parallel input values from parallel input pins to the shift register. The
polarity of SG_LD is configurable through register bit SIO_CONFIG::SIO_LD_POLARITY.

2.3.2 Serial Input Bit Order and Format
 As shown in Figure 1, the default order of the input bit stream is in the order of port0 bit0, port0 bit
1, …, portN bit 2, portN bit 3. The lowest bit is shifted into the switch first. This can be reversed by
setting SIO_CONFIG::SIO_REVERSE_INPUT, after which the bit order changes to portN bit 3, portN
bit2, …, port0 bit1, port0, port0 bit0. The bit order for serial input can be reversed independent of
the bit order for serial output.

The sampled serial input data is stored in four 32-bit registers, S_IN0 through S_IN3. The following
illustration shows the data format of the four registers when only serial GPIO port 0 through port 15
are enabled with a port width of 2 bits. The bits for disabled ports/bits are undefined. In the
following illustration, the bits in grey represent the undefined/disabled bits.

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 19

Figure 7 Serial Input Data Register

2.3.3 Serial Input and Interrupts
The serial GPIO input is able to generate interrupts based on the serial input data values. All
interrupts are level-sensitive and can be enabled per port and per bit position.

The 32-bit register SIO_PORT_INT_ENA enables interrupts per serial input port. When a bit is set in
this register, interrupts for all four input bits of the corresponding serial port are enabled.

The 4-bit register SIO_CONFIG::SIO_INT_ENA enables serial input interrupts per bit position. The
lowest bit in SIO_CONFIG::SIO_INT_ENA represents bit0 of all the serial GPIO ports, while the
highest bit in SIO_CONFIG::SIO_INT_ENA represents bit3 of all ports. Setting a bit in
SIO_CONFIG::SIO_INT_ENA will enable interrupts for the corresponding input bit for all ports. The
result of the per port and per bit position interrupts are shown in the following illustration.

Interrupt polarity is configured for each serial input bit in SIO_INT_POL_0 thru SIO_INT_POL_3. Bit
ordering is the same as shown in the illustration. Setting a bit configures an interrupt at logic value
“0” for the serial input bit. Clearing a bit configures it to an interrupt at logic value “1”.

Figure 8 Serial Input Interrupt Masks

The serial GPIO controller has one interrupt output connected to the main interrupt controller that
gets asserted when one or more interrupts are active. To determine which input bit is causing the
interrupt, the CPU must read the “sticky-bit” interrupt registers SIO_INT_REG_0 through
SIO_INT_REG_3. The registers have one bit per serial input bit and can only be cleared by software.
A bit is cleared by writing a “1” to the bit position. The interrupt output will remain high until all
interrupts in SIO_INT_REG_x are cleared.

2.3.4 Serial GPIO Input for LOS
The serial GPIO controller is able to propagate loss of signal detection inputs directly to the port
module’s signal detection input. This is useful when, for example, SFP modules are used in the
design. The mapping between serial GPIO ports and port modules is the same as for link activity
outputs (port 0 is connected to port module 0, port 1 is connected to port module 1, and so forth).

1 1 1 1 1 1 1 1 1 1 1111 1 11

Port enable

Bit enable

Result

port
N

port
N-1

port
N-2

port
N-3

port
0

port
1

port
2

port
3

port
4

port
5

port
6

port
7

port
8

port
9

port
10

port
11

bit0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 00 0 0

port 0 port 1 port 2 port 3 port 4 port 5 port N-1 port N

bit 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

bit1 bit2 bit3

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 20

Only bit 0 of each serial input port can be configured to forward directly to the corresponding port
module’s loss of signal input. Enabling serial input for LOS can be configured per port or per port
module. The following signal detect configuration bits for the port module should be configured:

• PCS1G_SD_CFG::SD_ENA (bit 0) must be set to enable Signal Detect for the PCS of the port
module. When this bit is cleared, the PCS assumes an active Signal Detect at all times.

• PCS1G_SD_CFG::SD_SEL (bit 8) must be set to enable serial input bit 0 as the signal detect input
to the PCS. Otherwise, the signal detect signal for the PCS is generated internally.

• PCS1G_SD_CFG::SD_POL (bit 4) configures the polarity of the signal detect input. Because LOS
from an SFP module is active low, this bit must be cleared. Additionally, the corresponding
interrupt polarity registers of the serial input bit in SIO_INT_POL_0 through SIO_INT_POL_3
must also be cleared.

2.3.5 SparX-III Serial Input Examples
External parallel to serial shift registers must be used to sample and store the parallel input values
before they are shifted into the switch. The 8-bit shift register 74165 can be used for that purpose. It
latches parallel values into the shift register on the rising edge of /PL (typically connected to SG_LD)
and shifts data out on the rising edge of CP (typically connected to SG_CLK).

Because the same serial ports/bits must be enabled at the same time for serial input and output, the
shift register width for input must theoretically be equal to the shift register width for output. As the
number of serial outputs is generally more than the number of serial input required in a design, this
does not necessarily mean that the design must contain the same number of physical shift registers
for serial input as it does for serial output. Several techniques are described in the following sections
to reduce the number of shift registers for serial input.

A general recommendation is to use the lowest enabled ports/bits for serial input when serial input
is in default bit order (register bit SIO_CONFIG::SIO_REVERSE_INPUT cleared) or use the highest
ports/bits for serial input when serial input is in reverse bit order (register bit
SIO_CONFIG::SIO_REVERSE_INPUT set). In that case, the shift register width can be limited to the
number of actually required serial input bits. The idea is to only have external shift registers for the
required serial inputs by arranging the required serial inputs to be shifted into the switch earlier
than other "don't care" serial inputs, which do not necessarily have shift registers for them because
the values are not used.

As an example, assume we have the same serial output/LED requirements as in SparX-III Serial
Output/LED Example such that 28 serial ports with 2-bit port width must be enabled. Now we have
the serial input requirement of 6 inputs for two SFP modules on port module 24 and 25. The signals
Tx_fault, Module_detect, and LOS from the two SFP modules must be monitored through serial
input. Because the two LOS signals must be mapped to serial port 24 bit 0 and serial port 25 bit 0,
we have to use the highest ports/bits for the six inputs with reversed serial input bit order.

The following illustration shows how this can be realized by using only one 8-bit parallel to serial
shift register.

In this example, the six input signals from the two SFP modules will be correctly input to the switch
while all the other serial input bits will all get a value "0" because signal DS is grounded. LOS_24 and
LOS_25 must be mapped to serial port 24, bit 0 and port 25 bit 0 correspondingly.

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 21

Figure 9 Serial Input, Example 1

Serial inputs such as Module_detect and Tx_fault from SFP modules or push button inputs are only
for software to read (we call them soft inputs) so they can be mapped to any serial port/bit.
However, the LOS signal from an SFP module is forwarded directly to the PCS block of the
corresponding port module so there is no freedom to place these in any port/bit position at will.

In the preceding example, the two SFP modules are on port 24 and 25 so we can use the highest
ports/bits for all the serial input signals. If the two SFP modules must be supported on port module
12 and 13, a technique called shift register loopback can be used.

The following illustration shows an example with the same serial output/LED requirements as the
previous example, but the six serial inputs from two SFP modules are from port module 12 and 13.
Serial output Q7 of the shift register is looped back to its serial input DS, so that the same 8-bit
values will be repeated on the serial input stream and get duplicated in the internal serial input
registers. In this way, we have successfully copied the 8 serial inputs into the correct port/bit
positions.

Figure 10 Serial Input, Example 2

Using the SparX-III Serial GPIO/LED Controller

 ENT-AN1015 Application Note Revision 1.0 22

The following illustration shows the resulting serial input values in the switch after a complete burst.
Bits in grey are disabled bits. Bits in dashed boxes are don’t care bits.

Figure 11 Input Data with Loopback

The last example is a special case where only one serial input needs to be read. No matter if it is a
soft input or a LOS signal from a single SFP for any port module, this signal can be connected directly
to SG_DI without a shift register. This single input bit will be read repeatedly by the serial GPIO
controller, and it will finally reach the correct bit position where it is needed.

	Revision History
	1.1 Revision 1.0

	2 Using the SparX-III Serial GPIO/LED Controller
	2.1 SparX-III Serial GPIO
	2.2 Using Serial GPIO for Serial LED
	2.2.1 SparX-III Serial LED Benefits
	2.2.2 SparX-III Serial Output/LED Example
	2.2.3 Configuring for Serial Output/LED Timing
	2.2.4 Serial Output Modes
	2.2.5 Software Example for Serial Output/LED

	2.3 Using Serial GPIO Input
	2.3.1 Common Settings for Serial Input and Output
	2.3.2 Serial Input Bit Order and Format
	2.3.3 Serial Input and Interrupts
	2.3.4 Serial GPIO Input for LOS
	2.3.5 SparX-III Serial Input Examples

