Altmel

Atmel | SMART

APPLICATION NOTE

ATO03758: Getting Started with SAM4N

32-bit Microcontroller

Features

o Getting started with SAM4N device and tools

o Getting started with SAM4N Xplained Pro in Atmel Studio, IAR Embedded
Workbench® for ARM® and SAM-BA®

o Getting started example in Atmel Software Framework (ASF)

Description

This application note provides information on how to get start with the Atmel ARM
Cortex®-M4 based SAM4N microcontroller. It will provide information on how to get
the datasheet, tools, software, and give a step-by-step instruction on how to load
and build up a single example project to SAM4N Xplained Pro.

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014

Table of Contents

1 Get the Device Datasheet........... . 3
2 Getthe SAMAN Xplain@d Pro.......cccciiiiiiiiiiiiiiiiiisssssss s ssssss s s s s sssnsnnn 3
3 Getthe TOOIS ... ———————————————————————— 3
4 Get Started with Atmel Studio 6cooeeiiiiiiiiicic e 4
L 3 B =T [0 (=T 40 T=T 01 £ T PP RP P PPPPR 4

4.2 L0ad the EXAMPIE ...ttt h e et e e b e e e 4

5 Get Started with IJAR EWARM 4
5.1 REQUINEIMENTS ...ttt ettt e ek et e e st et e oo s et e e e b et e e st et e e eabe e e e e bbb e e nane e e e saneeeeanneeenans 4

5.2 L0Ad the EXAMPIEooiiiiiiiee ettt et h et e e e b et e et e e e e e e e e e e nan 4

6 Get Started With SAM-BA......... . e r s e e e e e s e e s e e s s e e e e e e nennennes 4
(20 I =T [T (=T o 1= o € T O TSP PP OPPPP PRI 4

6.2 BUIld the BINAry Fleccouiiiieieeie ettt b et b e et nb e e eae e et e e e e e e nan e e 5

(ST T o= T I (0 T3 =T 0] o) L= UPRRRRRPP 5

7 The Getting-started EXample...........oomiiieerrr s 5
A TS T 1= 7= (o] o PRSPPI 5

A 2 O 4 Eor o 11 o Y] o =Y = £ PP PP 5

7.3 ON-DOAId COMPONENES......iiiiiiiieiite ettt e e st et e e e et e e s bt e e ek b e e e e et et e e aab et e e e b be e e sanne e e e naneeeeabneeenans 6

4 T T = 11 1 (o] o 1= SRS 6

AR 2 1 = TP PR PP PPRTR 6

7.3.3 COM POt ...ttt et e e ettt e et e et e e ee bt e et e e na bt e et e e e bt e et e e e r e e e neenreeaa 6

A 1201 o] (=1 14 T=1 01 =1 i o] o W PRSPPI 6

A S - 4 (1 o O PSS PR 6

A B V- Yo (o g 1=) [PRSP 7

T7.4.1.2 RESEE EXCEPUON. ... ettt 9

7.4.2 System ClOck INIAlIZAtIONooiiiiie e 9

7.4.3 Board INtI@liZAtiONccceeiiiiiiie et 9

7.4.4 Peripherals Configuration @and USAgGE...........ccuuiiiiiiiiiiiiiie ettt e 10

TA A UART ettt ettt s bt e st et ea e et e e et e e 10

TA4.2 SYSTICK ittt ettt ettt e e b et eb e beeenee e 10

A S T 1 O PP PP RPPRR 11

TAAA PlO ettt bbbt b et e e ebe e beeeneeaa 12

8 RevVision HisStory ... 14
2 AT03758: Getting Started with SAM4N [APPLICATION NOTE] AtmeL

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

1 Get the Device Datasheet

Web page: www.atmel.com/products/microcontrollers/arm/sam4n.aspx
Documents: SAM4N Series Datasheet (Summary, Complete) (.pdf)

e Complete version (Full datasheet)
e Summary version (short version includes product features, package, pinout, and order information)

2 Get the SAM4N Xplained Pro
Web page: www.atmel.com/tools/ATSAM4N-XPRO.aspx
Get the kit: www.store.atmel.com
Documentf/file:
e SAMA4N Xplained Pro User Guide (.pdf)
Key Features:
e SAM4N16C microcontroller
e One mechanical reset button
e One mechanical user pushbutton
e One yellow user LED
o 32.768kHz crystal
e 12MHz crystal
e Three Xplained Pro extension headers
e Embedded Debugger
— Auto-ID for board identification in Atmel Studio 6.1
— One yellow status LED
— One green board power LED
— Programming
— Virtual COM port (CDC)
e USB powered
e Supported with application examples in Atmel Software Framework

The SAM4N Xplained Pro User Guide introduces the SAM4N Xplained Pro and describes its development and
debugging capabilities.

3 Get the Tools

The following tools are necessary for SAM4N development.
Atmel Studio 6.1 (build 2674 or above): www.atmel.com/atmelstudio
IAR Embedded Workbench for ARM 6.50.5: www.iar.com/en/Products/IAR-Embedded-Workbench/ARM/

SAM4N patch for IAR Embedded Workbench for ARM: IAR-EWARM-SAM4N-ADDON-V1.0.zip (provided with
the application note)

SAM-BA v2.12: www.atmel.com/tools/ATMELSAM-BAIN-SYSTEMPROGRAMMER.aspx
SAM-BA v2.12 patch SAM4N: sam-ba_2.12_patch4n.exe (provided with the application note)

Atmel Software Framework (ASF) (the latest revision): www.atmel.com/tools/avrsoftwareframework.aspx

AtmeL ATO03758: Getting Started with SAM4N [APPLICATION NOTE] 3

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

http://www.atmel.com/products/microcontrollers/arm/sam4n.aspx
http://www.atmel.com/tools/ATSAM4N-XPRO.aspx
http://www.store.atmel.com/
http://www.atmel.com/atmelstudio
http://www.iar.com/en/Products/IAR-Embedded-Workbench/ARM/
http://www.atmel.com/tools/ATMELSAM-BAIN-SYSTEMPROGRAMMER.aspx
http://www.atmel.com/tools/avrsoftwareframework.aspx

4

4.1

4.2

5.1

5.2

6.1

Get Started with Atmel Studio 6

Requirements
e Atmel Studio 6.1 (build 2674 or above) installed
e ASF included in Atmel Studio installation, update to the latest version
e SAMA4N Xplained Pro connected to Atmel Studio through USB cable

Load the Example
e Launch Atmel Studio
e Open the example selection menu in ASF from Atmel Studio: File — New — Example Project
e Select the “SAM4, 32-bit” from Device Family drop-down list
e Select the “Applications” from Category drop-down list
e Select the “Kit” view and select SAM4N Xplained Pro
e Pick project “Getting-Started Application on SAM — SAM4N Xplained Pro” in the list and then press OK
e Accept the license agreement and press Finish. Then the Atmel Studio will open the example
e Build the project: Build — Build Solution
e Load the code in SAM4N and start debugging: Debug — Start Debugging and Break

Now the application has been programmed and the debugger stops at the beginning of main(). To execute it,
click on Debug — Continue.

Get Started with IAR EWARM

Requirements
e ASF the latest revision standalone package installed
e |AR Embedded Workbench for ARM 6.50.5 installed
e SAMA4N patch for IAR Embedded Workbench for ARM installed
e SAMA4N Xplained Pro connected to IAR Embedded Workbench for ARM through USB cable

Load the Example
e Find the example iar project for SAM4N Xplained Pro in ASF standalone package and open it.
e Build the project: Project — Make
e Load the code in SAM4N and start debugging: Project — Download and Debug

Now the application has been programmed and the debugger stops at the beginning of main(). To execute it,
click on Debug — Go.

Get Started with SAM-BA

Requirements
e Atmel Studio 6.1 (build 2674 or above) installed
e ASF (the latest revision) standalone package installed
e SAM-BA v2.12 and SAM4N patch installed
e SAMA4N Xplained Pro connected to SAM-BA through USB cable

ATO03758: Getting Started with SAM4N [APPLICATION NOTE] AtmeL

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

6.2 Build the Binary File

Open the Atmel Studio command line: Start — All Programs — Atmel — Atmel Studio 6.1 Command
Prompt

Find the example gcc project for SAM4N Xplained Pro in ASF standalone package
Change the directory where the makefile is, type “make” and enter
Then the binary file (getting-started_flash.bin) will be generated in the directory

The binary file generated by IAR can be programmed by SAM-BA as well. How to generate binary files by
IAR, Project — Options — Output Converter: Click “Generate additional output” and select “binary” from
Output Format drop-down list. More details please refer to IAR C/C++ Development Guide for ARM
provided by IAR Embedded Workbench for ARM.

6.3 Load the Example

Open SAM-BA

Select COMnN (n could be 1, 2, or other number) as the connection

Select at91sam4n16-xpro as the target board. Then press Connect

In SAM-BA GUI, choose Flash tab

For Send File Name, choose the binary file (getting-started_flash.bin) generated previously
Specify the address (0x400000), then press Send File

For Scripts, select Boot from Flash (GPNVM1), then press Execute

Now the application has been programmed. To execute it, reset the board.

7 The Getting-started Example

This chapter describes a simple example project that uses several important features present on SAM4N device.

There are four main parts in this section:

The specification of the getting-started example

The introduction about relevant on-chip peripherals
The introduction about relevant on-board components
The implementation of the example

7.1 Specification

The getting-started example makes the user LED on the board blink at a fixed rate. This rate is generated by
using a timer. The blinking can be stopped and restarted by using the user pushbutton.

7.2 On-chip Peripherals

In order to perform the operations described previously, the getting-started example uses the following set of
peripherals:

Atmel

Parallel Input/Output (P10) controller

Timer Counter (TC)

System Tick Timer (SysTick)

Nested Vectored Interrupt Controller (NVIC)

Universal asynchronous Receiver Transmitter (UART)
Power Management Controller (PMC)

AT03758: Getting Started with SAM4N [APPLICATION NOTE] 5

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

7.3

7.3.1

7.3.2

7.3.3

7.4

741

LED and button on the board are connected to standard input/output pins on the chip. The pins are managed by
a PIO controller. In addition, it is possible to have the controller generate an interrupt when the status of one of its
pins changes; buttons are configured to have this behavior.

The TC and SysTick are used to generate two timebases, in order to obtain the LED blinking rates. They are both
used in interrupt mode:

e The TC triggers an interrupt at a fixed rate, each time toggling the LED state (on/off)

e The SysTick triggers an interrupt every millisecond, incrementing a variable by one tick. The delay function
monitors this variable to provide a precise delay.

Using the NVIC is required to manage interrupts. It allows the configuration of a separate interrupt handler for
each source. Three different functions are used to handle P10, TC, and SysTick interrupts.

Finally, an additional peripheral is used to output debug traces on a serial line; the UART. Having the firmware
send debug traces at key points of the code can greatly help the debugging process.

On-board Components

Buttons

The SAM4N Xplained Pro features two push-buttons, RESET, and SWO0, connected to pins nRST and PA30
respectively.

The RESET is usually used to reset the MCU, while SWO is used for general purpose, which can force a logical
low level on the corresponding PIO line when pressed.

The getting-started example uses SWO0 button with the internal hardware debouncing circuitry embedded in the
SAM4N.

LEDs

There are three LEDs on the SAM4N Xplained Pro. LEDO is used for general purpose, which is connected to
PB14. POWER is the power LED and STATUS is the debugger status LED.

LEDO is used in the getting-started example.

COM Port
UARTO of the SAM4N is connected to the virtual COM port on SAM4N Xplained Pro.

Implementation

Startup
Most of the code in this program is written in C, which makes it easier to understand, more portable, and modular.
The C-startup code must:
e Provide vector table
e Initialize critical peripherals
e Initialize stacks
e Initialize memory segments
e Locate Vector Table Offset
These steps are described in the following paragraphs.

Note: There are two versions of c-startup code in Atmel Software Framework. One is for the IAR Embedded
Workbench for ARM compiler and the other is for GNU GCC compiler. This application note will focus on
the details of the GCC one.

ATO03758: Getting Started with SAM4N [APPLICATION NOTE] AtmeL

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

7.4.1.1 Vector Table

The vector table contains the initialization value for the stack pointer (see “Initializing Stacks”) on reset, and the
entry point addressed for all exception handlers. The exception numbers (see Table 7-1) define the order of
entries in the vector table associated with the exception handler entries (see Table 7-2).

Table 7-1. Exception Numbers
[Excoptontumoer e
1 Reset
2 Non-Maskable Interrupt
3 Hard Fault
4 Memory Management
5 Bus Fault
6 Usage Fault
7-10 Reserved
11 SVCall
12 Debug Monitor
13 Reserved
14 PendSV
15 SysTick
16 External Interrupt O
16+ N External Interrupt N

Table 7-2. Vector Table Format

0 Initial Stack Pointer

Exception Number Exception using that Exception Number

On reset, the vector table is located at CODE partition. The table’s current location can be determined or
relocated in the CODE or SRAM partitions of the memory map using the Vector Table Offset Register (VTOR).
Details on the register can be found in the "Cortex-M4 Technical Reference Manual".

In the getting-started example, a full vector table looks like this:

The Full Vector Table in the Getting-Started Example

const DeviceVectors exception table = {

/* Configure Initial Stack Pointer, using linker-generated symbols */
(void *) (& estack),

(void *)Reset Handler,
(void *)NMI Handler,
(void *)HardFault Handler,
(void *)MemManage Handler,
AtmeL AT03758: Getting Started with SAM4N [APPLICATION NOTE] 7

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

(void *)BusFault Handler,
(void *)UsageFault Handler,
(void *) (0UL), /* Reserved */
(void *) (0UL), /* Reserved */
(void *) (0UL), /* Reserved */
(void *) (0UL), /* Reserved */
(void *)SVC Handler,
(void *)DebugMon Handler,
(void *) (0UL), /* Reserved */
(void *)PendSV_Handler,
(void *)SysTick Handler,
/* Configurable interrupts */
(void *)SUPC_Handler, /* 0 Supply Controller */
(void *)RSTC_Handler, /* 1 Reset Controller */
(void *)RTC Handler, /* 2 Real Time Clock */
(void *)RTT Handler, /* 3 Real Time Timer */
(void *)WDT Handler, /* 4 Watchdog Timer */
(void *)PMC Handler, /* 5 Power Management Controller */
(void *)EFC Handler, /* 6 Enhanced Flash Controller */
(void *) (0UL), /* 7 Reserved */
(void *)UARTO Handler, /* 8 UART 0 */
(void *)UART1 Handler, /* 9 UART 1 */
(void *)UART2 Handler, /* 10 UART 2 */
(void *)PIOA Handler, /* 11 Parallel I/O Controller A */
(void *)PIOB Handler, /* 12 Parallel I/O Controller B */
(void *)PIOC Handler, /* 13 Parallel I/0 Controller C */
(void *)USARTO0 Handler, /* 14 USART 0 */
(void *)USART1 Handler, /* 15 USART 1 */
(void *)UART3 Handler, /* 16 UARG 3 */
(void *)USART2 Handler, /* 17 USART 2 */
(void *) (0UL), /* 18 Reserved */
(void *)TWIO Handler, /* 19 Two Wire Interface 0 */
(void *)TWI1 Handler, /* 20 Two Wire Interface 1 */
(void *)SPI Handler, /* 21 Serial Peripheral Interface */
(void *)TWI2 Handler, /* 22 Two Wire Interface 2 */
(void *)TCO Handler, /* 23 Timer/Counter 0 */
(void *)TCl Handler, /* 24 Timer/Counter 1 */
(void *)TC2 Handler, /* 25 Timer/Counter 2 */
(void *)TC3 Handler, /* 26 Timer/Counter 3 */
(void *)TC4 Handler, /* 27 Timer/Counter 4 */
(void *)TCS5 Handler, /* 28 Timer/Counter 5 */
(void *)ADC Handler, /* 29 Analog To Digital Converter */
(void *)DACC Handler, /* 30 Digital To Analog Converter */
(void *)PWM Handler /* 31 Pulse Width Modulation */
}i
8 AT03758: Getting Started with SAM4N [APPLICATION NOTE] /ItmeL

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

7.4.1.2 Reset Exception

The handler of reset exception is responsible for starting up the application by performing the following actions:

Table 7-3. Reset Exception Actions

Action Description

Any global/static variables must be setup. This includes initializing the BSS variable to 0 and cop-

Initialize variables ying initial values from ROM to RAM for non-constant variables.

Optionally change vector table from Code area, value 0, to a location in SRAM. This is normally

Sl done to enable dynamic changes.

Branch to main() Branch to the main() application.

7.4.2 System Clock Initialization
At the very beginning of the getting-started example main(), sysclk_init() is called to initialized the system clock of
SAM4N. In this function, Power Management Controller (PMC) is set according to the clock configuration file,
conf_clock.h.
In the conf_clock.h, the system clock source (CONFIG_SYSCLK_SOURCE) and system clock prescaler
(CONFIG_SYSCLK_PRES) must be defined. In the case of the getting-started example, since the Phase Lock
Loop block (PLLA) is used to multiply the frequency of the system clock, PLLA source, factor and divider must be
defined too.
Clock Configuration
// ===== System Clock (MCK) Source Options
#define CONFIG_ SYSCLK SOURCE SYSCLK_SRC_PLLACK
// ===== System Clock (MCK) Prescaler Options
#define CONFIG SYSCLK PRES SYSCLK_PRES 2
// ===== PLLO (A) Options
// Use mul and div effective values here.
#define CONFIG PLLO_ SOURCE PLL SRC_MAINCK 8M RC
#define CONFIG PLLO MUL 25
#define CONFIG PLLO DIV 1
As shown in the code above, the 8MHz Fast RC Oscillator (PLL_SRC_MAINCK_8M_RC) is selected as the
PLLA source (CONFIG_PLLO_SOURCE). The factor (CONFIG_PLLO_MUL) and divider (CONFIG_PLLO_DIV)
are defined as 25 and 1 respectively. PLLA (SYSCLK_SRC_PLLACK) is chosen as the system clock source
(CONFIG_SYSCLK_SOURCE), the prescaler of which (CONFIG_SYSCLK_PRES) is defined as 2.
So after calling sysclk_init() with this configuration, the system clock frequency (SYSCLK) is:
SYSCLK = FAST_RC * MUL / DIV / PRES =8MHz *25/1/2 = 100MHz
7.4.3 Board Initialization
To control the on-board components, button, LED, and COM port in the case of the getting-started example,
board_init() is called in the main(). With the conf_board.h, the corresponding pins are configured in the
appropriate mode.
Board Configuration
/** Enable Com Port. */
#define CONF_BOARD UART CONSOLE
Atme[AT03758: Getting Started with SAM4N [APPLICATION NOTE] 9

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

744
7.4.41

7.4.4.2

10

In board_init(), the pin connected to the user pushbutton is configured as input port and the pin connected to LED
is configured as output port.

In the getting-started example, CONF_BOARD_UART_CONSOLE is predefined as above, which enables the
COM port by configuring PA9 and PA10 as URXDO and UTXDO respectively.

Peripherals Configuration and Usage

UART

UART outputs the debug information via the COM port in the getting-started example. To display characters on
PC terminal software correctly, several parameters must be configured before calling puts() or printf().

In SAM4N, the UART peripheral operates in asynchronous mode only and supports only 8-bit character handling
(with parity) and one stop bit. No flow control is supported. So there are the baudrate and parity left to be
configured.

UART Parameters

/** Baudrate setting */

#define CONF_UART BAUDRATE 115200

/** Parity setting */

#define CONF_UART PARITY UART MR PAR NO

In conf_uart_serial.h, the baudrate is set as 115200bps and no parity is used.

UART Configuration

const usart serial options_t uart serial options = {
.baudrate = CONF UART BAUDRATE,
.paritytype = CONF UART PARITY

i

/* Configure console UART. */
sysclk enable peripheral clock(ID UARTO) ;
stdio serial init (UARTO, &uart serial options);

In the above code, the peripheral clock for UARTO is enabled by calling sysclk_enable_peripheral_clock(). Then
stdio_serial_init() configures the baudrate and the parity type.

SysTick

SysTick can be easily configured by calling SysTick_Config(). To generate 1ms period, the only parameter of this
function should be system clock frequency / 1000.

SysTick Configuration

SysTick Config(sysclk get cpu hz () / 1000)

sysclk_get _cpu_hz() returns the current system clock frequency in Hz.

Then the SysTick interrupt will be triggered every 1ms. In the getting-started example, the SysTick interrupt
handler SysTick_Handler() simply increases a global counter by 1 every time, which is used by the wait function
to generate a specified period delay.

ATO03758: Getting Started with SAM4N [APPLICATION NOTE] AtmeL

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

SysTick Interrupt Handler

volatile uint32 t g ul ms ticks = 0;
void SysTick Handler (void)
{

g ul ms ticks++;

Delay Function

static void mdelay(uint32 t ul dly ticks)
{

uint32 t ul cur ticks;

ul cur ticks = g ul ms ticks;
while ((g ul ms ticks - ul cur ticks) < ul dly ticks);

Note: The global counter, g_ul_ms_ticks, is declared as a volatile variable. It prevents the compiler from
optimizing the code casuing that the delay function does not work.

7443 TC

SAM4N provides several 32-bit TC channels, which could be used to measure frequency, count event, generate
PWM wave and so on.

In the getting-started example, the TC channel 0 is configured to generate an interrupt per a quarter of a second.

Timer Counter Configuration

uint32 t ul div;
uint32 t ul tcclks;
uint32 t ul sysclk = sysclk get cpu hz();

/* Configure PMC */
pmc_enable periph clk(ID TCO);

/** Configure TC for a 4Hz frequency and trigger on RC compare. */
tc_find mck divisor (4, ul sysclk, &ul div, &ul tcclks, ul sysclk);
tc_init (TCO, 0, ul tcclks | TC CMR CPCTRG) ;

tc write rc(TCO, 0, (ul sysclk / ul div) / 4);

/* Configure and enable interrupt on RC compare */
NVIC EnableIRQ((IRQn Type) ID TCO);
tc_enable interrupt (TCO, 0, TC IER CPCS);

/** Start the counter */
tc_start (TCO, 0);

Before any configuration, TC peripheral clock is enabled. Two necessary parameters; the TC divider and the tick
value for the compare register (RC is used in the example), must be calculated to initialize the TC and the
compare register. Then the program enables the TC channel 0 interrupt and the compare interrupt. In the end, it
starts TC channel 0 and the counter starts ticking.

In the TC channel 0 interrupt handler, the COM port outputs “2 ” every time.

Atmel AT03758: Getting Started with SAM4N [APPLICATION NOTE] 11

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

Interrupt Handler for TC Channel 0

volatile uint32 t ul dummy;

/* Clear status bit to acknowledge interrupt */
ul dummy = tc get status(TCO, 0);

/* Avoid compiler warning */
UNUSED (ul dummy) ;

printf ("2 ");

7444 PIO

Besides toggling LED, in the getting-started example, PIO retrieves the button input. When a button is pressed,
the level of the corresponding pin is changed. PIO detects the change and triggers an interrupt.

P10 Configuration for one button (one pin)

/* Configure Pushbutton 1 */
pmc_enable periph clk(PIN PUSHBUTTON 1 ID);
pio set debounce filter (PIN PUSHBUTTON 1 PIO, PIN PUSHBUTTON 1 MASK, 10);
/* Interrupt on rising edge */
pio handler set (PIN PUSHBUTTON 1 PIO, PIN PUSHBUTTON 1 ID,
PIN PUSHBUTTON 1 MASK, PIN PUSHBUTTON 1 ATTR,
Buttonl Handler);
NVIC EnableIRQ((IRQn Type) PIN PUSHBUTTON 1 ID);
pio handler set priority(PIN PUSHBUTTON 1 PIO,
(IRQn Type) PIN PUSHBUTTON 1 ID, IRQ PRIOR PIO);
pio enable interrupt (PIN PUSHBUTTON 1 PIO, PIN PUSHBUTTON 1 MASK);

The PIO peripheral clock is enabled at first so that the configuration above can take effect.

Usually in an application with the button inputs, there are some glitches on the input lines of the buttons. In P10 of
SAMA4N, the debouncing filter can be set to reject these unwanted pulses. In the getting-started example, if the
period of a glitch is less than 10 slow clock cycles (slow clock frequency is 32768Hz in this case), the glitch will be
ignored by PIO.

There is a specified handler for a specified button pressing. Before enabling the PIO interrupt and any pin
interrupt, a handler, Button1_Handler, is set by calling pio_handler_set(). Also the condition to trigger a pin
interrupt is chosen here.

In the getting-started example, the user pushbutton SWO0 controls LEDO. When SWO is pressed after reset, LEDO
stops blinking. Then if SWO0 is pressed again, LEDO starts blinking.

Button Pressing Process

static void ProcessButtonEvt (uint8 t uc_button)
{
if (uc_button == 0) {
g b led0 active = !g b led0 active;
if (!g b led0 active) {
ioport set pin level (LEDO_GPIO, IOPORT PIN LEVEL HIGH);
}

12 ATO03758: Getting Started with SAM4N [APPLICATION NOTE] AtmeL

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

}

static void Buttonl Handler (uint32 t id, uint32 t mask)

{
if (PIN PUSHBUTTON 1 ID == id && PIN PUSHBUTTON 1 MASK == mask) {
ProcessButtonEvt (0) ;

Atmel AT03758: Getting Started with SAM4N [APPLICATION NOTE] 13

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

8 Revision History

Date : Comments

42169B 09/2014 Updated some sentences in description section.
42169A 08/2013 Initial document release.
14 AT03758: Getting Started with SAM4N [APPLICATION NOTE] Atmel

Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_ AT03758_092014

CONNECTED

Atmel Enabling Unlimited Possibilities’ “¢lvkin w

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com
© 2014 Atmel Corporation./ Rev.:Atmel-42169B-Getting-Started-with-SAM4N-ApplicationNote_AT03758_092014.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and

other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks
of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL
WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless
specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products
are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor
intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Features
	Description
	Table of Contents
	1 Get the Device Datasheet
	2 Get the SAM4N Xplained Pro
	3 Get the Tools
	4 Get Started with Atmel Studio 6
	4.1 Requirements
	4.2 Load the Example

	5 Get Started with IAR EWARM
	5.1 Requirements
	5.2 Load the Example

	6 Get Started with SAM-BA
	6.1 Requirements
	6.2 Build the Binary File
	6.3 Load the Example

	7 The Getting-started Example
	7.1 Specification
	7.2 On-chip Peripherals
	7.3 On-board Components
	7.3.1 Buttons
	7.3.2 LEDs
	7.3.3 COM Port

	7.4 Implementation
	7.4.1 Startup
	7.4.1.1 Vector Table
	7.4.1.2 Reset Exception

	7.4.2 System Clock Initialization
	7.4.3 Board Initialization
	7.4.4 Peripherals Configuration and Usage
	7.4.4.1 UART
	7.4.4.2 SysTick
	7.4.4.3 TC
	7.4.4.4 PIO

	8 Revision History

