Dual-Bank Bootloader on SAM E54 Microcontroller (MCU) .
Using MPLAB Harmony v3 @ MICROCHIP

Introduction

The bootloader is a piece of code used to program or re-program the application code (firmware) to the
internal Flash of the microcontroller without the need for an external programmer or debugger.

The following are key features of the dual-bank bootloader:

+ lItis the first program to run on Power-on-Reset (POR), and responsible to load the firmware into a specific
memory location

+ It can communicate to the host program to receive the firmware through communication interfaces, such as
USB, Ethernet, CAN, UART, I2C and SPI

+ Itis programmed into the microcontroller using the normal conventional programming methods such as an
external programmer or debugger (SWD, JTAG)

+ ltis responsible to check whether the user is intending to update the firmware or run the existing firmware.
A microcontroller can have two code images co-existing in the same memory space (bootloader and user
application (firmware)).

The SAM E54 MCU provides a dual-bank support on the internal Flash memory. The dual-bank Flash enables
the programming of the inactive bank with a new version of the firmware without affecting the existing
application on an active bank.

The MPLAB Harmony v3 provides a bootloader framework for 32-bit microcontrollers, which can be used to
upgrade the firmware on a target device without using the external programmer or debugger. This document
describes the dual-bank bootloader provided by MPLAB Harmony v3. The dual-bank bootloader utilizes the
dual-bank feature of the internal Flash for safer application upgrade.

Table of Contents

INEFOAUCTION. ..ttt ettt st et b et b et s bt e b et e R e e bt e er e sa st s st naeseneneanen 1
1. Hardware and SOftWare REQUINEMENTS.....c.cociriirieirieerteerie sttt ettt et ebe st be st bbb s be e be et et sbe st sbenesbeneas 3
1.1. SAM E54 Xplained Pro EValuation Kit........cevievieirininininisesiesiesiesiesiesseteeet s se e st sttt st st ssessessensessenens 3
1.2. MPLAB'X Integrated Development Environment (IDE) and XC COMPIlers......coeeveereeneeneenieeneenienens 3
1.3, MPLAB HAIMIONY V3.eiiiiiiiettete ettt et sb e st s b s a e b e s ab e b e st e sbeeabe s bt ebesrsenbeens 3
TeA. PYENON. ettt sttt h e bbb b e b e b e A e b et et e e e Rt e Rt e Rt e bt e bt e be s b e s b e sbe b e benbenee 3
N B 1=t] o1 4o o OO OO OSSOSO P PSP PP SRURROTPRO 4
2.1, BOOIOAAEN FramMEWOIK....c.coueuirieiirieeirieirietsteere ettt sttt e s s e s e s e nenes 4
2.2, MOAES Of OPRIATION..cucuiiteiirteirtetrtetrtest ettt ettt ettt sttt b ettt bbbttt s b et s b et b et s b et e b et ebe e sbenesbeneebeneens 5
2.3, UART BOOtIOQAEr PrOtOCOL......cuiitiiriiirieieieietetete ettt ettt sttt sttt sttt b ettt ettt s b e b s 7
2.4, BoOtIoader Triger METNOAS.cciveuiieiirietirtet ettt sttt sttt ettt b et be e e bt esessebesbenesbenessenenes 8
2.5. Bootloader System Level EXECULION FIOW.......cccociririririneninienieniesiesiestessesteste sttt ssessessessessessessensens 10
3. Configuring the DUal-Bank BOOTIOAAENc.ccueiriiiirieirieirieerieeeietsiete ettt ettt st sttt sa s st sbene s 11
3.1, BOOtIOAdEr LINKEr SCIIPL..ciiiiieiriririreriesesiesiesiesiesiesteste st ete s et e s et s e esessesbasbesbesbesbesbesbestessensensensensonsonseseane 12
3.2, Test ApPlication CoNfiGUIatiONS. ...coci ittt ettt sttt sttt sbe e b e bt 13
3.3, Test APPlICation ProjeCt SEEINES.ccveirieirieirieirieisie sttt sttt ettt se sttt se st st sbe e s besesbe e sbenaesen 14
4. RUNNING the DEMONSTIAtION....ciiiiirieirteirieertetr ettt ettt et b et b e b bbbt be e bt be bt s b e bt s b e st s besenbesensenenes 17
4.1. Running the Bootloader APPliCatioN.. ..ottt et e e 17
4.2, RUNNING the TeST APPHCATION...ciiirirtiiertetetct ettt sttt sttt et b e bt e e e sbesbesbesbesbesbesbenbenes 19
D REIIEINCES .. ittt ettt sttt b et bt s b et ekt b et e b et bbb et ek b ekt b ek b e stk e st te st ebe st ebe st ebenee 22
6. REVISION HISTONY ittt b e b b e e e b et b e s bt s bt s bt s bt s b s b s b e s n e b e b ennens 23
MICIOCHIP INFOIMATION......eiiteiieiiecte ettt et ettt et st s bt ekt et e e e s e s ese s ese st ese s esesaesessesessenessesessesersenesan 24
TrAAEMAIKS. ..ttt ettt b st b e bbbt b ettt b e st et et s b e st b et e b e e b e e bbb et e b et e b et e b e bbb e bt nb bt st e bt b e s e 24
LEEAI NOTICE vttt ettt sttt st b et skttt et et e b et e b e st e b e st e b et ek et ek e b e ket e b e b ebe st ebe b e bt st e bt sbenesbenesbeneee 24
Microchip Devices Code ProteCtion FEAUIE.......ccuiieiriririreneriesteste sttt ettt ettt sbe bbb st sttt esse s ensens 24

@ MICROCHIP

1. Hardware and Software Requirements

1.1 SAM E54 Xplained Pro Evaluation Kit

The SAM E54 Xplained Pro Evaluation Kit is a development kit for evaluating the SAM E54
microcontrollers (MCUs). The SAM E54 is based on an Arm® Cortex® -M4 capable of running at
120 MHz. This pro-evaluation kit includes an on-board Embedded Debugger, which eliminates the
need for external tools to program or debug the SAM E54. The evaluation kit also offers external
connectors to extend the features of the board and ease the development of custom designs.

The SAM E54 Xplained Pro Evaluation Kit is available for download at Microchip Direct.

1.2 MPLAB X Integrated Development Environment (IDE) and XC Compilers

The MPLAB X IDE is an expandable, highly-configurable software program that incorporates
powerful tools to help users discover, configure, develop, debug, and qualify embedded designs
for most of the Microchip’s microcontrollers.

The MPLAB X IDE is available at Microchip Website. This document uses MPLAB X IDE version 6.20.

MPLAB XC Compilers are available at Microchip Website. This document uses MPLAB XC32 version
4.45.
1.3 MPLAB Harmony v3

MPLAB Harmony v3 is a fully-integrated embedded software development framework that provides
flexible and interoperable software modules that allow users to dedicate their resources to create
applications for 32-bit PIC and SAM devices, rather than dealing with device details, complex
protocols, and library integration challenges.

MPLAB® Code Configurator (MCC) is a free graphical programming environment that generates
easy-to-understand C code for the project. It provides an intuitive interface to configure peripherals,
and functions specific to the application. MCC supports our 8-bit, 16-bit, and 32-bit devices, including
PIC®, AVR®, SAM microcontrollers (MCUs), and dsPIC® Digital Signal Controllers (DSCs).

The MCC is available as a plugin that integrates with the MPLAB X IDE and has a separate Java™
executable for stand-alone use with other development environments.

The examples used in this document use the following repositories, which can be downloaded from
GitHuB:

+ ¢sp: Harmony 3 Chip Support Package
+ bootloader: Harmony 3 Bootloader
* bootloader_apps_uart: Harmony 3 Bootloader UART examples

The MCC Content Manager can also be used to download the repositories.

1.4 Python

This document describes using the python scripts for converting binary output to a ‘C’ style array
containing a Hex output. Python is also used to merge the bootloader binary and the application
binary.

The conversion and merging covered in this document are performed using Python v3.11.9.

@ MICROCHIP

https://www.microchip.com/developmenttools/ProductDetails/atsame54-xpro#additional-summary
https://www.microchip.com/mplab/mplab-x-ide
https://www.microchip.com/mplab/compilers
https://github.com/Microchip-MPLAB-Harmony/csp
https://github.com/Microchip-MPLAB-Harmony/bootloader
https://github.com/Microchip-MPLAB-Harmony/bootloader_apps_uart
https://onlinedocs.microchip.com/pr/GUID-1F7007B8-9A46-4D03-AEED-650357BA760D-en-US-6/index.html?GUID-1154354B-2B16-4E74-8552-AD4977699E09

2. Description

2.1 Bootloader Framework
The MPLAB Harmony v3 bootloader framework is divided into the following sub tasks:

+ Communication Task
+ Command Processing Task
+ Programming Task

Figure 2-1. Harmony v3 Bootloader Framework

Bootloader Framework

Communication Command Programming
Task Processmg Task Task

/ \ /" Programming

Communication Interface
Interface
2
USART 14C NVM PLIB
HOST PC EMBEDDED HOST

Communication Task

This task is responsible for receiving data from the host PC or embedded host through the selected
communication interface in polling mode. It validates the incoming packet from the host with the
expected header information before passing it to the command processing task.

Command Processing Task

This task processes the commands received from communication task and acts upon it, providing
the response back to the host PC accordingly. If the command received is a program command,
then it gives control to the programming task.

Programming Task

This task is responsible to program the internal Flash memory with a data packet received. It uses
the Non-Volatile Memory (NVM) peripheral library to perform the unlock, erase, or write operations.
It invokes the communication task in parallel to receive the next packet while waiting for the Flash
operation to complete.

@ MICROCHIP

Flow Chart
The firmware upgrade execution flowchart is shown in the following figure.

Figure 2-2. Bootloader Framework Execution Flowchart

Bootloader
Task

Communication Task

Packet
Received

Command Processing
Task

Programming Task

2.2 Modes of Operation
The bootloader communicates with the personal computer host application through a predefined
communication protocol, for additional information refer to UART Bootloader Protocol).
The bootloader framework works in these two modes:

+ Basic mode (Single-bank bootloader)
+ Fail-safe Update mode (Dual-bank bootloader)

2.2.1 Basic Mode (single-bank bootloader)
The basic mode bootloader resides at the starting location of the Flash memory. It performs Flash
erase, program, or verify operations on the binary sent from the host. Once the firmware upgrade
and verification are completed, it jumps to the starting address of the application.

For a detailed explanation on the basic mode bootloader, refer to the documents specified in the
References section.

2.2.2 Fail-Safe Update Mode (Dual-Bank Bootloader)
One of the challenges with a basic mode bootloader is the failure of the booting process. The
booting process could fail during the firmware upgrade stage. The bootloader may not be able to
complete the ongoing firmware upgrade due to several reasons, for example, interface disconnect,
power cut, and so on. When the firmware upgrade process is aborted in between, the embedded
device goes into an unstable state and may not work as expected.

@ MICROCHIP

A fail-safe bootloader overcomes the limitation of the basic bootloader. A fail-safe bootloader is
designed on the premise that even if there is a firmware upgrade failure during the booting process,
the system is still have a stable application image to run.

A fail-safe update is supported on devices which have the dual-bank Flash memory. Typically,
memory in a microcontroller is organized in one or more banks. While most of the microcontrollers
have single bank memory, there are some high-end microcontrollers that have dual bank. The
dual-bank Flash memory enables the user to program one bank without affecting the application
code of the other bank.

The boot failure situation is addressed by a dual-bank bootloader (Fail-safe update mode). With a
dual-bank bootloader, whenever the device is running in one memory bank, the user can upgrade
the firmware with the new features into the other bank and swap the firmware once the upgrade
completes. If the upgrade process fails, the working copy of the firmware which is running in the
first memory bank will help the device to work normally.

In a dual-bank bootloader the memory is distinguished into two banks. Each bank holds the
bootloader code residing at the beginning location of the respective bank, and the firmware
(application code) follows as shown in the following figure.

When booting from one bank, another bank is used as an upgrade buffer to accept the new
firmware. After the new firmware is received and verified, the boot banks are switched. Therefore,
there can be two workable firmware versions in the memory. The bootloader can perform a Flash
operation in either of the banks based on the address sent by the host application. It performs a
bank swap and resets the system to run the application programmed in the opposite bank after the
verification is completed.

The following figure shows the memory layout of dual-bank bootloader:

Figure 2-3. Dual-Bank Bootloader Memory

Fail Safe Update Memory Layout

BANK A Flash Start Address(0x00000000)

Bootloader Code

Bootloader End Address (OxOO001FFF)
Application Start Address (0x00002000)
Bank A

Application Code

BANK A Flash End Address(Ox0007FFFF)
BANK B Flash Start Address(0x00080000)

Bootloader Code

Bootloader End Address (OxO0081FFF)

Application Start Address(0x00082000)
Bank B

Application Code

BANK B Flash End Address(0x00100000)

The SAM E54 Flash memory is configured to two banks: Bank A and Bank B. At the start of both the
banks, the bootloader is situated and then followed by an application image as shown in the figure
above.

@ MICROCHIP

By default, Bank A is mapped to the address 0x00000000 and Bank B is mapped to the address
0x00080000. The bank mapped to the address 0x00000000 is referred to as the active bank (by
default Bank A), whereas the other bank mapped to the address 0x00080000 is referred to as the
inactive bank.

Note: The bank mapped at the address 0x00000000 is called as an active bank as the Cortex-M CPU
architecture is designed to run the starting instruction from the address 0x00000000. Therefore, the
code that needs to be run at reset needs to be mapped at 0x00000000.

The bootloader in an active bank can receive the following upgrade requests:

« Upgrade the active bank application image at address 0x00002000
+ Upgrade the inactive bank application image at address 0x00082000
+ Upgrade the inactive bank merged image (bootloader + application) at address 0x00080000

Upgrade Active Bank Application Image

The bootloader receives the application image from the host. Once the bootloader performs a
successful upgrade, it notifies the host application. The host then sends a reset command to run the
upgraded application, and examples are given below:

+ This request to the bootloader is usually made when the device is loaded with the bootloader at
the factory but not the application. This application upgrade request is made on the field when
the user chooses this option for the first application image upgrade request to the device.

+ This option could be used to upgrade certain metadata into the Flash memory. The metadata
being added or upgraded is just a small part of the application image and therefore it does not
require an upgrade to the whole memory region of the application to update the metadata.

Upgrade Inactive Bank Application or Merged Image

The bootloader, which is running from the active bank, receives the application or merged image
from the host. Once the bootloader performs the successful upgrade, it notifies the host application.
The host then sends the bank swap and system reset (BKSWRST) command. The BKSWRST performs
the following actions:

+ Swaps the memory banks to make the inactive bank active, and the active bank as inactive. BANK
Ais made inactive, while BANK B is made active.

+ Issues a reset command to run the upgraded application

The information of which bank is mapped to the Flash address 0x00000000 is self-contained in
special fuse bits in the Flash memory. These fuse bits can be erased or programmed individually.
When the bootloader receives the BKSWRST command from the host, it sets the BKSWRST bit in the
Flash (NVM) control register. When the BKSWRST is set, the Flash (NVM) controller swaps the banks
and sets the Fuse bit (STATUS.AFIRST) based on the last status of the Fuse bit (STATUS.AFIRST) as
given below:

+ STATUS.AFIRST = O; Start address of the Bank B is mapped to 0x00000000

« STATUS.AFIRST = 1; Start address of the Bank A is mapped to 0x00000000

On reset, the Flash (NVM) controller checks the status of the fuse bit (STATUS.AFIRST) and jumps to
the active memory bank to run the code.

2.3 UART Bootloader Protocol

The bootloader firmware communicates with the personal computer host application by using
a predefined communication protocol to exchange data between the Harmony v3 bootloader
framework and the host.

The UART bootloader protocol comprises of a Guard, Data size, Command, and Data bytes as shown
in the following figure.

@ MICROCHIP

Figure 2-4. Bootloader Protocol

GUARD Data Size Command Data 0 Data N
(4 Bytes) (4 Bytes) (1 Byte) (4 Bytes) (4 Bytes)

The protocol details are as follows:
* GUARD
- The Guard is a constant value: 0x5048434D
- This value provides protection against the spurious commands

- Bootloader always checks for the Guard value at the start of packet reception, and proceeds
further accordingly

+ Data Size
- This field indicates the number of data bytes to be received
- This value varies for different commands
+ Command
- Indicates the command to be processed. Each command width is one Byte
- The following commands are supported:
+ Unlock (0xA0)

+ Data (0xA1)

+ Verify (OxA2)

* Reset (0xA3)

+ Bank Swap and reset (OxA4)

+ Data
- Contains the actual data to be processed based on the command

- Length of the data to be received is indicated by a Data Size field
- Bootloader receives the data in size of words (4 bytes)
- All data words must be sent in a little-endian (LSB first) format

Response Codes

The bootloader will send a single character response code in response to each command. The
sequential commands can only be sent after the response code is received for a previous command,
or after a 100 ms timeout without a response.

The valid response codes are as follows:

+ OK (0x50) - Command was received and processed successfully

+ Error (0x51) - There were errors during the processing of the command
+ Invalid (0x52) - Invalid command is received

« CRC OK (0x53) - CRC verification was successful

* CRC Fail (0x54) - CRC verification failed

24 Bootloader Trigger Methods

The bootloader can be invoked using these methods:

+ The bootloader runs on every system reset, or when there is no valid firmware in the device.
The bootloader continuously waits in a loop to receive the firmware from the host to upgrade.

@ MICROCHIP

The firmware is considered valid if the first word at the application start address is Bank A
(0x00002000), and Bank B (0x00082000) is not OxFFFFFFFF. Normally this word contains an initial
stack pointer value, therefore it will never be OxFFFFFFFF unless the device is erased. On a system
reset, the bootloader checks whether a trigger to upgrade the firmware is present. If there is no
valid trigger for the firmware upgrade, it tries to run the existing firmware. If there is no valid
firmware, it jumps to a loop waiting to receive the firmware from the host.

+ The bootloader provides a function bootloader Trigger () which allows the user to upgrade
the existing application. The bootloader Trigger () function checks a switch press event or a
pattern in the SRAM to know if there is a request to upgrade the existing application. The code
for the bootloader Trigger () function is shown below. This trigger function is called from the
bootloader system initialization function.

#define BTL TRIGGER PATTERN 0x5048434D
static uint32 t *ramStart = (uint32 t *)BTL TRIGGER RAM START;

bool bootloader Trigger (void)

{
uint32 t i;

// Cheap delay. This should give at leat 1 ms delay.
for (i = 0; i < 2000; i++)
{

asm("nop") ;

}

/* Check for Bootloader Trigger Pattern in first 16 Bytes of RAM to enter Bootloader.

B/
if (BTL TRIGGER PATTERN == ramStart[0] && BTL TRIGGER PATTERN == ramStart[l] &&
BTL TRIGGER PATTERN == ramStart[2] && BTL TRIGGER PATTERN == ramStart[3])
{
ramStart[0] = 0;

return true;

}

/* Check for Switch press to enter Bootloader */
if (SWITCH Get() == 0)
{

return true;

}

return false;

}

The following methods can be used to upgrade the firmware while the application is running:

+ External Trigger: While the application is running, the user presses the external system reset
switch and a user switch simultaneously. The device resets and starts running the bootloader.
Since the user switch is pressed, the bootloader Trigger () function detects the switch press
using the SWITCH Get () function and returns true, indicating a firmware upgrade is requested.
The bootloader takes care of receiving the data from the host and upgrades the device.

« Software application Trigger: If an application does not have an option for an external trigger
or application requirement to upgrade the firmware based on specific commands, it can use a
software trigger method to run the bootloader for the firmware upgrade.

+ The application implements the invoke bootloader () function. While the application is
running, it intends to upgrade by itself. The application will call the invoke bootloader ()
function and fill a dedicated area in the SRAM with a known pattern (0x5048434D) and issue
a software reset. This prefilled SRAM pattern is compared in the bootloader trigger ()
function, and if there is a match, the bootloader trigger () function returns true indicating
a firmware upgrade is requested. The bootloader takes care of receiving the data from the host
and upgrades the device.

@ MICROCHIP

The following code can be used by the application to request the bootloader execution:

void invoke bootloader (void)

{

uint32 t *sram = (uint32 t *)BTL TRIGGER RAM START;
sram[0] = 0x5048434D;
sram[1l] = 0x5048434D;
sram[2] = 0x5048434D;
sram[3] = 0x5048434D;

NVIC SystemReset () ;

2.5 Bootloader System Level Execution Flow

Figure 2-5. Bootloader System Level Execution Flowchart

A

Port Initialize

Check Trigger Detected

Trigger
Reset command to Jump to

No Trigger application

Check for No Valid Application
valid
application

Valid Y
Application

System Initialize

A

— Firmware Upgrade Mode —

Erase/Program/Verify

A 4

Run Application

« Upon device reset, the bootloader initializes the system and port, then starts executing

« If no valid trigger is received from the user to upgrade the firmware, the bootloader starts
executing the user application if the user application is already present

+ If atrigger is valid, the bootloader initializes the system, upgrades the firmware and issues a
reset BKSWRST command to run the upgraded application

@ MICROCHIP

3. Configuring the Dual-Bank Bootloader
The dual-bank bootloader is referred to as the UART fail-safe bootloader in MPLAB Harmony v3, and
it comprises of these applications:
+ Bootloader: uart fail safe bootloader sam e54 xpro is the bootloader code, which
performs upgrading of the firmware.
+ Test application: uart fail safe bootloader test app sam e54 xpro isthe user
application code.

Note: Projects are available in the bootloader apps uart MPLAB Harmony
v3 repository, users can download it from the following path: <Harmony
framework>\bootloader_apps_uart\appsl\uart_fail_safe_bootloader!.

Configuring the bootloader library in MPLAB Harmony v3

+ Use Dual-Bank for Safe Flash Update:

- Can be used to configure the bootloader to use the dual banks of the device to upload the
application.

+ Bootloader Peripheral Used:

- Specifies the communication peripheral used by the bootloader to receive the application in
this case, it is the serial communication (SERCOM) or USART.

+ Bootloader Memory Used:

- Specifies the memory peripheral used by the bootloader to perform Flash operations.
+ Bootloader Size (Bytes):

- Specifies the maximum size of Flash required by the bootloader.

- This size is calculated based on the bootloader type and memory used.

- This size will vary from device to device and must always be aligned with the device erase
unit size.

+ Enable Bootloader Trigger from Firmware:

- This option can be used to force trigger the bootloader from the application firmware after a
soft reset.

* Number of Bytes to Reserve from Start of RAM:
- This option adds the provided offset to the RAM start address in the bootloader linker script.

- The application firmware can store a pattern in the reserved bytes region of the RAM start
for the bootloader to check at reset in the bootloader Trigger () function.

@ MICROCHIP

https://github.com/Microchip-MPLAB-Harmony/bootloader_apps_uart

Figure 3-1. Bootloader Configuration

KitWindow x| StartPage x [[ProjectGraph x| KN Q=]
x|g!fﬂ!. fl@}h@s v Profles: | Main View: Root

Device Family Pack (DFP)
Peripheral Library Peripheral Library

NVMCTRL Bootloader Framework

Peripheral Library = N
UART Bootloader

MEMORY ’
! s Bootloader

Flash Memory B MEMORY (NVM)

SERCOM2 // AR
peripharsltbrary Communication Interface
UART (USART/SERCOM)

C ion Options x|

E®

+ Application Start Address (Hex):

- UART Bootloader

Bootloader Peripheral Used SERCOM2_USART

Bootloader NVM Memory Used NVMCTRL
- Bootloader Size (Bytes) 8192
b-Enable Bootloader Trigger From Firmware ™
Number Of Bytes To Reserve From Start Of RAM 16
Enable Fuse Programming O
Enable Watchdog Refresh If Enabled Through FUSE []
Use Dual Bank For Safe Flash Update ™
11 WARNING Only Half of the Flash memory will be available for Application !1!

- Start address of the application is programmed by the bootloader.

- The application start address is auto filled by the MCC when the user configures the
bootloader size as shown in the previous figure. This value will be equal to the bootloader
size (size of bootloader = 8K (0x00002000)).

- This value will be used by the bootloader to jump to the application at device reset.

Figure 3-2. Application Start Address Configuration

(<1 %] (=) (@) | configuration Options x-\

View: :Root v ==

= System

E-Device & Project Configuration
ATSAMES4P204 Device Configuration
£ Project Configuration

~~Generate C++ Project O
- Generate Main Source File O
Generate System Source Files [
= Tool Chain Selections
' Compiler XC32 v
~add linker file to project []
= XC32 Global Options
=-Linker
#-General

System |

H-Symbols & Macros

Application Start Address (Hex) 2000

MISRA-C:2012

3.1 Bootloader Linker Script

The bootloader library uses a custom linker (btl.Id) script generated through the MCC. The MCC
generates the specified bootloader size, ROM (Read-only memory) and RAM (Random-access

memory) address as highlighted in the following figure.

@ MICROCHIP

12

The values populated in the linker script are based on the bootloader component of the MCC
configurations (bootloader configuration).

Configure the Linker script for the bootloader to run from the RAM to achieve the simultaneous
Flash memory write and reception of the next block of data.

The bootloader request pattern must be stored in 16 Bytes of RAM on start by the application if it
wants to run the bootloader at startup without any external trigger as shown in the following figure.

The bootloader size for the SAM E54 will be rounded off to the nearest erase unit size (8192 Bytes),
even though the size of the bootloader is 1672 Bytes in -O1 optimization. This helps for the addition
of additional features on the bootloader, and to avoid application overlap with the bootloader.

Figure 3-3. Bootloader Linker Script

Projects x Bl || KitWindow x| StartPage x| ProjectGraph x Dbﬁ.ld x
= ‘@auartjail_safe,boodoader,sam_e54_xpro Source |Hstory @ B -H - Q@ FBHE|IP LB | Civile @
- [E] Device actions :
g
+ ﬁ Header Files <k
5 ﬁ Important Files 59| /* Bootloader size is calculated with below criteria with optimization level -02
L (6 Linker Files €0 * pootloader size = Minimum Flash Erase Size Or actual bootloader ELF size
T (38 (Rounded of to nearest erase boundary) whichever is
- [F] Plugns 62 greater.
£3 L 4

C @ Source Files
5@ Lbraries |es saefine rom s1ze s1s2 |

#-[@@ Loadables 23
8
] Qouar:_fal_safe_booﬂoader_tesl_app_sam_esfv_xpro 66/ #if (ROM_SIZE > 1048576)

67 # error ROM SIZE is greater than the max size of 1048576
68| #endif

69

70| /* Bootloader Trigger pattern of length 16 Bytes needs to be stored
71 * from starting of Ram by the application if it wants to

72 * run bootloader at startup without any external trigger.

73 * Example:

74 - ram[0] = 0x5048434D;

75 = ram[l] = 0x5048434D;

76 * e

| * ramfn] = 0x5048434D;

78 =/

79| #define RAM START (0x20000000 + 16)

81| #define RAM SIZE (0x40000 - 16)

83 #if (RAM SIZE > 0x40000)

24 # error RAM SIZE is greater than the max size of 0x40000

85 #endif

86

87

B8 RREREARREAAARAEERARARAEE AR o
89 * Memory-Region Definitions

90 * The MEMORY command describes the location and size of blocks of memory
91 * on the target device. The command below uses the macros defined above.
a2 AXERARRRRRRRRAR AR AR KR ARARR KK ARRKREKK AARRKRR AXRRAARKRRARKARR KR AR KR ARERRAR /
93 MEMORY

94 {

95 rom (xx) : ORIGIN = ROM START, LENGTH = ROM SIZE

96 ram (rwx) : ORIGIN = RAM START, LENGTH = RAM SIZE

97| }

Note: Users need to ensure that the memory region of the user application does not overlap with
the memory region reserved for the bootloader.

3.2 Test Application Configurations

+ Disable Generate Fuse Settings:
Generally, fuse configuration settings are programmed through the programming tool. In the
reference application discussed in this document, the fuse settings are disabled due to the
application being programmed through the bootloader.

Note: The fuse settings are not programmable through firmware. Enabling the fuse settings
increases the size of the binary when generated through the Hex file.

@ MICROCHIP

+ Application Start Address (Hex):
- Start address of the application.

- The application start address value must be equal to or greater than the Flash base address
+ bootloader size.

- An application start address value will be used by the bootloader to jump to the application
at device reset. It must match the value provided to the bootloader code during generation
as shown in Application Start Address Configuration.

- The application start address will be used to generate the MPLAB XC32 compiler settings to
place the code at the intended address as shown in the following figure and Test Application
Project Settings.

Figure 3-4. Test Application Configuration

Li'@@ Configuration Options x|
View: Root v =&

= System
=-Device & Project Configuration
-ATSAMES4P20A Device Configuration
Note: Set Device Configuration Bits via Programming Tool
=-Fuse Settings
I #-Generate Fuse Settings E]I
--Security |Disable (Code Protection Disabled) v

= Project Configuration
“-Generate C++ Project O
Generate Main Source File O

#-Generate System Source Files [
+-Tool Chain Selections
' Compiler XC32 v
Add linker file to project []
[=-XC32 Global Options
=} Linker
General
= Symbols & Macros
_ fpplication Start Address (Hex) 2000 |
MISRA-C:2012

3.3 Test Application Project Settings
* Preprocessor Macro Definitions:
- ROM-ORIGIN and ROM_LENGTH are the XC32 linker variables which will be overridden with
values provided here.

- Application start address value is auto populated in the linker script with the value of the
application start address provided in the MCC (bootloader linker script) after regeneration.
+ Additional Options:

- RAM_ORIGIN and RAM_LENGTH values must be provided by reserving 16 bytes of start of
RAM to trigger the bootloader from the firmware.

14

@ MICROCHIP

- This is optional and can be ignored if not required to soft trigger the bootloader.

Custom linker options: -DRAM ORIGIN=0x20000010, -DRAM LENGTH=0x3fff0

Figure 3-5. Test Application Project Settings

ﬁ Project Properties - uart_fail_safe_bootloader_test_app_sam_e54_xpro X
Categories:
- @ General
Fie Indusion/Excusion Option categories: | Symbols &Magres | Reset
Conf: [sam_e54 xpro]
Loading Linker symbols

Q
@ Libraries
o
Q

Options for xc324d (v4.45)

©

¢ ©

=

Preprocessor macro definitions ROM_LENGTH=0xfe000;ROM_ORIGIN=0x2000 l o=
Symbols Keep all v

Building
XC32 (Global Options)
@ xc32-as
e @ x€32-gcc
- QO xc32-g++
e @ xc32-ar
@ Analysis

Additional options: | -DRAM_ORIGIN=0x20000010, -DRAM_LENGTH=0x3fff0

Option Description Generated C dLine UserC its

Manage Configurations...

Manage Network Tools...

(o][ot || doy | [[o

+ Execute the line after Build:

- This option can be used to automatically generate the binary file from the Hex file after the
build is complete.

Custom linker options: “${MP_CC DIR}/xc32-objcopy -I ihex -O binary ${DISTDIR}/S$
{PROJECTNAME} . $ {IMAGE _TYPE}.hex ${DISTDIR}/${PROJECTNAME}.S{IMAGE TYPE}.bin”

@ MICROCHIP

Figure 3-6. Test Application Binary Generation Settings

a Project Properties - uart_fail_safe_bootloader_test_app_sam_e54_xpro X
Categori r
o General Configuration type: |application + [Juse "dean" target from the Makefile
G- 0 Conf:[sam €54 xpro Pre and post step operations: Note: commands are run from the project directory (ProjectDir macro below)
@ Loading [J Execute this line before build
O xc32-as -
l-o xe32 " |ShExtension .bat
; aikd Device ATSRMES4P20R
[~ 0 xc32g++ ProjectDir "C:\harmony3\bootloader_apps_uart\apps\uart_fail_safe_bootloader\test_app\firmware
O xc324d < >
@ xc32-ar
o Analysis [Execute this line after build
${MP_CC_DIR}/xc32-objcopy -1 ihex -O binary ${DISTDIR}/${PROJECTNAME}. ${IMAGE_TYPE}.hex ${DISTDIR}/${PROJECTNAME}. ${IMAGE_TYPE}.bin
Macro Value
" |ShExtension .bat
Device ATSRMES4P20A
ProjectDir "C:\harmony3\bootloader_apps_uart\apps\uart_fail_safe_bootloader\test_app\firmware .,
< >
Options affecting hex file:
[Insert unprotected checksum in user ID memory [] Normalize hex file
Manage Configurations...
Manage Network Tools...

o [Cemest | [ey | IENEERNN [oo

@ MICROCHIP

4. Running the Demonstration

4.1 Running the Bootloader Application
Follow these steps to run the bootloader application:

1. Connect a micro USB cable to the DEBUG port of the SAM E54 Xplained Pro board.
Build and program the UART fail safe bootloader (dual-bank bootloader) using the MPLAB X IDE.
Launch the MCC for the UART fail safe bootloader application:
a. Disable the Fuse Settings as shown in the Test Application Configurations section.
b. Regenerate the code.

c. Enable and execute this line after build option in the MPLAB X IDE Project Properties as
shown in the Test Application Configurations section Figure 3-5.

4. Build the bootloader application (uart_fail_safe_bootloader_sam_e54_xpro) again using the
MPLAB X IDE.

- This is required to generate the binary file for the bootloader application.

5. Build the Test application (uart_fail_safe_bootloader_test_app_sam_e54_xpro) using the MPLAB X
IDE but do not program.

6. Runbtl app merge bin.py from the command prompt to merge the generated bootloader
binary and the application binary. The following output must be displayed on the command
prompt.

Command: python <python script> -o <Offset> -b bootloader image -a application image

<Offset>: Application start address (E.g. - 0x00002000)
<python script>: btl app merge bin.py

Example: python <harmony3 path>\bootloader\tools\btl app merge bin.py -o 0x00002000 -b
<harmony3 path>\bootloader\apps\uart fail safe bootloader\bootloader\firmware\sam e54 xpro.
X\dist\sam e54 xpro\production

\sam_e54 xpro.X.production.bin -a

<harmony3 path>\bootloader\apps\uart fail safe bootloader\test app\firmware\sam e54 xpro.X\
dist\sam e54 xpro\production

\sam_e54 xpro.X.production.bin

Figure 4-1. Bootloader and Application Binary Merger Output

C:\Users\| b>python D:\bootloader\tools\btl_app_merge_bin.py -o ©xee002000 -b C:\harmony3\bootloader_apps_uart\app
s\uart_fail_safe_bootloader\bootloader\firmware\sam_e54 xpro.X\dist\sam_e54_xpro\production\sam_e54_xpro.X.production
.bin -a C:\harmony3\bootloader_apps_uart\apps\uart_fail_safe_bootloader\test_app\firmware\sam_e54_xpro.X\dist\sam_e54

xpro\production\sam_e54_xpro.X.production.bin

Merged Bootloader and Application binaries to btl_app_merged.bin

Note: Running the help command provides a brief overview of options available as shown
below.

Command: python <python script> --help
<python script>: btl app merge bin.py

Example: python <harmony3 path>\bootloader\tools\btl app merge bin.py --help

@ MICROCHIP

Figure 4-2. Application Binary Merge Help Window

C:\Users\| >python D:\bootloader\tools\btl_app_merge_bin.py --help
Usage: btl_app_merge_bin.py [options]

show this help message and exit
-v, --verbose enable verbose output
-b BTL_FILE, --btl file=BTL_FILE
bootloader binary file to program
-a APP_FILE, --app_file=APP_FILE
application binary file to program
-0 OFFS, --offset=0FFS
application start offset (default ©x2000)
-d DEV, --device=DEV target device (sameS5x/samd5x)

Runbtl host.py from the command prompt to program the merged binary to the opposite
panel. The merged binary bt1 app merged.bin will be generated in the path from where
btl app merge bin.py Was executed.

Command: python <python script> -v -s -i <COM PORT> -d <Device Name> -a <Address> -f
<bootloader application merged image>

<python script>: btl host.py

<COM PORT>: Serial communication port

<Device Name>: SAMES54

<Address>: Application start address (Bank A: 0x00002000 / Bank B: 0x00080000)

Example: python <harmony3 path>\bootloader\tools\btl host.py -v -s -i COM18 -d sameb5x -a
0x00080000 -f btl app merged.bin

Note: Running the help command provides a brief overview of options available as shown
below.

Command: python <python script> --help

<python script>: btl host.py

Command: python <harmony3 path>\bootloader\tools\btl host.py --help

@ MICROCHIP

Figure 4-3. Application Bootloader Host Help Window

C:\UsersY >python D:\bootloader\tools\btl_host.py --help
Usage: btl host.py [options]

show this help message and exit
--verbose enable verbose output
-r BAUD, --baud=BAUD UART baudrate
-u PARITY, --parity=PARITY
UART Parity (none/even/odd)
-t, --tune auto-tune UART baudrate
-i PATH, --interface=PATH
communication interface
FILE, --file=FILE binary file to program
DEVCFGFILE, --devcfgfile=DEVCFGFILE
device configuration text file
ADDR, --address=ADDR
destination address
SectSize, --sectorSize=SectSize
Device Sector Size in Bytes
-b, --boot enable write to the bootloader area
-S, --Swap swap banks after programming
-d DEV, --device=DEV target device (samc2x/samdlx/samd2x/samd5x/samdal/same
7x/sameS5x/samg5x/saml2x/samhal/samaS/sama7/sam9x6/sam9
x7/pic32cz/pic32mk/pic32mx/pic32mz/pic32mzw/pic32cm/pi
c32mm/wbz451/pic32cxbz2/wbz45X%)

8. The following figure shows the example output of the firmware programming.

Figure 4-4. Firmware Upgrade Output

c:\Users\[JJJ>python D:\bootloader\tools\btl host.py -v -s -i COM3@ -d same5x -a ©x00080000 -f btl_app merged.bin
Reading Bootloader Version

Bootloader version : v3.7

Unlocking

Programming: |[[[[I11I[[] [| || 100.0% Complete

Verification

. success

Swapping Bank And Rebooting

Reboot Done

Notes:

1. After the successful programming of the application, Bank B is mapped to the 0x00000000
address, and Bank A is mapped to the 0x00080000 address.

2. The starting address for the firmware always remains the same, due to the banks being
swapped after each firmware upgrade.
4.2 Running the Test Application

1. Perform the Running the Bootloader Application steps for the UART fail-safe bootloader
application if not done already.

2. Ifthe above step is successful, then the LEDO on the SAM E54 Xplained Pro board must start
blinking.

3. Open the Terminal application (for example, Tera Term) on the computer.

@ MICROCHIP

4, Configure the Serial Port settings as follows:

Baud: 115200
Data: 8 Bits

Parity: None
Stop: 1 Bit

Flow Control: None

Reset or power cycle the device.

6. The LED must start blinking, and the following output will display on the console;
- The NVM Flash Bank Can be BANK A or BANK B based on where the program is running.

Figure 4-5. Application Running on BANK A

v COM30 - Tera Term VT - O X
File Edit Setup Control Window Help

HURHHEE Application running from NUM Flash BANK A Hu###in

iRt Press and Hold the Switch to trigger Bootloader HHHHHHE

7. Press and hold Switch SWO to trigger the bootloader to program the firmware in the other Bank
and the following output will be displayed on the console.

Figure 4-6. Application Triggered to Enter Bootloader

T COM30 - Tera Term VT - O X
File Edit Setup Control Window Help

HH#HHE Application running from NUM Flash BANK A H####HH#
ittt Press and Hold the Switch to trigger Bootloader Hitiitititi
e Bootloader Triggered HUEHHHHY

e Disconnect console to program new firmware in other Bank from Bootloader
1318121318131

Repeat Steps 6 to 8 provided in the section Running the Bootloader Application to switch to the

Banks.

+ This step is used to verify that the bootloader is running after triggering the bootloader from the
Test Application, and to program the new firmware in opposite Bank.

+ Observe the change in Bank displayed in the Test Application console as compared to the first
run as shown in the following figure:

B 20
ﬁ\ MICROCHIP

Figure 4-7. Application Running on BANK B

T COM30 - Tera Term VT - O X
File Edit Setup Control Window Help
HRfR#E Application running from NUM Flash BANK B | #iftfiiin
ittt Press and Hold the Switch to trigger Bootloader HEHHHHY
e Bootloader Triggered HUHRHHHUR

itttk Disconnect console to program new firmware in other Bank from Bootloader
1318183131313

21

@ MICROCHIP

5. References

For a detailed explanation on the bootloader, refer to <Harmony
path>\bootloader\docs\index.htm/

MPLAB Harmony GitHub:
github.com/Microchip-MPLAB-Harmony

How to Setup MPLAB Harmony v3 Software Development Framework:
ww1.microchip.com/downloads/aemDocuments/documents/
MCU32/ProductDocuments/SupportingCollateral/
How_to_Setup_MPLAB_Harmony_v3_Software_Development_Framework_DS90003232C.pdf

Getting Started with MPLAB Harmony v3 Peripheral Libraries on SAM D5x/E5x MCUs:
developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/archive/same54-getting-
started-training-module/

MPLAB Harmony v3 landing page:
www.microchip.com/en-us/tools-resources/configure/mplab-harmony

Clock System Configuration and Usage on SAM E5x (Cortex M4) Devices:
ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/
SupportingCollateral/Clock-System-Configuration-and-Usage-on-SAM-E5x-Devices-
DS90003226.pdf

MPLAB® Harmony 3 Bootloader Module:
https://github.com/Microchip-MPLAB-Harmony/bootloader

MPLAB® Harmony Bootloader Application Examples for UART:
github.com/Microchip-MPLAB-Harmony/bootloader_apps_uart

For additional information about 32-bit Microcontroller Collaterals and Solutions, refer to:
DS70005534: 32-bit Microcontroller Collateral and Solutions Reference Guide

For other relevant information, refer to the Microchip web site.
www.microchip.com/

SAM E54 Xplained Pro Evaluation Kit product page:
www.microchip.com/en-us/development-tool/ATSAMES54-XPRO

SAM E54 Xplained Pro User's Guide:
ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/
UserGuides/70005321A.pdf

@ MICROCHIP

22

https://github.com/Microchip-MPLAB-Harmony
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/SupportingCollateral/How_to_Setup_MPLAB_Harmony_v3_Software_Development_Framework_DS90003232C.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/SupportingCollateral/How_to_Setup_MPLAB_Harmony_v3_Software_Development_Framework_DS90003232C.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/SupportingCollateral/How_to_Setup_MPLAB_Harmony_v3_Software_Development_Framework_DS90003232C.pdf
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/archive/same54-getting-started-training-module/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/archive/same54-getting-started-training-module/
https://www.microchip.com/en-us/tools-resources/configure/mplab-harmony
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/SupportingCollateral/Clock-System-Configuration-and-Usage-on-SAM-E5x-Devices-DS90003226.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/SupportingCollateral/Clock-System-Configuration-and-Usage-on-SAM-E5x-Devices-DS90003226.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/SupportingCollateral/Clock-System-Configuration-and-Usage-on-SAM-E5x-Devices-DS90003226.pdf
https://github.com/Microchip-MPLAB-Harmony/bootloader
https://github.com/Microchip-MPLAB-Harmony/bootloader_apps_uart
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/ReferenceManuals/32-bit-Microcontroller-Collateral-and-Solutions-Reference-Guide-DS70005534.pdf
http://www.microchip.com/
https://www.microchip.com/en-us/development-tool/ATSAME54-XPRO
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/UserGuides/70005321A.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/UserGuides/70005321A.pdf

6. Revision History

Revision C - 11/2024
The following updates were performed to the content in this revision:

+ All references to the MHC have been updated throughout the document to the MCC to reflect a
Tools change

« Updated Tools Version number in MPLAB®X Integrated Development Environment (IDE) and XC
Compilers

+ Updated Tool naming and version numbers in MPLAB Harmony v3
+ Updated the version numbering in Python
+ Updated obsolete code in Bootloader Trigger Methods
« Updated or Replaced images in the following sections:
- Configuring the Dual-Bank Bootloader
- Bootloader Linker Script
- Test Application Configurations
- Test Application Project Settings
- Running the Bootloader Application
- Running the Test Application
+ Replaced all links in References with updated links

Revision B - 09/2022
Numerous editorial updates were performed throughout this document.

The following updates were performed to the content in this revision:

+ Added a new reference and link to the UART bootloader in MPLAB Harmony v3

+ Updated the links for the UART bootloader in Configuring the Dual Bank Bootloader
+ Added a new reference for the UART bootloader in References

Revision A - 06/2020
This is the initial release of this document.

@ MICROCHIP

Microchip Information

Trademarks

The “Microchip” name and logo, the “M" logo, and other names, logos, and brands are registered
and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or
subsidiaries in the United States and/or other countries (“Microchip Trademarks"). Information
regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-
information/microchip-trademarks.

ISBN: 979-8-3371-0180-4

Legal Notice

This publication and the information herein may be used only with Microchip products, including

to design, test, and integrate Microchip products with your application. Use of this information

in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR

ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,

and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

+ Microchip products meet the specifications contained in their particular Microchip Data Sheet.

« Microchip believes that its family of products is secure when used in the intended manner, within
operating specifications, and under normal conditions.

« Microchip values and aggressively protects its intellectual property rights. Attempts to breach the
code protection features of Microchip products are strictly prohibited and may violate the Digital
Millennium Copyright Act.

+ Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

@ MICROCHIP

24

https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

	Introduction
	Table of Contents
	1. Hardware and Software Requirements
	1.1. SAM E54 Xplained Pro Evaluation Kit
	1.2. MPLAB®X Integrated Development Environment (IDE) and XC Compilers
	1.3. MPLAB Harmony v3
	1.4. Python

	2. Description
	2.1. Bootloader Framework
	2.2. Modes of Operation
	2.2.1. Basic Mode (single-bank bootloader)
	2.2.2. Fail-Safe Update Mode (Dual-Bank Bootloader)

	2.3. UART Bootloader Protocol
	2.4. Bootloader Trigger Methods
	2.5. Bootloader System Level Execution Flow

	3. Configuring the Dual-Bank Bootloader
	3.1. Bootloader Linker Script
	3.2. Test Application Configurations
	3.3. Test Application Project Settings

	4. Running the Demonstration
	4.1. Running the Bootloader Application
	4.2. Running the Test Application

	5. References
	6. Revision History
	Microchip Information
	Trademarks
	Legal Notice
	Microchip Devices Code Protection Feature

