Altmel

Atmel CryptoAuthentication

ATECCS508A Public Key Validation

APPLICATION NOTE

Introduction

The Atmel® CryptoAuthentication” ATECC508A device supports validated
public keys if keyConfig.Publnfo is set to one for the slot containing the
public key. If configured in this manner, the public key is invalid by default
when loaded and can only be used after the appropriate validation operation
has been successfully completed. Reasons why this capability is useful are:
* To store the validation status of a client public key to speed up
subsequent authorizations. In this manner the certificate chain needs
be verified only once, and subsequent authorizations will only require
validation of the signature of the random nonce.
* To allow controlled updates of public keys used to verify software or
other data, as would be appropriate if the key is revoked.

The validity status is stored in protected memory which can be modified only
in accordance with the security policies set in the device’s Configuration
zone.

This following functionality is optional:

* If Publinfo is set to zero, then public keys can be used by the
Verify (External) command immediately after they are loaded.

The remainder of this document discusses handling of public keys for which
the validation function is intended and Publnfo is set to one. In addition, this
document refers to the operation after the Data zone is locked. Prior to
locking, most slots can be written without restriction. This document
describes the command sequences in terms of three keys:
+ Child Key —The public key to be written and validated. Must be a slot
number from 8 to 15.
* Encryption Key — The symmetric key used to authorize the write. Its
slot number is SlotConfig[Child].WriteKey. It may reside in any slot.
+ Parent Key — The public key used to validate the child key. Its slot
number is SlotConfig[Child].ReadKey. It must resolve to slot number
from 8 to 15.

These sequences can be used hierarchically to validate a longer certificate
chain if the various key links are so configured.

Atmel-8932A-CryptoAuth-ATECC508A-Public-Key-Validation_Application Note-01/2016

Table of Contents

L0 LT3 1T o 1
T OV IV, .. et aaaaa—a———————————————————————————————————_ 3
1.1, RaANAOM NOUNCE.... ..ot e e e e e e e e et et e e e e e eeeaaaaaaaaeeeeeeaeaaaanannnes 3
1,20 AUTNOTIZALON. ... ettt e e snr e eaneas 3
2. Public K&y Wrte SEQUENCES.........uuuviiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeseseeeeeeeeeseeeeeeeeeeeeeeeeeeeeees 5
F B O o T=T o A 4 (=TT PP PP PP P UPPPPUPPN: 5
2.2, AUNENtiCatEd WIIE......oi it 5
2.3, PUDVAIIA WIEE..... ..ttt e e e e e e et e e e e e aaa e e e e e e e anreeeeeesensanneeeean 5
3. Public Key Validation SEQUENCES...........cooiuiiiiiiiiiieiiiieee e 6
3.1 VErfY(ValIAAe).. .ot 6
3.2, Verify(ValidateEXIEINal)........couiiiiiiee et s e e e e et e nneas 6
4. Message Generation for Verify(Validate)..........ccceeoiiiiiiiiiiiie e 7
5. REVISION HISTOMY......oiiiiiiiii e e e e 9
Atmel Atmel ATECC508A Public Key Validation [APPLICATION NOTE]

Atmel-8932A-CryptoAuth-ATECC508A-Public-Key-Validation_Application Note-01/2016

2

Overview

There are three ways to write public keys into the device depending on SlotConfig[Child].WriteConfig.
Command details are in the Public Key Write Sequences section. All writes invalidate the public key:

+ Standard Open Write — No special authorization is required.

+ Authenticated Write — Requires knowledge of a symmetric secret to generate an authorizing
MAC for the data. It uses the Write (Encrypt) command which takes the input of the encrypted
public key and authorizing MAC.

* PubValid Write — The PubValid Write Can be written in the clear without authorization only if the
existing public key in the slot is invalid. If the PubKey is valid, then writes are forbidden.

There are two ways to validate a public key depending upon the contents of the X.509 formatting bytes
within the Configuration zone, X509format[KeyConfig[Child].X509id]. Both use the Veri fy command.
Command details are in the Public Key Validation Sequences section.

« Verify(Validate) — With this method, the device receives a signature generated by the parent over
an Atmel-defined message covering the child public key. Depending upon the details of the
message, this command can be used to invalidate a key to allow the PubValid write mode to be
executed.

« Verify(ValidateExternal) — With this method, the device receives an X.509 certificate generated
by the parent over a standard ASN.1 message covering the child public key. Keys validated in this
manner can only be invalidated with the Write command

Additional ATECC508A features that come into play regarding public key updates are Random Nonce
and Authorization which are addressed below.

Random Nounce

The KeyConfig.RegRandom bit is designed to allow or deny use of a fixed cryptographic sequence.
Another way to think of this is that if ReqRandom is zero then a stored token can be used to repeat the
sequence at various times or in various places if the public keys are repeated. If ReqRandom is one, then
the sequence must be individually computed for a specific device at that specific time.

If RegRandom is set for the Child, then a random nonce will be required for execution of the
Verify(ValidateExternal) sequence described in the Public Key Validation Sequences section, but not the
Verify(Validate) sequence. If RegqRandom is set for the Parent, then a random nonce will be required for
both sequences.

The write command does not honor ReqRandom. In the case of the Authorized Write sequence, the
GenDig command listed in the Public Key Write Sequences section implements this restriction regarding
the encryption key.

All sequences are listed in the following sections assuming that the ReqAuth bits are set to zero.

Authorization

The verify command does not observe the ReqAuth for the child slot to be validated. RegAuth is
honored for the parent key (KeyConfig[Child].AuthKey). In the validation sequences described below in
the Public Key Validation Sequences section, multiple commands are utilized to prepare for the final
Verify command. Those that access a public key DO honor the relevant ReqgAuth bit for either Child or
Parent.

AtmeL Atmel ATECC508A Public Key Validation [APPLICATION NOTE] 3

Atmel-8932A-CryptoAuth-ATECC508A-Public-Key-Validation_Application Note-01/2016

The wWrite command does not observe the RegAuth bit on the child slot. Authorization can be used for
the authenticated write operation if the RegAuth bit is set for the Encryption key. The authorization is
required prior to the GenDig operation listed in the Public Key Write Sequences section.

All sequences are listed below assuming that the RegAuth bits are set to zero.

AtmeL Atmel ATECC508A Public Key Validation [APPLICATION NOTE] 4
Atmel-8932A-CryptoAuth-ATECC508A-Public-Key-Validation_Application Note-01/2016

2. Public Key Write Sequences

21. Open Write

Table 2-1. Open Write

Commans | ode paramz s

Write 0x82 Child First half of public key. No MAC required.
Write 0x82 Child Second half. No MAC required.

2.2. Authenticated Write

Table 2-2. Authenticated Write

N

Nounce Fixed

GenDig Data Enc Key Load decryption value into TempKey.
Write 0x82 Child First half. MAC is required.

Nonce Fixed =

GenDig Data Enc Key | Load decryption value into TempKey.
Write 0x82 Child Second half. MAC is required.

2.3. PubValid Write

This sequence includes both the invalidation commands for the currently stored public key and writing of
the new public key.

Table 2-3. PubValid Write

N

Nonce Fixed
GenKey 0x10 Child Add digest of Child public key to TempKey.
Verify Invalidate Child Data is invalidation (revocation) signature.
Write 0x82 Child First half of new public key. No MAC required.
Write 0x82 Child Second half. No MAC required.
AtmeL Atmel ATECC508A Public Key Validation [APPLICATION NOTE] 5

Atmel-8932A-CryptoAuth-ATECC508A-Public-Key-Validation_Application Note-01/2016

3. Public Key Validation Sequences
3.1. Verify(Validate)
The Validate mode is a more efficient mode for public key validation as compared to ValidateExternal,
requiring fewer commands. Its input is a signature computed from the child public key by the parent.
Because the entire message template is controlled by the device, it can be used for both validation and
invalidation.
Table 3-1. Verify(Validate)
Command | Wode _ paran
Nonce Fixed =
GenKey 0x10 Child Add digest of Child public key to TempKey.
Verify Validate Child Slgrled by Parent. Rgference the Message Generation for
Verify(Validate) section for message format.
3.2. Verify(ValidateExternal)
The ValidateExternal mode is designed to permit the public keys to be validated with standard X.509
formatted certificates. The X509format field in the Configuration zone constrains the construction of the
ASN.1 template to the particular template expected to be used. The X509id field in the KeyConfig field
permits different templates at different locations within the key hierarchy to have different structures.
Note: The SHA (Update) command requires the full 64 byte SHA blocks to be inputted into the device.
The X.509 template should be adjusted to make sure that complete blocks occur before the public key.
This can usually be achieved by adjusting the length of the names.
Table 3-2. Verify(Validate)
Command | Mode | paran |
SHA Start =
SHA Update Repeated (X509format.PublicPosition) times.
SHA Public Child Add digest of child public key to digest.
Repeated (X509format. TemplateLength —
SHA
Update X509format.PublicPosition - 1) times.
SHA End
Verify ValExt Child
Atmel ATECC508A Public Key Validation [APPLICATION NOTE]
me ®

Atmel-8932A-CryptoAuth-ATECC508A-Public-Key-Validation_Application Note-01/2016

Message Generation for Verify(Validate)

The message that should be signed to create the validation signature for Verify(Validate) sequence is
described below. This signature can be generated by any system containing the Parent private key, or it
can be generated by an ATECC508A that contains the Parent private key. A board such as the Atmel
AT88CK590 USB Evaluation Kit can serve this purpose.

Figure 4-1. AT88CK590 Evaluation Kit

Note: It is critical that if the ATECC508A is used to store the parent private key, it must be backed up
externally and written to the ATECC508A device using PrivWrite. In this manner if there is a board or
device failure signatures can still be generated.

The device should be configured to have a Child public key slot in which Publinfo is one. The slot
containing the Parent private key should be marked (via SlotConfig[ParentPriv].ReadKey to allow internal
signatures. The slot number for the Child public key should be the same in the signing module as in the
devices that are in the field. The particular slot numbers into which the Parent Key is written does not
matter. The sequence below assumes that the Child public key slot can be written without a MAC;
SlotConfig[Child].WriteConfig = ALWAYS.

Table 4-1. Verify(Validate)

Commans | ode_paramz_nas

Write 0x82 Child First half of public key. No MAC required.
Write 0x82 Child Second half. No MAC required.
Nonce Fixed =
GenKey 0x10 Child Add digest of Child public key to TempKey.
Sign Internal | ParentPriv Generates Validation signature.
Verify Validate Child Use signature from above. Validates Child public key.
Nonce Fixed =
GenKey 0x10 Child Add digest of Child public key to TempKey.
Sign Internal | ParentPriv | Generates Invalidation signature.
AtmeL Atmel ATECC508A Public Key Validation [APPLICATION NOTE] 7

Atmel-8932A-CryptoAuth-ATECC508A-Public-Key-Validation_Application Note-01/2016

The message signed by the Sign(Internal) steps above is generated as listed below. The preceding

GenKey command generates the TempKey value from the following message:

32 Input value to Nonce (Fixed) command
1 GenKey Opcode (0x40)

1 GenKey Opcode (0x40)

2 GenKey Child

1 SN[8]

2 SNJ[0:1]

25 Zeros

64 X and Y coordinates of the Child public key

Then this TempKey value is used by Sign(Internal) to create a second level message that is then hashed
using SHA-256 to create the digest that is signed.

32 TempKey

Sign Opcode (0x41)

Mode (0x80)

ParentPriv

SlotConfig[Child]
KeyConfig[Child]

TempKeyFlags

UseFlag[Child]
UpdateCount[Child]

SNI8]

0x00

SNJ[0:1]

0x00

SlotLocked: TempKeyFlags.Child
0x00 (for Validation signature, 0x01 for Invalidation signature)
0x00

S A aAa NN DB A aa a aNNDDNDD DN A A

The values of the 19 bytes highlighted in bold above should be passed to the corresponding

Verify (Validate) command on the signing module or device in the field in order to allow the
validation to succeed. Other than the state of key validation byte (OtherData[17], the second from the last
byte) these values are not critical to the success of the verify (Validate) command so long as they
match those used to generate the signatures.

AtmeL Atmel ATECC508A Public Key Validation [APPLICATION NOTE] 8

Atmel-8932A-CryptoAuth-ATECC508A-Public-Key-Validation_Application Note-01/2016

5. Revision History

Table 5-1. Revision History

8932A 01/2016 | Initial document release.

AtmeL Atmel ATECC508A Public Key Validation [APPLICATION NOTE] 9
Atmel-8932A-CryptoAuth-ATECC508A-Public-Key-Validation_Application Note-01/2016

Atmel' Enabling Unlimited Possibilities® um G

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-8932A-CryptoAuth-ATECC508A-Public-Key-Validation_Application Note-01/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, CryptoAuthentication™ and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Overview
	1.1. Random Nounce
	1.2. Authorization

	2. Public Key Write Sequences
	2.1. Open Write
	2.2. Authenticated Write
	2.3. PubValid Write

	3. Public Key Validation Sequences
	3.1. Verify(Validate)
	3.2. Verify(ValidateExternal)

	4. Message Generation for Verify(Validate)
	5. Revision History

