

APPLICATION NOTE

AT03758: Getting Started with SAM4N

32-bit Microcontroller

Features

• Getting started with SAM4N device and tools
• Getting started with SAM4N Xplained Pro in Atmel Studio, IAR Embedded

Workbench® for ARM® and SAM-BA®
• Getting started example in Atmel Software Framework (ASF)

Description

This application note provides information on how to get start with the Atmel ARM
Cortex®-M4 based SAM4N microcontroller. It will provide information on how to get
the datasheet, tools, software, and give a step-by-step instruction on how to load
and build up a single example project to SAM4N Xplained Pro.

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

2

Table of Contents

1 Get the Device Datasheet ...3

2 Get the SAM4N Xplained Pro ...3

3 Get the Tools ..3

4 Get Started with Atmel Studio 6 ..4
4.1 Requirements ... 4
4.2 Load the Example .. 4

5 Get Started with IAR EWARM ..4
5.1 Requirements ... 4
5.2 Load the Example .. 4

6 Get Started with SAM-BA ...4
6.1 Requirements ... 4
6.2 Build the Binary File ... 5
6.3 Load the Example .. 5

7 The Getting-started Example ...5
7.1 Specification ... 5
7.2 On-chip Peripherals.. 5
7.3 On-board Components ... 6

7.3.1 Buttons .. 6
7.3.2 LEDs .. 6
7.3.3 COM Port ... 6

7.4 Implementation ... 6
7.4.1 Startup ... 6

7.4.1.1 Vector Table .. 7
7.4.1.2 Reset Exception... 9

7.4.2 System Clock Initialization ... 9
7.4.3 Board Initialization ... 9
7.4.4 Peripherals Configuration and Usage .. 10

7.4.4.1 UART ... 10
7.4.4.2 SysTick .. 10
7.4.4.3 TC .. 11
7.4.4.4 PIO .. 12

8 Revision History ... 14

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

3

1 Get the Device Datasheet
Web page: www.atmel.com/products/microcontrollers/arm/sam4n.aspx

Documents: SAM4N Series Datasheet (Summary, Complete) (.pdf)

• Complete version (Full datasheet)
• Summary version (short version includes product features, package, pinout, and order information)

2 Get the SAM4N Xplained Pro
Web page: www.atmel.com/tools/ATSAM4N-XPRO.aspx

Get the kit: www.store.atmel.com

Document/file:

• SAM4N Xplained Pro User Guide (.pdf)

Key Features:

• SAM4N16C microcontroller
• One mechanical reset button
• One mechanical user pushbutton
• One yellow user LED
• 32.768kHz crystal
• 12MHz crystal
• Three Xplained Pro extension headers
• Embedded Debugger

– Auto-ID for board identification in Atmel Studio 6.1
– One yellow status LED
– One green board power LED
– Programming
– Virtual COM port (CDC)

• USB powered
• Supported with application examples in Atmel Software Framework

The SAM4N Xplained Pro User Guide introduces the SAM4N Xplained Pro and describes its development and
debugging capabilities.

3 Get the Tools
The following tools are necessary for SAM4N development.

Atmel Studio 6.1 (build 2674 or above): www.atmel.com/atmelstudio

IAR Embedded Workbench for ARM 6.50.5: www.iar.com/en/Products/IAR-Embedded-Workbench/ARM/

SAM4N patch for IAR Embedded Workbench for ARM: IAR-EWARM-SAM4N-ADDON-V1.0.zip (provided with
the application note)

SAM-BA v2.12: www.atmel.com/tools/ATMELSAM-BAIN-SYSTEMPROGRAMMER.aspx

SAM-BA v2.12 patch SAM4N: sam-ba_2.12_patch4n.exe (provided with the application note)

Atmel Software Framework (ASF) (the latest revision): www.atmel.com/tools/avrsoftwareframework.aspx

http://www.atmel.com/products/microcontrollers/arm/sam4n.aspx
http://www.atmel.com/tools/ATSAM4N-XPRO.aspx
http://www.store.atmel.com/
http://www.atmel.com/atmelstudio
http://www.iar.com/en/Products/IAR-Embedded-Workbench/ARM/
http://www.atmel.com/tools/ATMELSAM-BAIN-SYSTEMPROGRAMMER.aspx
http://www.atmel.com/tools/avrsoftwareframework.aspx

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

4

4 Get Started with Atmel Studio 6

4.1 Requirements
• Atmel Studio 6.1 (build 2674 or above) installed
• ASF included in Atmel Studio installation, update to the latest version
• SAM4N Xplained Pro connected to Atmel Studio through USB cable

4.2 Load the Example
• Launch Atmel Studio
• Open the example selection menu in ASF from Atmel Studio: File → New → Example Project
• Select the “SAM4, 32-bit” from Device Family drop-down list
• Select the “Applications” from Category drop-down list
• Select the “Kit” view and select SAM4N Xplained Pro
• Pick project “Getting-Started Application on SAM – SAM4N Xplained Pro” in the list and then press OK
• Accept the license agreement and press Finish. Then the Atmel Studio will open the example
• Build the project: Build → Build Solution
• Load the code in SAM4N and start debugging: Debug → Start Debugging and Break

Now the application has been programmed and the debugger stops at the beginning of main(). To execute it,
click on Debug → Continue.

5 Get Started with IAR EWARM

5.1 Requirements
• ASF the latest revision standalone package installed
• IAR Embedded Workbench for ARM 6.50.5 installed
• SAM4N patch for IAR Embedded Workbench for ARM installed
• SAM4N Xplained Pro connected to IAR Embedded Workbench for ARM through USB cable

5.2 Load the Example
• Find the example iar project for SAM4N Xplained Pro in ASF standalone package and open it.
• Build the project: Project → Make
• Load the code in SAM4N and start debugging: Project → Download and Debug

Now the application has been programmed and the debugger stops at the beginning of main(). To execute it,
click on Debug → Go.

6 Get Started with SAM-BA

6.1 Requirements
• Atmel Studio 6.1 (build 2674 or above) installed
• ASF (the latest revision) standalone package installed
• SAM-BA v2.12 and SAM4N patch installed
• SAM4N Xplained Pro connected to SAM-BA through USB cable

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

5

6.2 Build the Binary File
• Open the Atmel Studio command line: Start → All Programs → Atmel → Atmel Studio 6.1 Command

Prompt
• Find the example gcc project for SAM4N Xplained Pro in ASF standalone package
• Change the directory where the makefile is, type “make” and enter
• Then the binary file (getting-started_flash.bin) will be generated in the directory
• The binary file generated by IAR can be programmed by SAM-BA as well. How to generate binary files by

IAR, Project → Options → Output Converter: Click “Generate additional output” and select “binary” from
Output Format drop-down list. More details please refer to IAR C/C++ Development Guide for ARM
provided by IAR Embedded Workbench for ARM.

6.3 Load the Example
• Open SAM-BA
• Select COMn (n could be 1, 2, or other number) as the connection
• Select at91sam4n16-xpro as the target board. Then press Connect
• In SAM-BA GUI, choose Flash tab
• For Send File Name, choose the binary file (getting-started_flash.bin) generated previously
• Specify the address (0x400000), then press Send File
• For Scripts, select Boot from Flash (GPNVM1), then press Execute

Now the application has been programmed. To execute it, reset the board.

7 The Getting-started Example
This chapter describes a simple example project that uses several important features present on SAM4N device.

There are four main parts in this section:

• The specification of the getting-started example
• The introduction about relevant on-chip peripherals
• The introduction about relevant on-board components
• The implementation of the example

7.1 Specification
The getting-started example makes the user LED on the board blink at a fixed rate. This rate is generated by
using a timer. The blinking can be stopped and restarted by using the user pushbutton.

7.2 On-chip Peripherals
In order to perform the operations described previously, the getting-started example uses the following set of
peripherals:

• Parallel Input/Output (PIO) controller
• Timer Counter (TC)
• System Tick Timer (SysTick)
• Nested Vectored Interrupt Controller (NVIC)
• Universal asynchronous Receiver Transmitter (UART)
• Power Management Controller (PMC)

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

6

LED and button on the board are connected to standard input/output pins on the chip. The pins are managed by
a PIO controller. In addition, it is possible to have the controller generate an interrupt when the status of one of its
pins changes; buttons are configured to have this behavior.

The TC and SysTick are used to generate two timebases, in order to obtain the LED blinking rates. They are both
used in interrupt mode:

• The TC triggers an interrupt at a fixed rate, each time toggling the LED state (on/off)
• The SysTick triggers an interrupt every millisecond, incrementing a variable by one tick. The delay function

monitors this variable to provide a precise delay.

Using the NVIC is required to manage interrupts. It allows the configuration of a separate interrupt handler for
each source. Three different functions are used to handle PIO, TC, and SysTick interrupts.

Finally, an additional peripheral is used to output debug traces on a serial line; the UART. Having the firmware
send debug traces at key points of the code can greatly help the debugging process.

7.3 On-board Components

7.3.1 Buttons
The SAM4N Xplained Pro features two push-buttons, RESET, and SW0, connected to pins nRST and PA30
respectively.

The RESET is usually used to reset the MCU, while SW0 is used for general purpose, which can force a logical
low level on the corresponding PIO line when pressed.

The getting-started example uses SW0 button with the internal hardware debouncing circuitry embedded in the
SAM4N.

7.3.2 LEDs
There are three LEDs on the SAM4N Xplained Pro. LED0 is used for general purpose, which is connected to
PB14. POWER is the power LED and STATUS is the debugger status LED.

LED0 is used in the getting-started example.

7.3.3 COM Port
UART0 of the SAM4N is connected to the virtual COM port on SAM4N Xplained Pro.

7.4 Implementation

7.4.1 Startup
Most of the code in this program is written in C, which makes it easier to understand, more portable, and modular.
The C-startup code must:

• Provide vector table
• Initialize critical peripherals
• Initialize stacks
• Initialize memory segments
• Locate Vector Table Offset

These steps are described in the following paragraphs.

Note: There are two versions of c-startup code in Atmel Software Framework. One is for the IAR Embedded
Workbench for ARM compiler and the other is for GNU GCC compiler. This application note will focus on
the details of the GCC one.

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

7

7.4.1.1 Vector Table

The vector table contains the initialization value for the stack pointer (see “Initializing Stacks”) on reset, and the
entry point addressed for all exception handlers. The exception numbers (see Table 7-1) define the order of
entries in the vector table associated with the exception handler entries (see Table 7-2).

Table 7-1. Exception Numbers

Exception Number Exception

1 Reset

2 Non-Maskable Interrupt

3 Hard Fault

4 Memory Management

5 Bus Fault

6 Usage Fault

7-10 Reserved

11 SVCall

12 Debug Monitor

13 Reserved

14 PendSV

15 SysTick

16 External Interrupt 0

… …

16 + N External Interrupt N

Table 7-2. Vector Table Format

Word Offset Description

0 Initial Stack Pointer

Exception Number Exception using that Exception Number

On reset, the vector table is located at CODE partition. The table’s current location can be determined or
relocated in the CODE or SRAM partitions of the memory map using the Vector Table Offset Register (VTOR).
Details on the register can be found in the "Cortex-M4 Technical Reference Manual".

In the getting-started example, a full vector table looks like this:

The Full Vector Table in the Getting-Started Example

const DeviceVectors exception_table = {

 /* Configure Initial Stack Pointer, using linker-generated symbols */
 (void *)(&_estack),

 (void *)Reset_Handler,
 (void *)NMI_Handler,
 (void *)HardFault_Handler,
 (void *)MemManage_Handler,

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

8

 (void *)BusFault_Handler,
 (void *)UsageFault_Handler,
 (void *)(0UL), /* Reserved */
 (void *)(0UL), /* Reserved */
 (void *)(0UL), /* Reserved */
 (void *)(0UL), /* Reserved */
 (void *)SVC_Handler,
 (void *)DebugMon_Handler,
 (void *)(0UL), /* Reserved */
 (void *)PendSV_Handler,
 (void *)SysTick_Handler,

 /* Configurable interrupts */
 (void *)SUPC_Handler, /* 0 Supply Controller */
 (void *)RSTC_Handler, /* 1 Reset Controller */
 (void *)RTC_Handler, /* 2 Real Time Clock */
 (void *)RTT_Handler, /* 3 Real Time Timer */
 (void *)WDT_Handler, /* 4 Watchdog Timer */
 (void *)PMC_Handler, /* 5 Power Management Controller */
 (void *)EFC_Handler, /* 6 Enhanced Flash Controller */
 (void *)(0UL), /* 7 Reserved */
 (void *)UART0_Handler, /* 8 UART 0 */
 (void *)UART1_Handler, /* 9 UART 1 */
 (void *)UART2_Handler, /* 10 UART 2 */
 (void *)PIOA_Handler, /* 11 Parallel I/O Controller A */
 (void *)PIOB_Handler, /* 12 Parallel I/O Controller B */
 (void *)PIOC_Handler, /* 13 Parallel I/O Controller C */
 (void *)USART0_Handler, /* 14 USART 0 */
 (void *)USART1_Handler, /* 15 USART 1 */
 (void *)UART3_Handler, /* 16 UARG 3 */
 (void *)USART2_Handler, /* 17 USART 2 */
 (void *)(0UL), /* 18 Reserved */
 (void *)TWI0_Handler, /* 19 Two Wire Interface 0 */
 (void *)TWI1_Handler, /* 20 Two Wire Interface 1 */
 (void *)SPI_Handler, /* 21 Serial Peripheral Interface */
 (void *)TWI2_Handler, /* 22 Two Wire Interface 2 */
 (void *)TC0_Handler, /* 23 Timer/Counter 0 */
 (void *)TC1_Handler, /* 24 Timer/Counter 1 */
 (void *)TC2_Handler, /* 25 Timer/Counter 2 */
 (void *)TC3_Handler, /* 26 Timer/Counter 3 */
 (void *)TC4_Handler, /* 27 Timer/Counter 4 */
 (void *)TC5_Handler, /* 28 Timer/Counter 5 */
 (void *)ADC_Handler, /* 29 Analog To Digital Converter */
 (void *)DACC_Handler, /* 30 Digital To Analog Converter */
 (void *)PWM_Handler /* 31 Pulse Width Modulation */
};

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

9

7.4.1.2 Reset Exception

The handler of reset exception is responsible for starting up the application by performing the following actions:

Table 7-3. Reset Exception Actions

Action Description

Initialize variables Any global/static variables must be setup. This includes initializing the BSS variable to 0 and cop-
ying initial values from ROM to RAM for non-constant variables.

Set vector table Optionally change vector table from Code area, value 0, to a location in SRAM. This is normally
done to enable dynamic changes.

Branch to main() Branch to the main() application.

7.4.2 System Clock Initialization
At the very beginning of the getting-started example main(), sysclk_init() is called to initialized the system clock of
SAM4N. In this function, Power Management Controller (PMC) is set according to the clock configuration file,
conf_clock.h.

In the conf_clock.h, the system clock source (CONFIG_SYSCLK_SOURCE) and system clock prescaler
(CONFIG_SYSCLK_PRES) must be defined. In the case of the getting-started example, since the Phase Lock
Loop block (PLLA) is used to multiply the frequency of the system clock, PLLA source, factor and divider must be
defined too.

Clock Configuration

// ===== System Clock (MCK) Source Options
#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLLACK

// ===== System Clock (MCK) Prescaler Options
#define CONFIG_SYSCLK_PRES SYSCLK_PRES_2

// ===== PLL0 (A) Options
// Use mul and div effective values here.
#define CONFIG_PLL0_SOURCE PLL_SRC_MAINCK_8M_RC
#define CONFIG_PLL0_MUL 25
#define CONFIG_PLL0_DIV 1

As shown in the code above, the 8MHz Fast RC Oscillator (PLL_SRC_MAINCK_8M_RC) is selected as the
PLLA source (CONFIG_PLL0_SOURCE). The factor (CONFIG_PLL0_MUL) and divider (CONFIG_PLL0_DIV)
are defined as 25 and 1 respectively. PLLA (SYSCLK_SRC_PLLACK) is chosen as the system clock source
(CONFIG_SYSCLK_SOURCE), the prescaler of which (CONFIG_SYSCLK_PRES) is defined as 2.

So after calling sysclk_init() with this configuration, the system clock frequency (SYSCLK) is:
SYSCLK = FAST_RC * MUL / DIV / PRES = 8MHz * 25 / 1 / 2 = 100MHz

7.4.3 Board Initialization
To control the on-board components, button, LED, and COM port in the case of the getting-started example,
board_init() is called in the main(). With the conf_board.h, the corresponding pins are configured in the
appropriate mode.

Board Configuration

/** Enable Com Port. */
#define CONF_BOARD_UART_CONSOLE

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

10

In board_init(), the pin connected to the user pushbutton is configured as input port and the pin connected to LED
is configured as output port.

In the getting-started example, CONF_BOARD_UART_CONSOLE is predefined as above, which enables the
COM port by configuring PA9 and PA10 as URXD0 and UTXD0 respectively.

7.4.4 Peripherals Configuration and Usage

7.4.4.1 UART

UART outputs the debug information via the COM port in the getting-started example. To display characters on
PC terminal software correctly, several parameters must be configured before calling puts() or printf().

In SAM4N, the UART peripheral operates in asynchronous mode only and supports only 8-bit character handling
(with parity) and one stop bit. No flow control is supported. So there are the baudrate and parity left to be
configured.

UART Parameters

/** Baudrate setting */
#define CONF_UART_BAUDRATE 115200
/** Parity setting */
#define CONF_UART_PARITY UART_MR_PAR_NO

In conf_uart_serial.h, the baudrate is set as 115200bps and no parity is used.

UART Configuration

const usart_serial_options_t uart_serial_options = {
 .baudrate = CONF_UART_BAUDRATE,
 .paritytype = CONF_UART_PARITY
};

/* Configure console UART. */
sysclk_enable_peripheral_clock(ID_UART0);
stdio_serial_init(UART0, &uart_serial_options);

In the above code, the peripheral clock for UART0 is enabled by calling sysclk_enable_peripheral_clock(). Then
stdio_serial_init() configures the baudrate and the parity type.

7.4.4.2 SysTick

SysTick can be easily configured by calling SysTick_Config(). To generate 1ms period, the only parameter of this
function should be system clock frequency / 1000.

SysTick Configuration

SysTick_Config(sysclk_get_cpu_hz() / 1000)

sysclk_get_cpu_hz() returns the current system clock frequency in Hz.

Then the SysTick interrupt will be triggered every 1ms. In the getting-started example, the SysTick interrupt
handler SysTick_Handler() simply increases a global counter by 1 every time, which is used by the wait function
to generate a specified period delay.

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

11

SysTick Interrupt Handler

volatile uint32_t g_ul_ms_ticks = 0;
void SysTick_Handler(void)
{
 g_ul_ms_ticks++;
}

Delay Function

static void mdelay(uint32_t ul_dly_ticks)
{
 uint32_t ul_cur_ticks;

 ul_cur_ticks = g_ul_ms_ticks;
 while ((g_ul_ms_ticks - ul_cur_ticks) < ul_dly_ticks);
}

Note: The global counter, g_ul_ms_ticks, is declared as a volatile variable. It prevents the compiler from
optimizing the code casuing that the delay function does not work.

7.4.4.3 TC

SAM4N provides several 32-bit TC channels, which could be used to measure frequency, count event, generate
PWM wave and so on.

In the getting-started example, the TC channel 0 is configured to generate an interrupt per a quarter of a second.

Timer Counter Configuration

uint32_t ul_div;
uint32_t ul_tcclks;
uint32_t ul_sysclk = sysclk_get_cpu_hz();

/* Configure PMC */
pmc_enable_periph_clk(ID_TC0);

/** Configure TC for a 4Hz frequency and trigger on RC compare. */
tc_find_mck_divisor(4, ul_sysclk, &ul_div, &ul_tcclks, ul_sysclk);
tc_init(TC0, 0, ul_tcclks | TC_CMR_CPCTRG);
tc_write_rc(TC0, 0, (ul_sysclk / ul_div) / 4);

/* Configure and enable interrupt on RC compare */
NVIC_EnableIRQ((IRQn_Type) ID_TC0);
tc_enable_interrupt(TC0, 0, TC_IER_CPCS);

/** Start the counter */
tc_start(TC0, 0);

Before any configuration, TC peripheral clock is enabled. Two necessary parameters; the TC divider and the tick
value for the compare register (RC is used in the example), must be calculated to initialize the TC and the
compare register. Then the program enables the TC channel 0 interrupt and the compare interrupt. In the end, it
starts TC channel 0 and the counter starts ticking.

In the TC channel 0 interrupt handler, the COM port outputs “2 ” every time.

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

12

Interrupt Handler for TC Channel 0

 volatile uint32_t ul_dummy;

 /* Clear status bit to acknowledge interrupt */
 ul_dummy = tc_get_status(TC0, 0);

 /* Avoid compiler warning */
 UNUSED(ul_dummy);

 printf("2 ");

7.4.4.4 PIO

Besides toggling LED, in the getting-started example, PIO retrieves the button input. When a button is pressed,
the level of the corresponding pin is changed. PIO detects the change and triggers an interrupt.

PIO Configuration for one button (one pin)

/* Configure Pushbutton 1 */
pmc_enable_periph_clk(PIN_PUSHBUTTON_1_ID);
pio_set_debounce_filter(PIN_PUSHBUTTON_1_PIO, PIN_PUSHBUTTON_1_MASK, 10);
/* Interrupt on rising edge */
pio_handler_set(PIN_PUSHBUTTON_1_PIO, PIN_PUSHBUTTON_1_ID,
 PIN_PUSHBUTTON_1_MASK, PIN_PUSHBUTTON_1_ATTR,
Button1_Handler);
NVIC_EnableIRQ((IRQn_Type) PIN_PUSHBUTTON_1_ID);
pio_handler_set_priority(PIN_PUSHBUTTON_1_PIO,
 (IRQn_Type) PIN_PUSHBUTTON_1_ID, IRQ_PRIOR_PIO);
pio_enable_interrupt(PIN_PUSHBUTTON_1_PIO, PIN_PUSHBUTTON_1_MASK);

The PIO peripheral clock is enabled at first so that the configuration above can take effect.

Usually in an application with the button inputs, there are some glitches on the input lines of the buttons. In PIO of
SAM4N, the debouncing filter can be set to reject these unwanted pulses. In the getting-started example, if the
period of a glitch is less than 10 slow clock cycles (slow clock frequency is 32768Hz in this case), the glitch will be
ignored by PIO.

There is a specified handler for a specified button pressing. Before enabling the PIO interrupt and any pin
interrupt, a handler, Button1_Handler, is set by calling pio_handler_set(). Also the condition to trigger a pin
interrupt is chosen here.

In the getting-started example, the user pushbutton SW0 controls LED0. When SW0 is pressed after reset, LED0
stops blinking. Then if SW0 is pressed again, LED0 starts blinking.

Button Pressing Process

static void ProcessButtonEvt(uint8_t uc_button)
{
 if (uc_button == 0) {
 g_b_led0_active = !g_b_led0_active;
 if (!g_b_led0_active) {
 ioport_set_pin_level(LED0_GPIO, IOPORT_PIN_LEVEL_HIGH);
 }
 }

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

13

}

static void Button1_Handler(uint32_t id, uint32_t mask)
{
 if (PIN_PUSHBUTTON_1_ID == id && PIN_PUSHBUTTON_1_MASK == mask) {
 ProcessButtonEvt(0);
 }
}

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

14

8 Revision History
Doc Rev. Date Comments

42169B 09/2014 Updated some sentences in description section.

42169A 08/2013 Initial document release.

AT03758: Getting Started with SAM4N [APPLICATION NOTE]
Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

15

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2014 Atmel Corporation. / Rev.:Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks
of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL
WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless
specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products
are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor
intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Features
	Description
	Table of Contents
	1 Get the Device Datasheet
	2 Get the SAM4N Xplained Pro
	3 Get the Tools
	4 Get Started with Atmel Studio 6
	4.1 Requirements
	4.2 Load the Example

	5 Get Started with IAR EWARM
	5.1 Requirements
	5.2 Load the Example

	6 Get Started with SAM-BA
	6.1 Requirements
	6.2 Build the Binary File
	6.3 Load the Example

	7 The Getting-started Example
	7.1 Specification
	7.2 On-chip Peripherals
	7.3 On-board Components
	7.3.1 Buttons
	7.3.2 LEDs
	7.3.3 COM Port

	7.4 Implementation
	7.4.1 Startup
	7.4.1.1 Vector Table
	7.4.1.2 Reset Exception

	7.4.2 System Clock Initialization
	7.4.3 Board Initialization
	7.4.4 Peripherals Configuration and Usage
	7.4.4.1 UART
	7.4.4.2 SysTick
	7.4.4.3 TC
	7.4.4.4 PIO

	8 Revision History

