®
A t l I IeL SMART ARM-based Microcontrollers

AT17417: Usage of XDMAC on SAM S/SAM EISAI¥II

APPLICATION NOTE

Introduction

This application note describes the features of XDMAC peripheral, which is
present in the Atmel® SAM S, SAM E, and SAM V microcontroller family.
This application note also provides information about various memory
transfer, memory striding functionalities and linked list descriptor operations
with a help of a sample application code implemented on ATSAMV71Q21
device (SAM V71 Xplained Ultra Evaluation Kit).

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

Table of Contents

INEFOAUCTION. ... 1
R €1 o 77 1 SRR 3
2. XDMAQC BaSICS...ceiiiiiiiiiiiiiiiee e e ettt e e e e e e e ettt e e e e e e st e e e e e e e e e eaaaeeeeannnereees 4
2.1, Memory to MemOrY TranSTEr.......c.uii i 4
2.2. Peripheral t0 MemOry TranSTer.........oooiiiiiiiieeie et e e e s 5
2.3, Memory to Peripheral TranSfer....... ...t s e e aeeee s 6
3. Single Block Memory Transfer...........oo i 7
4. Multi BIock MemOry TranSTer........coooiiiiiiiiiiiie e 8
4.1, Linked List FOrMAatioN........oc.uiiiiiee ettt et e e e e 8
N I 1 1 (o I 0T Yo o] (o] 7P 9
5. MemMOry StrAING. ... eeiiiiiiiii e 14
LT I DT | = IS 1o [T TR PRSP 14
LST0Z2 /17 o] (o Tz 0] (o |13 T OSSR 18
5.3, BIOCK SHAING. ...ttt bbbt 22
6. Application Code - Getting Started............oooveiiiiiiiiiiiiiieeeeeeeeee e 23
7. Application Code - DemMONSration..............ueeiiiiiiiiiiiee e 24
7% T - -1 G PSPPSRSO 24
4 - -1 QPSSRSO 25
A T - 11 G T RS S U SRR SO 26
A S - -1 OSSPSR 28
8. Cache Coherence ManagemeENTt............uuuuiiviiiiiiiiiiiiieiireeererereereereeeeeeeereeeeeeeereeeeee—.. 29
S TR 7o) o T 11 (o] o 1P PRE 30
10. Frequently Asked QUESHIONS (FAQIS).....coiuuiiiiiiiiiee et 31
R 2 = =T o USSP 32
12. ReVISION HISTOIY ... 33

Atmel

Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE]
Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

2

1. Glossary
XDMAC
DMA
UART
SPI
TWI
AES
HSMCI
FIFO
ASF
Atmel Studio

Atmel

Extensible Direct Memory Access Controller
Direct Memory Access

Universal Asynchronous Receiver Transmitter
Serial Peripheral Interface

Two Wire Interface

Advanced Encryption Standard

High Speed Multimedia Card Interface

First In First Out

Atmel Software Framework

Integrated Development Environment (IDE) for Atmel Microcontrollers

Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE]
Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

3

2.1.

XDMAC Basics
XDMAC supports the following types of data transfers.

Memory to Memory Transfer
XDMAC reads data from source memory location and writes to destination memory location.

Figure 2-1. Memory Transfer Hierarchy

Master Transfer

/\

BLKo BLK1 I BLK(N-1) Block Level

] T~

uUBLKo uUBLK1 . | uBLKm-1) Micro Block Level

N

MBo MBp-1)| . iMB Memory Burst Level

Memory to memory data transfer has totally four levels of data transactions. They are Master, Block,
Microblock, and Burst level transactions.

XDMAC Master Transfer: The Master Transfer is a multi-block data transfer, which is performed using a
linked list of descriptors (blocks). Each descriptor in the linked list is configured to do a block transfer. The
XDMAC channel configuration parameters can be modified at the inter block boundary (between
descriptors). In multi-block transfer, interrupts can be generated on a per block basis or when the end of
linked list event occurs. Chapter-4. Multi Block Memory Transfer gives more information about multi-block
transfer.

Note: Master transfer (Multi-block transfer) is optional. It is not mandatory. A single block transfer can be
done.

XDMAC Block: An XDMAC block is composed of programmable number of microblocks. The block
length (number of microblocks) is configured in BLEN field of XDMAC Channel Block Control Register
(XDMAC_CBCx). The block length (BLEN) indicates the number of microblocks in a block. The XDMAC
channel configuration parameters remain unchanged at the inter microblock boundary.

Note: Block transfer is mandatory. At least, one block should be transmitted with one microblock.

XDMAC Microblock: A microblock is composed of programmable number of data. The microblock length
is configured in UBLEN field of XDMAC Channel Microblock Control Register (XDMAC_CUBCXx). The
microblock length (UBLEN) indicates the number of data (bytes or half words or words based on the data
width setting) present in a microblock. The XDMAC channel configuration parameters remain unchanged
at the data boundary as well.

XDMAC Burst and Incomplete Burst: In order to improve the overall performance when accessing
dynamic external memory, burst access is mandatory. Each data of the microblock is considered as a part
of a memory burst. The programmable burst value indicates the largest memory burst allowed on a per
channel basis. The burst size (in WORDS) is configured in MBSIZE field of XDMAC Channel

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 4

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

2.2,

Configuration Register (XDMAC_CCx). When the microblock length is not an integral multiple of the burst
size, an incomplete burst is performed to read or write the last trailing bytes.

Peripheral to Memory Transfer
XDMAC reads data from the source peripheral and writes to the destination memory location.

Figure 2-2. Peripheral to Memory Transfer Hierarchy

Master Transfer

/\

BLKo BLK1 I BLK(N-1) Block Level

] T~

uUBLKo uUBLK1 . | uBLKm-1) Micro Block Level

N

MBo MBp-1)| . iMB Memory Burst Level

I

CHKao CHK@p-1)| ... | iCHK Chunk Level

It is a peripheral synchronized transfer, which means the memory transaction is synchronized with the
hardware trigger that comes from the corresponding peripheral. It is also possible to use software trigger
to initiate data transfer. Peripheral to memory transfer has totally five levels of data transactions. They are
Master, Block, Microblock, Burst, and Chunk level transactions. Master, Block, Microblock, and Burst level
transactions work exactly the same way as explained earlier in the memory to memory data transfer
section. In peripheral to memory data transfer, the burst level transaction is further split into chunk level
data transaction to have higher granularity.

XDMAC Chunk and Incomplete Chunk: When a peripheral to memory transfer is activated, the burst
level transaction is further split into a number of data chunks. The chunk size is configured in CSIZE field
of XDMAC Channel Configuration Register (XDMAC _CCx). The chunk size denotes the number of ‘data’
to be transferred from the corresponding peripheral receive register to memory. In general, the chunk size
is set as ‘1 data’ in most of the peripherals (example: - UART, SPI, TWI, etc.), as the maximum size of
their receive register is ‘1 data’. In specific scenarios, the chunk size is chosen more than 1 data. For
example, the data receive/input registers of AES and HSMCI modules can hold more than ‘1 data’. So,
the chunk size can be chosen as '2/4/8/16 data' accordingly. In this case, the larger the chunk size is, the
better the performance is. When the amount of data chunks read becomes equal to the memory burst
size, the actual data transaction starts (as a memory burst). During ‘peripheral to memory’ transfer, the
data chunks are first read and stored into XDMAC's internal FIFO buffer. If their size becomes equal to
the memory burst size, the FIFO buffer gets flushed out automatically, which makes ‘memory burst
transfer’. When the microblock size is not a multiple of the chunk size, the last chunk being transferred
contains the last trailing data.

Note: In case if the chunk size is chosen as more than '1 data' for peripherals like UART, SPI, TWI, etc.,
then XDMAC will read the same data register (receive/input register) multiple times. As a result, we will
get multiple copies of same data being stored in memory.

/ItmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 5

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

2.3. Memory to Peripheral Transfer
XDMAC reads data from source memory location and writes to the destination peripheral.

Figure 2-3. Memory to Peripheral Transfer Hierarchy

Master Transfer
/\
BLKo BLK1 | .| BLKnN-1) Block Level
ﬂ\
UBLKo uUBLK1 . | MBLKm-1) Micro Block Level
ﬂ\
CHKo CHKp-1)| .. | iCHK Chunk Level

Memory to Peripheral transfer is also a peripheral synchronized transfer. It has totally four levels of data
transactions. They are Master, Block, Microblock, and Chunk level transactions. Master, Block, and
Microblock level transactions work exactly the same way as explained earlier in the memory to memory
data transfer section. In memory to peripheral data transfer, the burst level transaction is not present. The
microblock is directly split into chunk level data transaction.

XDMAC Chunk and Incomplete Chunk: When a memory to peripheral transfer is activated, the
microblock level transaction is directly split into a number of data chunks. The chunk size is configured in
CSIZE field of XDMAC Channel Configuration Register (XDMAC_CCx). The chunk size denotes the
number of ‘data’ to be transferred from memory to the corresponding peripheral transmit register. In
general, the chunk size is set as ‘1 data’ in most of the peripherals (example: - UART, SPI, TWI, etc.), as
the maximum size of their transmit register is ‘1 data’. In specific scenarios, the chunk size is chosen
more than 1 data. For example, the data transmit/output registers of AES and HSMCI modules can hold
more than ‘1 data’. So, the chunk size can be chosen as '2/4/8/16 data' accordingly. In this case, the
larger the chunk size is, the better the performance is. During ‘memory to peripheral’ transfer, the data
chunks are immediately transferred when there is a hardware/software trigger. Memory burst size doesn't
play any role here. When the microblock size is not a multiple of the chunk size, the last chunk being
transferred contains the last trailing data.

Note: In case if the chunk size is chosen as more than '1 data' for peripherals like UART, SPI, TWI, etc.,
then XDMAC will overwrite the same data register (transmit/output register) with multiple data. As a
result, only the last data gets transmitted.

/ItmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 6

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

3. Single Block Memory Transfer

A basic single block of DMA transfer can be done by just configuring XDMAC channel registers directly.
After configuring XDMAC channel registers, the corresponding channel needs to be enabled. This will
trigger the data transaction, if it is a memory to memory transfer. The peripheral synchronized transfer will
still wait for the hardware or software trigger to occur. Refer to the device datasheet for more information
on initialization sequence and software flow.

The channel configuration parameters (example: source/destination addresses, block/microblock length,
stride length, etc.) remain same throughout the block transfer. They cannot be modified between
microblocks.

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 7
Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

41.

Multi Block Memory Transfer

Multi block memory transfer is needed when there is a change in XDMAC channel configuration
parameters (example: source/destination addresses, block/microblock length, stride length, etc.) between
blocks transferred in the same channel. XDMAC supports multi block DMA transfer using Linked list
operation. Each descriptor in the linked list contains register settings needed to transfer a ‘block’ of
memory. When linked list execution is started, XDMAC fetches the first descriptor from the linked list, and
starts copying the register settings to XDMAC channel register conditionally. Then it performs the first
memory block transfer. After finishing the first block transfer, XDMAC fetches the second descriptor from
the linked list and copy its register settings to channel registers to perform second block transfer. This
process continues until the end of linked list is reached. This is how a multi block memory transfer is
performed in XDMAC.

Linked List Formation

XDMAC has four types of linked list descriptors namely View 0, View 1, View 2, and View 3. A linked list
can be formed either with descriptors of same type or with descriptors of different types. Figure 4-1 shows
a simple linked list formed with three View 0 descriptors. Figure 4-2 shows a complex linked list having all
four types (View 0, View 1, View 2, and View 3) of descriptors.

Figure 4-1. Simple Linked List Example

MBR _NDA
(NULL)

v

v

MBR NDA MBR NDA

MBR UBC MBR _UBC MBR _UBC

MBR TA MBR_TA MBR TA

Descriptor -1 Descriptor -2 Descriptor -3
(View 0) (View 0) (View 0)

Figure 4-2. Complex Linked List Example

MBR NDA
(NULL)

MBR UBC MBR_UBC MBR _UBC MBR UBC

\ 4

A 4

A 4

MBR NDA MBR NDA MBR NDA

MBR TA MBR_SA MBR_SA MBR SA

MBR DA MBR DA MBR DA

Descriptor -1

(View 0) MBR CFG MBR CFG
Descriptor-2

(View 1) MBR BC

Descriptor -3

(View 2) MBR DS

MBR _SUS
MBR_DUS

Descriptor -4
(View 3)

/ItmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 8

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

View 0, View 1, and View 2 descriptors are generally used to perform peripheral synchronized transfer
along with ring buffers. For example, we can consider the case of UART reception. Let us assume we
continuously receive data from UART and we need to process the received data once we receive 50 data
in the buffer. At the same we need to continue receive upcoming data without a miss. In this case we can
configure a circular linked list having two descriptors of View 0 type. The first descriptor should be
configured to receive 50 data (1 block = 1 microblock = 50 data) into the first buffer. The first descriptor
should point to the second descriptor. The second descriptor should be configured to receive the next 50
data into the second buffer. The second descriptor should point to the first descriptor again (circular linked
list). ‘End of block interrupt’ can be enabled, so that we can get an interrupt for each block (50 data) being
received. When an interrupt occurs we can go and process the data.

View 3 descriptor is especially used when we have multiple microblocks per block. It is also useful when
we vary memory stride lengths and MEMSET patterns between different block transfers.

4.2, Linked List Descriptors
Linked list descriptors are usually stored in data memory. They have multiple members associated, which
are explained below in following sections. When a descriptor is fetched from the linked list, all of its
members are copied to their relevant XDMAC channel register fields for execution. But there are few
exceptions. MBR_TA, MBR_SA and MBR_DA are copied based on conditions. It is explained in the
following sections.
The following descriptor member fields are meant to control the next descriptor, not the current descriptor
itself.
* Next Descriptor Address Member (MBR_NDA)
* Next Descriptor Enable (MBR_UBC.NDE)
* Next Descriptor Source Update (MBR_UBC. NSEN)
* Next Descriptor Destination Update (MBR_UBC. NDEN)
* Next Descriptor View (MBR_UBC.NVIEW)
So, a question arises here! Which fields will control the first descriptor of the linked list? The following
channel register fields should be directly initialized for the first descriptor. Therefore, the first descriptor is
fetched based on the following channel registers.
* XDMAC Channel x Next Descriptor Address Register (XDMAC_CNDAX)
+ XDMAC Channel x Next Descriptor Control Register (XDMAC_CNDCx)
— Channel x Next Descriptor Enable (XDMAC_CNDCx.NDE)
— Channel x Next Descriptor Source Update (XDMAC_CNDCx.NDSUP)
— Channel x Next Descriptor Destination Update (XDMAC_CNDCx.NDDUP)
— Channel x Next Descriptor View (XDMAC_CNDCx.NDVIEW)
After fetching the first descriptor, the above mentioned channel register fields will be again updated with
first descriptor member fields’ as shown below. This will help to fetch and execute the second (next)
descriptor. The same process continues until the end of the linked list.
« MBR_NDA — XDMAC_CNDAXx
+ MBR_UBC.NDE — XDMAC_CNDCx.NDE
« MBR_UBC. NSEN — XDMAC_CNDCx.NDSUP
+ MBR_UBC. NDEN — XDMAC_CNDCx.NDDUP
« MBR_UBC.NVIEW — XDMAC_CNDCx.NDVIEW
AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 9

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

4.21.

View 0 Descriptor

Next Descriptor Address Member (MVBR_NDA)
Microblock Control Member (MBR_UBC)
Transfer Address Member (MBR_TA)

View 0 is the simplest descriptor having just three members. They are explained below.
Next Descriptor Address Member (MBR_NDA):

MBR_NDA is similar to XDMAC Channel Next Descriptor register (XDMAC_CNDAXx). XDMAC_CNDAXx
register is initialized to the address of the first descriptor of the linked list, whereas Next Descriptor
Address Member (MBR_NDA) is initialized to the address of the subsequent descriptor to be fetched from
the linked list. If there are no further descriptors present in the linked list, then MBR_NDA should be
initialized with 0. When a descriptor is fetched, XDMAC_CNDAX register is updated with MBR_NDA value
for the execution of the next descriptor (Block).

Microblock Control Member (MBR UBC):

Microblock Control Member has the following fields.
UBLEN (Microblock Length):

This field indicates the number of data (bytes or half words or words based on XDMAC_CCx.DWIDTH
setting) in the microblock. So each microblock contains UBLEN data. The UBLEN field can be varied for
each descriptor. When a descriptor is fetched, XDMAC_CUBCx.UBLEN register field is updated with
MBR_UBC.UBLEN value for the execution of the current descriptor (Block).

NDE (Next Descriptor Enable):

0: No further descriptors will be fetched. So NDE should be set as ‘0’ for the last descriptor of the linked
list.

1: The next descriptor pointed by MBR_NDA will be fetched next.
NSEN (Next Descriptor Source Update):

0: The Channel Source Address register XDMAC_CSAXx remains unchanged during the next descriptor
fetch.

1: When the next descriptor is fetched, the channel source address register XDMAC _CSAXx is updated

with Transfer Address member (MBR_TA) of the same descriptor, if the data transfer is from Memory to
Peripheral. XDMAC_CSAXx remains unchanged for Memory to Memory and Peripheral to Memory data

transfers.

NDEN (Next Descriptor Destination Update):

0: The Channel Destination Address register XDMAC_CDAXx remains unchanged during the next
descriptor fetch.

1: When the next descriptor is fetched, the channel destination address register XDMAC_CDAX is
updated with Transfer Address member (MBR_TA) of the same descriptor, if the data transfer is from
Memory to Memory or Peripheral to Memory. XDMAC_CDAXx remains unchanged for Memory to
Peripheral data transfer.

NVIEW (Next Descriptor View):
0: The next descriptor is of View 0 type

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 10

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

4.2.2.

1: The next descriptor is of View 1 type

2: The next descriptor is of View 2 type
3: The next descriptor is of View 3 type
Transfer Address Member (MBR_TA):

Transfer Address Member (MBR_TA) should be written with the destination address during Memory to
Memory and Peripheral to Memory transfers. When the descriptor is fetched, the Channel Destination
Address register (XDMAC_CDAX) is updated with the valued stored in Transfer Address member
(MBR_TA) based on the previous descriptor's MBR_UBC.NDEN value.

Transfer Address Member (MBR_TA) should be written with the source address during memory to
peripheral transfer. When the descriptor is fetched, the Channel Source Address register (XDMAC_CSAX)
is updated with the valued stored in Transfer Address member (MBR_TA) based on the previous
descriptor's MBR_UBC.NSEN value.

Note: For the first descriptor of the linked list, XDMAC_CNDCx.NDSUP and XDMAC_CNDCx.NDDUP
values should be directly initialized. These values decide whether to update Channel Source / Destination
Address registers with MBR_TA or not.

View 1 Descriptor

Next Descriptor Address Member (MBR_NDA)

Microblock Control Member (MBR_UBC)

Source Address Member (MBR_SA)

Destination Address Member (MBR_DA)
View 1 descriptor has both Source Address Member (MBR_SA) and Destination Address Member
(MBR_DA).

Next Descriptor Address Member(MBR_NDA):

Same as explained in View 0 descriptor.

Microblock Control Member (MBR UBC):

Microblock Control Member has the following fields.
UBLEN (Microblock Length):

Same as explained in View 0 descriptor.

NDE (Next Descriptor Enable):

Same as explained in View 0 descriptor.

NSEN (Next Descriptor Source Update):

0: The Channel Source Address register XDMAC _CSAXx remains unchanged during the next descriptor
fetch.

1: When the next descriptor is fetched, the channel source address register XDMAC _CSAXx is updated
with Source Address Member (MBR_SA) of the same descriptor.

NDEN (Next Descriptor Destination Update):

0: The Channel Destination Address register XDMAC_CDAXx remains unchanged during the next
descriptor fetch.

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 1"

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

4.2.3.

424,

1: When the next descriptor is fetched, the channel destination address register XDMAC_CDAXx is
updated with Destination Address Member (MBR_DA) of the same descriptor.

NVIEW (Next Descriptor View):

Same as explained in View 0 descriptor.

Source Address Member (MBR_SA):

It contains the source address value of the corresponding descriptor (BLOCK). The value of MBR_SA is
copied to the Channel Source Address register (XDMAC_CSAXx) based on the previous MBR_UBC.NSEN
settings. Therefore, the source address can be changed between different descriptors (BLOCKS).

Note: For the first descriptor of the linked list, the XDMAC_CNDCx.NDSUP value should be directly
initialized. This value decides whether to update Channel Source Address register (XDMAC_CSAXx) with
MBR_SA or not.

Destination Address Member (MBR _DA):

It contains the destination address value of the corresponding descriptor (BLOCK). The value of MBR_DA
is copied to the Channel Destination Address register (XDMAC_CDAX) based on the previous
MBR_UBC. NDEN settings. Therefore, the destination address can be changed between different
descriptors (BLOCKS).

Note: For the first descriptor of the linked list, the XDMAC_CNDCx.NDDUP value should be directly
initialized. This value decides whether to update Channel Destination Address register (XDMAC_CDAX)
with MBR_DA or not.

View 2 Descriptor

Next Descriptor Address Member (MVBR_NDA)

Microblock Control Member (MBR_UBC)

Source Address Member (MBR_SA)

Destination Address Member (MBR_DA)

Configuration Member (MBR_CFG)
View 2 descriptor has Configuration Member (MBR_CFG) in addition to View 1 descriptor. All other
members (MBR_NDA, MBR_UBC, MBR_SA, and MBR_DA) are similar to View 1 descriptor.
Configuration Member (MBR_CFG):

MBR_CFG is similar to XDMAC_CCx register. During the descriptor fetch, the value of MBR_CFG is
copied to the XDMAC_CCx register.

View 3 Descriptor

Next Descriptor Address Member (MBR_NDA)
Microblock Control Member (MBR_UBC)
Source Address Member (MBR_SA)
Destination Address Member (MBR_DA)
Configuration Member (MBR_CFG)

Block Control Member (MBR_BC)

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 12

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

Data Stride Member (MBR_DS)
Source Microblock Stride Member (MBR_SUS)

Destination Microblock Stride Member (MBR_DUS)

View 3 descriptor has totally nine members. First five members (MBR_NDA, MBR_UBC, MBR_SA,
MBR_DA, MBR_CFG) are very similar to View 2 descriptor members. View 3 descriptor additionally has
the following four members.

Block Control Member (MBR BC):

MBR_BC is similar to the Channel Block Control Register (XDMAC_CBCx). During the descriptor fetch,
the value of MBR_BC is copied to the XDMAC_CBCx register.

Data Stride Member (MBR_DS):

MBR_DS is similar to the Channel Data Stride Memory Set Pattern Register (XDMAC_CDS_MSPXx).
During the descriptor fetch, the value of MBR_DS is copied to the XDMAC_CDS_MSPx register.

Source Microblock Stride Member (MBR_SUS):

MBR_SUS is similar to the Channel Source Microblock Stride Register (XDMAC_CSUSXx). During the
descriptor fetch, the value of MBR_SUS is copied to the XDMAC_CSUSKx register.

Destination Microblock Stride Member (MBR _DUS):

MBR_DUS is similar to the Channel Destination Microblock Stride Register (XDMAC_CDUSKx). During the
descriptor fetch, the value of MBR_DUS is copied to the XDMAC_CDUSX register.

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 13

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

5.1.

5.1.1.

Memory Striding

Memory Striding is a method of accessing memory in an interleaved (discontinuous) manner. Memory
striding can be done in both incremented (forward direction) and decremented (reverse direction)
manners. XDMAC supports memory striding in all three types of data transfers (Memory to Memory /
Peripheral to Memory / Memory to Peripheral). Memory striding is an useful feature especially in image
processing field. For example, an image can be rotated easily with the help of XDMA memory stride
feature. Thus we can reduce processor overhead to a large extend. XDMAC supports the following types
of memory striding options.

Data Striding

Data striding is a method of accessing data in an interleaved (discontinuous) manner. ‘Data Stride Length’
is the memory gap (number of bytes) between successive data elements (Byte/Half Word/Word) stored in
the memory. The default value of data stride length in XDMAC module is ‘0’. Therefore, the data elements
are read/written in a continuous manner. If the value of data stride length is greater than zero (1, 2, 3,
4,..), then the data elements are accessed (read/written) in incremented interleaved manner. If the value
of data stride length is set as -1 then the same data element (fixed address) is accessed again and again.
If the value of data stride length is less than one (-2, -3, -4,..), then the data elements are accessed (read/
written) in decremented interleaved manner. XDMAC supports data striding on both source and
destination sides.

Destination Data Striding

In this method, the data striding operation is performed only on destination side. So the source
addressing mode is set as either Fixed Addressing Mode (FIXED_AM) or Incremented Addressing Mode
(INCREMENTED_AM) based on the application requirement. The destination addressing mode should be
set as UBS_DS_AM (the microblock stride is added at the microblock boundary, the data stride is added
at the databoundary) in the XDMAC_CCx.DAM register field. The ‘Data Stride Length’ should be set in
the DDS_MSP field of XDMAC_CDS_MSPxregister. The following examples show how destination data
striding is performed with different DDS_MSP values, but with fixed microblock length (ex: UBLEN =5).
The following examples also assume that destination buffers are initialized with zero ‘0’.

Example 1:
Destination Data Stride Length is set as 1 in the XDMAC_CDS_MSPx.DDS_MSP register field.
Source Data (Addressing Mode: FIXED_AM)

(Source Starting Address)

J

1

Destination Data (Addressing Mode: UBS DS _AM)

(Destination Starting Address)

J

1 0 1 0 1 0 1 0 1 0

Example 2:
Destination Data Stride Length is set as 2 in the XDMAC_CDS_MSPx.DDS_MSP register field.

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 14

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

5.1.2.

Source Data (Addressing Mode: INCREMENTED AM)

(Source Starting Address)

J

1 2 13| 4|5

Destination Data (Addressing Mode: UBS DS AM)

(Destination Starting Address)

J

1100} 2|0|0|3|0|0|4|0]0]|5

Example 3:
Destination Data Stride Length is set as -3 in the XDMAC_CDS_MSPx.DDS_MSP register field.
Source Data (Addressing Mode: INCREMENTED_AM)

(Source Starting Address)

J

1 213|465

Destination Data (Addressing Mode: UBS DS _AM)

(Destination Starting Address)

g

5/0|4]0|3|0]2]|]0/|1

Source Data Striding

In this method, the data striding operation is performed only on source side. So the destination
addressing mode is set as either Fixed Addressing Mode (FIXED_AM) or Incremented Addressing Mode
(INCREMENTED_AM) based on the application requirement. The source addressing mode should be set
as UBS_DS_AM (the microblock stride is added at the microblock boundary, the data stride is added at
the data boundary) in the XDMAC_CCx.SAM register field. The ‘Data Stride Length’ should be set in the
SDS_MSP field of XDMAC_CDS_MSPx register. The following examples show how source data striding
is performed with different SDS_MSP values, but with fixed microblock length (ex: UBLEN =5).

Example 1:
Source Data Stride Length is set as 1 in the XDMAC_CDS_MSPx.SDS_MSP register field.
Source Data (Addressing Mode: UBS_DS_AM)

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 15

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

(Source Starting Address)

J

1 0o}, 2|0|3]0]4,0]5]|O0

Destination Data (Addressing Mode: FIXED AM)

(Destination Starting Address)

g

1/2/3/4/5

Note: Here the fixed destination address is overwritten with values 1, 2, 3, 4, and 5. So the destination

address finally holds the value 5.

Example 2:

Source Data Stride Length is set as 2 in the XDMAC_CDS_MSPx.SDS_MSP register field.
Source Data (Addressing Mode: UBS_DS_AM)

(Source Starting Address)

4

110/]0}2|0/0|3|0|0|4,0|0)5

Destination Data (Addressing Mode: INCREMENTED_AM)
(Destination Starting Address)

U

112345

Example 3:
Source Data Stride Length is set as -3 in the XDMAC_CDS_MSPx.SDS_MSP register field.

Source Data (Addressing Mode: UBS_DS_AM)
(Source Starting Address)

J

50403 |,0|2|0]1

Destination Data (Addressing Mode: INCREMENTED AM)

/ItmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE]

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

5.1.3.

(Destination Starting Address)

4

1121345

Source and Destination Data Striding

In this method, the data striding operation is performed both on source and destination sides. Therefore,
both source and destination addressing modes should be set as UBS_DS_AM in XDMAC_CCx.SAM and
XDMAC_CCx.DAM register fields. The respective source and destination ‘Data Stride Lengths’ should be
set in SDS_MSP and DDS_MSP fields of XDMAC_CDS_MSPx register. The following examples show
how source and destination data striding are performed together with different SDS_MSP and DDS_MSP
values, but with fixed microblock length (e.g.: UBLEN =5). The following examples also assume that
destination buffers are initialized with zero ‘0’.

Example 1:

Source Data Stride Length is set as 1 in the XDMAC_CDS_MSPx.SDS_MSP register field.
Destination Data Stride Length is set as -2 in the XDMAC_CDS_MSPx.DDS_MSP register field.
Source Data (Addressing Mode: UBS_DS_AM)

(Source Starting Address)

J

1 0 2 0 3 0 4 0 5 0

Destination Data (Addressing Mode: UBS DS _AM)

(Destination Starting Address)

4

0 0 0 0 0 5 4 3 2 1

Example 2:
Source Data Stride Length is set as -3 in the XDMAC_CDS_MSPx.SDS_MSP register field.

Destination Data Stride Length is set as 1 in the XDMAC_CDS_MSPx.DDS_MSP register field.
Source Data (Addressing Mode: UBS_DS_AM)

(Source Starting Address)

g

0 1 2 3 4 5 6 7 8 9

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 17

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

5.2.

Destination Data (Addressing Mode: UBS DS _AM)

(Destination Starting Address)

J

9 0 7 0 5 0 3 0 1 0

Microblock Striding

Microblock striding is a method of accessing microblocks in an interleaved (discontinuous) manner.
‘Microblock Stride Length’ is the memory gap (humber of bytes) between successive microblocks stored
in the memory. The default value of microblock stride length in XDMAC module is ‘0’. So there are no
memory gaps (in bytes) between two successive microblocks as shown in the following picture.

uB N B N+1 uB N+2 uB N+3

If the value of microblock stride length is greater than zero (1, 2, 3,..), then there will be memory gaps (1
byte, 2 bytes, 3 bytes,..) between two successive microblocks as shown in the following picture.

uB N uB N+1 uB N+2 uB N+3

If the value of microblock stride length is less than zero (-1, -2, -3,..), then there will be memory overlaps
(1 byte, 2 bytes, 3 bytes,..) between two successive microblocks as shown in the following picture.

B N BN+1-——

If the value of microblock stride length is set as (-UBLEN), then the same microblock is accessed again
and again, as shown in the following picture.

uB N

If the value of microblock stride length is set as —(2*UBLEN), then we can access previous microblocks in
decremented fashion as shown in the following picture.

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 18

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

puB N-2 uB N-1 uB N MB N+1 uB N+2

Therefore, it becomes possible to access microblocks in different ways using microblock striding option.
XDMAC supports microblock striding on both source and destination sides.

5.21. Destination Microblock Striding
In this method, the microblock striding operation is performed only on destination side. So the source
addressing mode is set as either Fixed Addressing Mode (FIXED_AM) or Incremented Addressing Mode
(INCREMENTED_AM) based on the application requirement. The destination addressing mode should be
set as either UBS_AM (The microblock stride is added at the microblock boundary) or UBS_DS_AM (the
microblock stride is added at the microblock boundary, the data stride is added at the data boundary) in
the XDMAC_CCx.DAM register field. The ‘Microblock Stride Length’ should be set in the
XDMAC_CDUSXx register. The following examples show how destination microblock striding is performed
with different XDMAC_CDUSXx register values, but with fixed block length (BLEN =4) and microblock
length (UBLEN). The following examples also assume that destination buffers are initialized with zero ‘0.
Example 1:
Destination Microblock Stride Length XDMAC_CDUSx is set equal to UBLEN.
Source Data (Addressing Mode: INCREMENTED_AM)
(Source Starting Address)
uB 1 uB2 | uB3 | yB4 | uB5 | yB6 | uB7 | uB8 | yuB9 | uB 10
Destination Data (Addressing Mode: UBS_AM or UBS_DS_AM)
(Destination Starting Address)
uB 1 0 uB 2 0 uB 3 0 uB 4 0 uB 5 0
Example 2:
Destination Microblock Stride Length XDMAC_CDUSx is set equal to —(3*UBLEN).
Source Data (Addressing Mode: INCREMENTED_AM)
(Source Starting Address)
uB 1 pB2 | uB3 | yB4 | uB5 | yB6 | uB7 | yuB8 | yB9 | uB 10
Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE]
me A

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

Destination Data (Addressing Mode: UBS AM or UBS DS AM)

(Destination Starting Address)

d

WMB5| 0 |wB4 | O | wB3| 0 |uB2| 0 | uB1 0

5.2.2. Source Microblock Striding
In this method, the microblock striding operation is performed only on source side. So the destination
addressing mode is set as either Fixed Addressing Mode (FIXED_AM) or Incremented Addressing Mode
(INCREMENTED_AM) based on the application requirement. The source addressing mode should be set
as either UBS_AM or UBS_DS_AM in the XDMAC_CCx.SAM register field. The ‘Microblock Stride
Length’ should be set in the XDMAC_CSUSx register. The following examples show how source
microblock striding is performed with different XDMAC_CSUSx register values, but with fixed block length
(e.g.: BLEN =4) and microblock length (UBLEN). The following examples also assume that destination
buffers are initialized with zero ‘0’
Example 1:
Source Microblock Stride Length XDMAC_CSUSx is set equal to UBLEN.
Source Data (Addressing Mode: UBS_AM or UBS DS_AM)

(Source Starting Address)
puB 1 pB2 | yB3 | yB4 | yB5 | yB6 | yB7 | uB8 | yB9 | uB 10
Destination Data (Addressing Mode: INCREMENTED_AM)
(Destination Starting Address)
puB 1 puB3 | uB5 | uB7 | uB9 0 0 0 0 0
Example 2:
Source Microblock Stride Length XDMAC_CSUSx is set equal to —(2*UBLEN).
Source Data (Addressing Mode: UBS_AM or UBS_DS_AM)
(Source Starting Address)
puB 1 pB2 | yB3 | yB4 | yB5 | yB6 | yB7 | uB8 | yB9 | uB 10
AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 20

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

Destination Data (Addressing Mode: INCREMENTED AM)

(Destination Starting Address)

il

uB10 | yB9 | pB8 | uB7 | uB6 | 0 0 0 0 0

5.2.3. Source and Destination Microblock Striding
In this method, the microblock striding operation is performed on both source and destination sides. So
both source and destination addressing modes should be set as either UBS_AM or UBS_DS_AM in
XDMAC_CCx.SAM and XDMAC_CCx.DAM register fields. The respective source and destination
‘Microblock Stride Lengths’ should be set in XDMAC_CSUSx and XDMAC_CDUSXx registers. The
following examples show how source and destination microblock striding are performed together with
different microblock stide length values, but with fixed block length (e.g.: BLEN=4) and microblock length
(UBLEN). The following examples also assume that destination buffers are initialized with zero ‘0’.
Example 1:
Source Microblock Stride Length XDMAC_CSUSx is set equal to UBLEN.
Destination Microblock Stride Length XDMAC_CDUSKX is set equal to —(2*UBLEN).
Source Data (Addressing Mode: UBS_AM or UBS DS_AM)
(Source Starting Address)
puB 1 pB2 | yB3 | yB4 | yB5 | yB6 | yB7 | uB8 | yB9 | uB 10
Destination Data (Addressing Mode: UBS_AM or UBS DS_AM)
(Destination Starting Address)
0 0 0 0 0 puB9 | uB7 | uB5 | uB3 | uB1
Example 2:
Source Microblock Stride Length XDMAC_CSUSx is set equal to -UBLEN.
Destination Microblock Stride Length XDMAC_CDUSKX is set equal to UBLEN.
Source Data (Addressing Mode: UBS_AM or UBS_DS_AM)
AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 21

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

(Source Starting Address)

g

puB 1 pB2 | yB3 | yB4 | yB5 | yB6 | yB7 | uB8 | yB9 | uB 10

Destination Data (Addressing Mode: UBS_AM or UBS_DS_AM)

(Destination Starting Address)

il

uB 1 0 | pB1 0 | uB1 0 | uB1 0 | pB1 0

5.3. Block Striding

In XDMAC, block level striding can be performed using a linked list. As each descriptor represents a
particular memory block, the source and destination addresses can be directly varied in each descriptor
according to the required memory stride length.

Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 22
Atmel 9
Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

6. Application Code - Getting Started

This application note also has a sample application code implemented on ATSAMV71Q21 device (SAM
V71 Xplained Ultra Evaluation Kit). This application code is an Atmel Studio 7 project using ASF (Atmel
Software Framework) driver functions. In order to program the application and view the output, the
following steps are necessary.

Connect ‘SAM V71 Xplained Ultra Evaluation Kit' to the PC through ‘DEBUG USB’ port

Open any of the serial terminal software (e.g.: TeraTerm) and open the “EDBG Virtual COM Port
(COMXx)” and make following settings:

— Baud rate: 115200
— Data: 8 bit

— Parity: None

— Stop: 1 bit

— Flow control: None

Build the application project (Atmel Studio 7 project) and program it to the kit (SAM V71 Xplained
Ultra)

The XDMAC Application Menu will be displayed in the serial terminal window. It will list down four
demo tasks (1, 2, 3, and 4).

You can choose the demo task by entering the task number (1/2/3/4) through key board

This application example has totally four demo tasks, which are explained in detailed in the following
section.

Atmel

Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 23
Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

7. Application Code - Demonstration
This application code demonstrates how to use both microblock and data striding together to rotate an
array of data in different ways. This technique will be very useful in image processing field. This
application code also demonstrates how to perform such different tasks in a continuous fashion (one by
one) using a linked list. In this application note, only the ‘memory to memory’ (SRAM to SRAM) data
transfer is demonstrated with various striding techniques. But it is also possible to perform memory
striding with ‘peripheral to memory’ or ‘memory to peripheral’ data transfers.
All of the demonstration tasks (1, 2, 3, and 4) use the following settings/resources in common.
Data width (DWIDTH):
Data width (DWIDTH) is set as ‘BYTE’ in all demo tasks.
Microblock length(UBLEN):
The microblock length UBLEN is set as 10 in all demo tasks. Therefore, each microblock contains 10
bytes of data.
Block length(BLEN):
The block length BLEN is set as 9 in all demo tasks. Therefore, each block contains 10 microblocks
(BLEN+1).
Source memory array (10x10 bytes):
The source memory array is a two dimensional array of size 10x10. It has pre-stored data values varying
from 0 to 9. The first row elements are all filled with ‘0’. The next row elements are filled with ‘1” and so
on. So the last row elements are filled with ‘9’. This will be helpful for us to visualize the resultant
destination array (rotated) in a better manner. This same source memory array is being used in all demo
tasks described below.
Destination memory arrays 1, 2, 3 (10x10 bytes):
There are totally three destination memory arrays each of same size (10x10 bytes). They are denoted as
Destination Array-1, Destination Array-2, and Destination Array-3. All of them are two dimensional arrays,
with array elements initialized to ‘0’
71. Task 1

Task 1 demonstrates a simple memory to memory transfer without performing any memory striding
operations. The source array is completely copied into the Destination Array-1 without any modifications.
Destination Array-2 and Destination Array-3 are not used in Task 1. They are just initialized to 0. Linked
list is also not used in Task 1.

Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE]

me 2

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

7.2.

Figure 7-1. lllustration of Task 1

Source Array (10x10 bytes) Destination Array — 1 (10x10 bytes)
sue1 |B000000000 pue1 (8000000000
sue2 |@111111111 pus2 [@T11111111
sues | 2222222222 puss |@2222222222
susa |B333333333 puea | 8333333333
suss |BA444444444 pues |BA444444444
suss | 5555555555 pue6 | B555555555
sus7 | 6666666666 pu7 |B666666666
suss 2777777777 pus |@2777777777
suso | 8888888888 puso | 8888888888
sueto | 8999999999 p_uio | 8999999999

The first row (10 elements) of the source array is considered as Source Microblock-1 (S_uB1). The
second row of the source array is considered as Source Microblock-2 (S_uB2) and so on. So the last row
elements of the source array are part of Source Microblock-10 (S_puB10). The similar microblock structure
is followed in Destination Array-1 as well.

Source Microblock-1 (S_uB1) is completely copied to Destination Microblock-1 (D_uB1) without any
modifications. In the same way, the Source Microblock-2 (S_uB2) is completely copied to Destination
Microblock-2 (D_uB2) and so on.

Note: For demonstration purpose, the source array (block) is split into 10 microblocks, having 10
elements each. So, here BLEN is set as 9 and UBLEN is set as 10. Note that it is also possible to transfer
the entire source array (block) in a single microblock, containing 100 elements. In this case, BLEN and
UBLEN fields should be set as 0 and 100 respectively.

Task 2

Task 2 demonstrates how to perform ‘rotate right operation’ on a two dimensional array by using both
‘Destination Data Striding’ and ‘Destination Microblock striding’ functionalities together. Here the source
array is copied and rotated right and stored into Destination Array-2. Destination Array-1 and Destination
Array-3 are not used in Task-2. They are just initialized to 0. Linked list is also not used in Task2.

The first row (10 elements) of the source array is considered as Source Microblock-1 (S_uB1). The
second row of the source array is considered as Source Microblock-2 (S_uB2) and so on. So the last row
elements of source array are part of Source Microblock-10 (S_uB10).

The microblock structure of Destination Array-2 is different. It is based on the destination microblock
striding pattern, which is required for rotating the array right (90° clock wise). The last column (10
elements) of the Destination Array-2 is considered as Destination Microblock-1 (D_uB1). The ninth
column of the Destination Array-2 is considered as Destination Microblock-2 (D_uB2) and so on. So the
first column elements of the Destination Array-2 are part of Destination Microblock-10 (D_uB10).

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 25

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

7.3.

Figure 7-2. lllustration of Task 2

Source Array Destination Array — 2 (10x10 bytes)

(10x10 bytes) D_uB10 D_pB9 D_uB8 D_pB7 D_uB6 D_uB5 D_uB4 D_uB3 D_pB2 D_uBl

S_uB1 ||ooooooooo § g i 8 5 i 3 2 @lk
sus2 |[Al11111111 9 8 7 6 5 4 3 2 J o
suss | 2222222222 9 8 7 6 5 4 3 2 <1 o}
suea | B8333333333 9 8 7 6 5 4 3 2 1 0
suss |B444444444 9 8 7 6 5 4 3 2 1 0
sues | 8555555555 9 8 7 6 5 4 3 2 1 0
sus7 |B666666666 9 8 7 6 5 4 3 2 1 0
sus |@777777777 9 8 7 6 5 4 3 2 1 0
suso |BB888888888 9 8 7 6 5 4 3 2 1 0
sul0 | 8999999999 9 8 7 6 5 4 3 2 1 OD
D Symbol denotes “Data Striding” \Symbol denotes “Microblock Striding”

In order to rotate the array content right, the source microblocks have to be copied to their respective
destination microblocks as shown in the above figure. The first source microblock (S_uB1 / first row) has
to be copied to the first destination microblock (D_uB1 / last column). Similarly, the second source
microblock (S_uB2 / second row) has to be copied to the second destination microblock (D_uB2 / 9th
column) and so on.

To copy the first source microblock (S_uB1 / first row) into the first destination microblock (D_uB1 / last
column) the following settings are necessary.
* The destination address has to be initialized with the starting address of the first destination
microblock (D_uB1 / last column), which is ‘dst_buf 2[0][9]
« The destination data stride length has to be set as ‘9’ in order to fill all of the remaining elements of
the first destination microblock (D_ uB 1)

To copy the second source microblock (S_uB2 / second row) into the second destination microblock
(D_uB2 / 9th column) the following settings are necessary.

* The ‘destination micoblock stride length’ has to be set as -92’ in order to change the destination
address from the last element of D_ uB 1 (dst_buf 2[9][9]) to the first element of D_ uB 2
(dst_buf_2[0][8])

« The ‘destination data stride length’ remains same as ‘9’ in order to fill all of the remaining elements
of the second destination microblock (D_uB2 / 9th column)

The above mentioned settings will remain same for copying other microblocks as well.

Task 3

Task 3 demonstrates how to perform ‘rotate left operation’ on a two dimensional array by using both
‘Source Data Striding’ and ‘Source Microblock striding’ functionalities together. Here the source array is
copied and rotated left and stored into Destination Array-3. Destination Array-1 and Destination Array-2
are not used in Task-3. They are just initialized to 0. Linked list is also not used in Task3.

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 26

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

The first row (10 elements) of Destination Array-3 is considered as Destination Microblock-1 (D_uB1).
The second row of Destination Array-3 is considered as Destination Microblock-2 (D_uB2) and so on. So
the last row elements of Destination Array-3 are part of Destination Microblock-10 (D_uB10).

The microblock structure of Source Array is different here. It is based on the source microblock striding
pattern, which is required for rotating the array left (90° counter clock wise). The last column (10
elements) of the Source Array is considered as Source Microblock-1 (S_uB1). The ninth column of the
Source Array is considered as Source Microblock-2 (S_uB2) and so on. So the first column elements of
Source Array are part of Source Microblock-10 (S_uB10).

Figure 7-3. lllustration of Task 3

Source Array (10x10 bytes) Destination Array — 3

S uB10 S pB9 S_uB8 S uB7 S_uB6 S_uB5 S puB4 S_uB3 S _uB2 S_uBl (10x10 bytes)

0 0 0 0 0 0 0 o |04 owe: | 6138456788
1 1 1 1 1 1 1 il >>1 D_puB2 0123456789
2 2 2 2 2 2 2 2 N3 b b3 | 0123456789
3 3 3 3 3 3 3 3 3 I D_pB4 0123456789
4 4 4 4 4 4 4 4 4 I D_puB5 0123456789
5 5 5 5 5 5 5 5 5 I D_uB6 0123456789
6 6 6 6 6 6 6 6 6 I D_uB7 0123456789
7 7 7 7 7 7 7 7 7 I D_uB8 0123456789
8 8 8 8 8 8 8 8 8 |-\ DuB9 | 0123456789
9 9 9 9 9 9 9 9 9 |<.‘/ DuB10 [0123456789
D Symbol denotes “Data Striding” x Symbol denotes “Microblock Striding”

In order to rotate the array content left, the source microblocks have to be copied to their respective
destination microblocks as shown in the above figure. The first source microblock (S_puB1 / last column)
has to be copied and stored in the first destination microblock (D_uB1 / first row). Similarly, the second
source microblock (S_uB2 / 9th column) has to be copied and stored in the second destination microblock
(D_pB2 / 2nd row) and so on.

To copy the first source microblock (S_uB1 / last column) and store it into the first destination microblock
(D_pB1 / first row), the following settings are necessary.

* The source address has to be initialized with the starting address of the first source microblock
(S_uB1 / last column), which is ‘src_buf{0][9]

* The source data stride length has to be set as ‘9’ in order to fill all of the remaining elements of S_
uB1
To copy the second source microblock (S_pB2 / 9th column) into the second destination microblock
(D_uB2 / second row), the following settings are necessary.

« The source micoblock stride length has to be set as -92’ in order to change the source address
from the last element of S_uB1 (src_buf[9][9]) to the first element of S_uB2 (src_buf[0][8])

* The source data stride length remains same as ‘9’ in order to fill all of the remaining elements of
S uB2

The above mentioned settings will remain same for copying other microblocks as well.

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 27

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

7.4. Task 4

Task 4 demonstrates how to perform Tasks 1, 2, and 3 in a sequential fashion using a linked list. Here a
linked list is formed using three descriptors of type View 0, View 3, and View 3, which are configured for
tasks 1, 2, and 3 respectively. As there are no memory striding operations involved in Task 1, View 0
descriptor is sufficient for Task 1. But Tasks 2 and 3 require View 3 descriptors, as they are mainly based
on memory striding operations. Therefore, a linked list is formed as shown in Figure 7-4. and executed in
Task 4.

Figure 7-4. lllustration of Task 4

MBR NDA » MBR NDA |—— MBR NDA
- — (NULL)
MBR UBC MBR_UBC MBR UBC
MBR TA MBR_SA MBR SA
MBR DA MBR DA
MBR CFG MBR_CFG
MBR BC MBR BC
MBR DS MBR_ DS
MBR SUS MBR_SUS
MBR DUS MBR_DUS
Descriptor -1 Descriptor-2 Descriptor -3
(View 0) (View 3) (View 3)
Configured for Task-1 Configured for Task-2 Configured for Task-3
AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 28

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

8. Cache Coherence Management

If 'Data Cache' is enabled in the MCU, then ‘cache coherency’ should be maintained between data cache
and main memory. Cache coherency management is required when several masters try to access the
same memory location. For example, when CPU and XDMAC both try to access the same memory
location, the cache coherency problem occurs. To avoid this problem, the following operations are
necessary.

* ‘Clean D-Cache Operation’ should be performed before the XDMAC transfer
* ‘Invalidate D-Cache Operation’ should be performed after the XDMAC transfer

The knowledgebase article on Cache Coherence Management gives more information on this topic.

Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 29
Atmel 9
Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

http://atmel.force.com/support/articles/en_US/Technical_Presentation/How-to-manage-Cortex-M7-Cache-Coherence-with-the-Atmel-SAM-S70-E70-DMAs

9. Conclusion

Therefore, it is possible to effectively use linked list and various memory striding functionalities of XDMAC
peripheral to offload CPU processing time in various applications.

Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 30
Atmel 9
Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

Frequently Asked Questions (FAQSs)

In a single block transfer, how to get the number of ‘Microblocks’ transferred so far at a given
point of time?

BLEN field of Channel Block Control Register (XDMAC_CBCx) gets decremented by one for each
microblock being transferred. So you can calculate the number of microblocks transmitted, from the
current BLEN value.

In a single block transfer, how to get the amount of ‘Data’ transferred so far in a microblock at a
given point of time?

UBLEN field of Channel Microblock Control Register (XDMAC_CUBCXx) gets decremented by MBSIZE
(memory burst size) or CSIZE (chunk size) for each memory burst or chunk transfer. So you can calculate
the amount of data transmitted, from the current UBLEN value.

I want to transfer only one block of memory. Do | have to use linked list?

Not necessarily. You can just configure XDMAC global and channel registers and start the data transfer.
Linked list is not needed here. Linked list is used in multi block memory transfer.

AtmeL Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 31

Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

11. References
SAM V71 Device Datasheet:

http://www.atmel.com/Images/Atmel-44003-32-bit-Cortex®-M7-Microcontroller-SAM-V71Q-SAM-V7 1N-
SAM-V71J_Datasheet.pdf

Knowledgebase Article on Cache Coherence Management:

http://atmel.force.com/support/articles/en_US/Technical_Presentation/How-to-manage-Cortex-M7-Cache-
Coherence-with-the-Atmel-SAM-S70-E70-DMAs

Wikipedia Web Page:

https://en.wikipedia.org/wiki/Stride_of an_array

Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 32
Atmel 9
Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

http://www.atmel.com/Images/Atmel-44003-32-bit-Cortex-M7-Microcontroller-SAM-V71Q-SAM-V71N-SAM-V71J_Datasheet.pdf
http://www.atmel.com/Images/Atmel-44003-32-bit-Cortex-M7-Microcontroller-SAM-V71Q-SAM-V71N-SAM-V71J_Datasheet.pdf
http://atmel.force.com/support/articles/en_US/Technical_Presentation/How-to-manage-Cortex-M7-Cache-Coherence-with-the-Atmel-SAM-S70-E70-DMAs
http://atmel.force.com/support/articles/en_US/Technical_Presentation/How-to-manage-Cortex-M7-Cache-Coherence-with-the-Atmel-SAM-S70-E70-DMAs
https://en.wikipedia.org/wiki/Stride_of_an_array

12. Revision History

Date Comments

42761A 08/2016 Initial document release.

Atmel AT17417: Usage of XDMAC on SAM S/SAM E/SAM V [APPLICATION NOTE] 33
Atmel 9
Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

[connecTen |
Altmel | enabling Uniimited Possibilities’ [fl¥]in] 3 o]
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42761A-Usage-of-XDMAC-on-SAMS-SAME-SAMV_AT17417_Application Note-08/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, Cortex®, ARM Connected® logo and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Glossary
	2. XDMAC Basics
	2.1. Memory to Memory Transfer
	2.2. Peripheral to Memory Transfer
	2.3. Memory to Peripheral Transfer

	3. Single Block Memory Transfer
	4. Multi Block Memory Transfer
	4.1. Linked List Formation
	4.2. Linked List Descriptors
	4.2.1. View 0 Descriptor
	4.2.2. View 1 Descriptor
	4.2.3. View 2 Descriptor
	4.2.4. View 3 Descriptor

	5. Memory Striding
	5.1. Data Striding
	5.1.1. Destination Data Striding
	5.1.2. Source Data Striding
	5.1.3. Source and Destination Data Striding

	5.2. Microblock Striding
	5.2.1. Destination Microblock Striding
	5.2.2. Source Microblock Striding
	5.2.3. Source and Destination Microblock Striding

	5.3. Block Striding

	6. Application Code - Getting Started
	7. Application Code - Demonstration
	7.1. Task 1
	7.2. Task 2
	7.3. Task 3
	7.4. Task 4

	8. Cache Coherence Management
	9. Conclusion
	10. Frequently Asked Questions (FAQs)
	11. References
	12. Revision History

