® Getting Started with Events
MICROCHIP on the tinyAVR 1-series

Getting Started with Events on the tinyAVR® 1-series

Prerequisites

* Hardware Prerequisites
— ATtiny817 Xplained Pro evaluation kit
— Micro-USB cable (Type-A/Micro-B)
— A breadboard
— A compatible potentiometer
— Three compatible male-to-female wires
— Internet connection
+ Software Prerequisites
— Atmel Studio 7.0

— Web browser. A list of supported browsers can be found here: http://start.atmel.com/static/
help/index.htmI?GUID-51435BA6-0D59-4458-A413-08A066F6F7CA

+ Estimated Completion Time: 120 minutes

Introduction

This hands-on training will demonstrate how to develop AVR® applications in Atmel Studio and Atmel
START along with the rich user interface and other great development tools that they provide.

Atmel START helps to get started with Microchip microcontroller development. It allows to select MCU,
configure software components, drivers, middleware, and example projects to the embedded application
in a usable and optimized manner. Once the configuration is complete, the project can be generated in
Atmel Studio or another third-party development tool. An IDE is used to develop the code required to
extend the functionality of the project, into the final product, as well as compile, program, and debug the
downloaded code.

With Atmel START:

* Get help selecting the MCU based on both software and hardware requirements
* Find and develop examples

» Configure drivers, middleware, and example projects

* Get help with setting up a valid PINMUX layout

» Configure system clock settings

The ATtiny817 Xplained Pro evaluation kit is a hardware platform for evaluating the AVR ATtiny817
microcontroller. A fully integrated embedded debugger is included on the kit, which provides seamless
integration with Atmel Studio. Easy access to the features of the ATtiny817 is enabled by the kit,
facilitating easy integration of the device in a customer design.

This training demonstrates how to configure the application in Atmel START. Reconfigure the Atmel
START project and continue the implementation in Atmel Studio 7.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 1

http://start.atmel.com/static/help/index.html?GUID-51435BA6-0D59-4458-A413-08A066F6F7CA
http://start.atmel.com/static/help/index.html?GUID-51435BA6-0D59-4458-A413-08A066F6F7CA

Getting Started with Events on the tinyAVR 1-series

The peripherals used to create applications are GPIO, RTC, ADC, CPUINT, USART, and Event System.
Figure 1. ATtiny817 Xplained Pro

The following topics are covered:

Driver configuration in Atmel START

PINMUX driver configuration

LED toggling triggered by RTC overflow interrupt

USART configuration with string print to USART serial-port terminal

RTC overflow interrupt triggers an ADC conversion and then ADC result-ready interrupt triggers ADC
data print to USART terminal

RTC overflow interrupt triggers an ADC conversion and then an ADC result triggers ADC data print to
USART terminal if it is outside a defined window

RTC overflow event triggers an ADC conversion, then if an ADC result is outside a defined window,
waking up CPU with an IRQ

How to use Data Visualizer in Atmel Studio to view the USART print to the embedded terminal and
graph

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 2

Table of Contents

=T C=To [T IS (=TT 1
INEFOAUCTION. ... e e e e e e e e e e e as 1
(P (oo A I G [[0111 T 5
2. Assignment 1: RTC Overflow Interrupt Triggers LED Toggling..............ccoeeeeeennennn. 6
21, Atmel| START ProjeCt Creation ..ottt 6
2.2. Atmel | START Project Overview In Atmel Studio.........ccocceiiiiiiiiiiiie e 14
D T O7o o [l B 11V (o] o)1 1 1=Y o | A PRSPPSO 16
2.4. Debug the ApPlCAtioN...........eiiii ettt e e e e e e e e e e e eneee 16
3. Assignment 2: RTC Interrupt Triggers String Sent to USART Terminal................... 20
3.1, USART Configuration in AtmMel | STARTooeo oottt e e e e e e e 20
3.2. Expand the USART FUNCHONAIY........cooiiiiiiiieeie e 24
3.3. USART Output to Data Visualizer Terminal...........cccooueeiiiiieiiiie e 26
3.4. RTC Interrupt Triggers USART TranSmiSSIiON.......ccccueiiiiiiiiiieeiiiie et sieee e 27

4. Assignment 3: ADC ISRRDY Interrupt Triggers ADC Data Output to USART

TOIMINGL ... 32
4.1, Add ADC Driver IN AMEI | START ... ettt ettt st e e eneenneens 32
4.2. Configure ADC iN AIMEI | START ... et e a e e e e e e enees 33
4.3. Add ADC Functionality to AppliCation COde.........cccouiiiiiiiiiiiieiiee e 36
4.4. Connect Potentiometer 10 ADC.........ooiiiii i e eaee 38
4.5. Observe ADC FUNCHONEAITY.cieiiieiiee ettt e e e e ee e eneeeenneeeennes 39

5. Assignment 4: ADC WCMP Interrupt Triggers ADC Data Print to Data Visualizer..41

5.1. ADC Re-Configuration in Atmel START ..ot 41
5.2. Update Application in Atmel Studio and Output ADC Data to Data Visualizer Graph................ 43
6. Assignment 5: RTC Interrupt Replaced by Event System...........cccccceeiiiiiiiinnnnn. 46
6.1. Event System Configuration in Atmel STARTcooiiii e 46
6.2. Event System Driver Code DeVElOPMENT.........cccuuviiiiiiiiiiiee e 49
A 7 T 11 L] o SRR 51
8. ReVISION HiSTOIY.....ooeiiiiiii e 52
The Microchip WeD Site.........ee e 53
Customer Change Notification ServiCe..............ooiiiiiiiiiiiii e 53
L1013 (o]0 0 1= TS 10T o] oo o VPRSP 53
Microchip Devices Code Protection Feature...........ccccooiiiiiiiiiiiiiies 53
[I=To = 1IN Ao o TP PPPPRR 54

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 3

Getting Started with Events on the tinyAVR 1-series

L= 16 =T 0 0 1= 1 TR 54
Quality Management System Certified by DNV........cciiiiiiiiiiie e 55
WOrldwide Sales AN SEIVICE.ttt aeaes 56

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 4

Getting Started with Events on the tinyAVR 1-series

Icon Key Identifiers
The following icons are used in this document to identify different assignment sections and to reduce
complexity.

ﬂ Info: Delivers contextual information about a specific topic.
Tip: Highlights useful tips and techniques.
To do: Highlights objectives to be completed.

Result: Highlights the expected result of an assignment step.

a Warning: Indicates important information.

Execute: Highlights actions to be executed out of the target when necessary.

O

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 5

21

Getting Started with Events on the tinyAVR 1-series

Assignment 1: RTC Overflow Interrupt Triggers LED Toggling

In this assignment an application that triggers LED toggling from the RTC overflow interrupt will be
developed.

Atmel | START will be used to configure the RTC, clock, and PINMUX settings. Based on this an Atmel
Studio 7 project will be generated.

Code will be developed in Atmel Studio 7 using PINMUX and RTC driver functions generated by Atmel |
START.

n Info: On the ATtiny817 Xplained Pro board, LEDO is connected to pin PB4.

Peripherals used:

- RTC
+ GPIO (PB4)
Clock details:

. 3.333 MHz main clock
. 1 kHz RTC clock

Atmel | START Project Creation
Configure PINMUX driver, RTC driver, and CLOCK in Atmel | START and create the project.

To do: Create a new Atmel | START Project.

1. Open Atmel Studio.
2. Select File — New — Atmel Start Project.

3. The CREATE NEW PROJECT window appears within Atmel Studio 7. In the "Filter on device..."
text box, enter 817X, then select ATtiny817 Xplained Pro from the list and verify that
ATtiny817Xplained Pro is highlighted, then click CREATE NEW PROJECT, as shown below.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 6

Getting Started with Events on the tinyAVR 1-series

Figure 2-1. CREATE NEW PROJECT

TR G ATtiny817 Xplained Pro - 0190 QTouch Start Page

CREATE NEW PROJECT

Select device or board before creating a new project. You can filter devices and boards by what software you need and also with hardware requirements such as memory sizes.

Y FILTERS RESULTS
B HARDWARE co e) @ showait O show only boards () show only devices
SEARCH FOR SOFTWARE Name Architecture Package Pins Flash SRAM

W ATtiny817 Xplained Pro’
‘ | B ATtiny817 Xplained Mini'

= MIDDLEWARE @

£} DRIVERS

MORE INFORMATION

ATtiny817 Xplained Pro

The Atmel ATtiny817 Xplained Pro evaluation kit is a hardware platform to evaluate the Atmel ATtiny817
microcontroller. Supported by the Atmel Studio integrated development platform, the kit provides easy access to the
features of the Atmel ATtiny817 and explains how to integrate the device in a customer design.

Product page E}I'

n Info: Now the MY SOFTWARE COMPONENTS window appears.

4. Inthe MY SOFTWARE COMPONENTS window, rename the project as shown below with 1-2 red
markings. First click MY PROJECT and then select Rename Component.
Figure 2-2. Rename Component

Atmel | START + X RV ETED RY ookl

MY SOFTWARE COMPONENTS

B Application
O MFi)SdImm:are o Add software component

O Driver

QTouch Start Page

Click "Add software components" to add drivers and middleware to your project.

()

E E k2 DASHBOARD

MY PROJECT
GENERAL

| f Rename component) 2

ﬂ Info: Now RENAME COMPONENT window will be displayed.

5. Inthe RENAME COMPONENT window specify the new project name as
"ATtiny817_getting_start_events" and click Rename.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 7

Getting Started with Events on the tinyAVR 1-series

6. Open PINMUX configuration by clicking on E in the navigation tab on the left side of the
window.

ﬂ Info: The PINMUX configurator displays an illustration of the device package selected. It
shows which pins are currently used by different peripherals. GPIO pins can be
configured here.

ﬂ Info: Here PB4 is configured as LEDO which is available on the ATtiny817 Xplained Pro.
Configuration is shown in 1-4 red markings below.

Figure 2-3. PINMUX Configuration LEDO

Atmel | START + X ENRLVEIRSIIETRE R ok} QTouch Start Page

PINMUX CONFIGURATOR

Pin label Board label Signal Show labels... Zoomin Zoom out Auto fit
Mode
Pad User Header Pin Label
12 PB4 IDD EXT1 GPIOZ/LE.. Digital output P12
IS 20 omponents
1 PA2 EXT1,EXT... 12C_SCLL..
2 PA3 EXT3 SPI_SS_A
8 GND
a4 vDD
5 PA4 EXT1 SPI_S5_B...
6 PAS EXT1 IRQ/GPIO
7 PAG EXT1.QT.. ADC(+).Q..
8 PA7 EXT1.QT... ADC().Q...

el
Pin 12 (PB4)is used as P/12with PORT. User label: (LEDO J Initial level: Low j

) Pin mode: GDi ital output D
Tip: Use ctrfor shift to select more than one £ hu 3

pin.
7. Execute the numbered configuration steps 1-4 from the figure as described below:
— Click "PB4" in the PINMUX list.
— Enter "User label:" as LEDO.
— Select "Pin mode:" Digital output.
— Make sure "Initial level" is set to Low.

n Info: Technical documents related to the ATtiny817 Xplained Pro can be downloaded
from the ATtiny817 Xplained Pro — Technical Documentation page within Atmel Studio.
The ATtiny817 Xplained Pro page is displayed when the ATtiny817 Xplained Pro board is
connected to the PC.

8. Add the RTC component:

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 8

Getting Started with Events on the tinyAVR 1-series

Click i in the navigation tab on the left side of the window. Then click

0 Add software component

n Info: The "ADD SOFTWARE COMPONENTS" window will appear.

Figure 2-4. Add RTC Component

ADD SOFTWARE COMPONENTS X

Name
+ ¥ Middleware

- & Drivers

£ Ac

£ ADC
£ CrC
£ DAC

) Digital Glue Logic
£} Event System

£} Flash
£ 12c

O P1C

O Rr1C
$spi
O Timer

Description

Analog Comparator (AC).

Analog-to-digital converter (ADC).

Cyclic redundancy check (CRC) error-detecting code.
Digital-to-analog converter (DAC).

Customizable control logic (CCL) module for internal
or external use.

Event system allows peripherals to interact without
intervention from the CPU.

Flash controller to access the flash memory.

Inter-Integrated Circuit (12C), two wire serial
interface usually used for on-board low-speed bi-
directional communication between controllers and
peripherals.

Peripheral Touch Controller (PTC) for capacitive
touch measurement on sensors that function as
buttons, sliders, and wheels.

Real-time clock (RTC) is used to keep track of the
current time.

Serial Peripheral Interface (SPI), synchronous serial
communication interface.

Task timer functionality using a timer counter

Add

v

9. RTC Configuration:

Add component(s)

Expand "Drivers" in the "ADD SOFTWARE COMPONENTS" window as shown above, scroll down
to locate "RTC", and click to select it. Then click the "Add component(s)" button. The "RTC_0"
module will now be added to the project, as shown below.

ﬂ Info: In the figure below, red markings 1-2 refer to what has been completed above.
Steps 3-7 describes the configuration of the RTC.

© 2017 Microchip Technology Inc.

Training Manuals

DS00002533A-page 9

Getting Started with Events on the tinyAVR 1-series

Figure 2-5. RTC Configuration
MY SOFTWARE COMPONENTS

@

W Application
O Middleware
O Driver

O System driver

« [DASHBOARD

c Add software component

Show system drivers @

Show hardware &

2

Click "Add software components” to add drivers and middleware to yo

TINYB17_
GETTING_START ...

| CPUINT | | CLKCTRL | | BOD | | SLPCTRL |
RTC_O ®
RTC driver
GENERAL COMPONENT SETTINGS SIGNALS
i v
& Rename compone
fli Remove compone
DRIVERS:RTC:INIT (RTC) CONFIGURATION ON RTC
CLOCK CONFIGURATION PERIODIC INTERRUPT TIMER
RTCEN: Enable: (VD4 PERIOD: Period: off

PITEN: Enable: D
RTC Clock Source Selection:
PRESCALER: Prescaling Factor: il 32)

RTC CONFIGURATION

PER: Period:

CMP: Compare: 0x0
CNT: Counter: 0x0
RUNSTDBY: Run In Standby: []
DBGRUN: Run in debug: I:]

Pl: Periodic Interrupt:

DBGRUN: Run in debug:

RTC INTERRUPT CONFIGURATION

[]
[
CMP: Compare Match Interrupt |:|

enable:

OVF: Overflow Interrupt enable:

(V)7

10. Execute the numbered configuration steps 3 through 7 from the figure above as:

Click "RTC _0" to open the RTC driver configuration page
Tick the "RTCEN" checkbox to configure the RTC to be enabled in the RTC initialization

routine that will be generated by Atmel | START

prescaler to 32

Click the "PRESCALER" dropdown menu and select "32" to configure the RTC clock

n Info: This will configure the RTC count frequency to 1 kHz as the default RTC
clock source is the 32 kHz Internal Ultra Low Power Oscillator.

© 2017 Microchip Technology Inc.

Training Manuals

DS00002533A-page 10

Getting Started with Events on the tinyAVR 1-series

— Continue by entering decimal number 500, equivalent to the hexadecimal value 0x1f4, in the
"PER" text box to define the RTC period
— Tick the "OVF" checkbox to enable the RTC overflow interrupt

ﬂ Info: The RTC overflow interrupt is configured to trigger approximately twice per second,
as the period is set to 500 with a RTC clock frequency of 1 kHz.

11. Enable CPUINT Global Interrupt:

ﬂ Info: The three steps involved in configuring the CPUINT module are described below
and illustrated in Figure 2-6.

— Make sure the "Show system drivers" slider in the top right corner of the "DASHBOARD"-view
is switched ON

— Click "CPUINIT" to open the CPUINT configuration view

— Tick the "CPU_SREG: Global Interrupt Enable" checkbox such that the initialization routine
generated by Atmel | START will enable global interrupts

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 11

Getting Started with Events on the tinyAVR 1-series

Figure 2-6. CPUINT Configuration

MY SOFTWARE COMPONENTS @
| et)
S mgf;ﬂﬂ @ Add software component SR G
m] Dnh\rer Show hardware @
O System driver

TINY817_
GETTING_START ... Q

| RTC_O |
2
@| el el o
CPUINT Q)
CPUINT
GENERAL COMPONENT SETTINGS SIGNALS

© coco | 8 mown | & s

i User guide Driver: Drivers:CPUINT:Init

DRIVERS:CPUINT:INIT (CPUINT) CONFIGURATION ON CPUINT

GLOBAL INTERRUPT CONFIGURATION INTERRUPT SCHEDULING CONFIGURATION
CPU_SREG: Global Interrupt Enable: " 3 LVLORR: Round-robin Scheduling rl
i Enable:

INTERRUPT VECTOR CONFIGURATION
PRIORITY CONFIGURATION

LVLOPRI: Interrupt Level Priority: 0x0

CVT: Compact Vector Table: D

IVSEL: Interrupt Vector Select:
LVL1VEC: Interrupt Vector with High

Priority: 0x0

ﬂ Info: The RTC and CPUINIT are now configured. The RTC will now be able to trigger its
overflow interrupt.

12. Clock configuration: Open the clock configuration view by clicking on in the navigation tab
on the left side of the window.

Getting Started with Events on the tinyAVR 1-series

ﬂ Info: The CLOCK CONFIGURATOR view will now be displayed. It contains oscillators
and clock sources of different types. Required clock sources can be selected and
configured. The corresponding output frequency is then calculated and presented. The
settings dialog for each element in the clock configuration view can be opened by clicking
the associated cog-wheel.

» The Oscillators section displays the oscillators available for the selected device
+ The Source section is used to configure clock frequency by selecting input signal
and prescaling factor

13. Open the "Clock Settings"- dialog for "Main Clock" by clicking its corresponding cog-wheel to view
the default clock settings as shown below.

ﬂ Info: CLOCK SETTINGS window will be displayed.

Figure 2-7. MAIN CLOCK CONFIGURATION

Satinas MAIN CLOCK CONFIGURATION
. CLKSEL: Main Clock Source:
RS CAAR PEN: Prescaler enable:
Frequency: 3.333 MHz O=> PDIV: Prescaler division:
LOCKEN: lock enable:]
REEERES CLKOUT: System clock out: |
Frequency: 1.024 kHz USAGE
This clock is not used by any components.

ﬂ Info: For this application the default clock settings are kept as is. Here, the Main Clock
source is the 20 MHz Internal Oscillator with prescaler division set to 6. The resulting CPU

clock frequency is 3.33 MHz. Clicking the question mark © next to each configuration will
provide the data sheet description of the individual bit setting. The RTC clock was
configured to 1 kHz earlier and this is also shown in the figure.

14. Click Close to close the CLOCK SETTING window.

15. Now, click the GENERATE PROJECT button

16. Select the desired path where the project should be stored, as shown below, and then click OK.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 13

Getting Started with Events on the tinyAVR 1-series

Figure 2-8. Project Importer Window

Atmel Start Importer @
SN
New Atmel Start Project @

: .

Project Name: ATtiny817_getting_start_events

Location: C\Training\GettingStartedWithEvents

Solution: Create New Solution

Solution Name: ATtiny817_getting_start_events

View Project Summary

Result: The Atmel | START project has been created in Atmel Studio.

Atmel | START Project Overview In Atmel Studio

The Atmel | START project generates peripheral driver functions and files, as well as a main () function
that initializes all drivers.

About folders and files generated by Atmel | START:
» Header files and source files for the peripheral drivers generated by START are located in the
folders src and include

* The atmel_start_pins.h file in the include folder contains useful PINMUX driver functions

» The utils folder contain files that define some functions that can be commonly used by the drivers
and the application itself

* The atmel_start.c file contains the atmel start init () function, which initializes the MCU,
drivers, and middleware defined for the project

« The driver_isr.c file contains generated ISRs if interrupts have been enabled in Atmel | START

To do: Get an overview of the Atmel | START project.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 14

Getting Started with Events on the tinyAVR 1-series

Figure 2-9. Project Overview

[Atting817 getting start_events - AtmelStudio (Administrator) Standard Mode ¥ Quick Launch (Ctrl+Q) Pla B X

File Edit View VAssistX ASF Project Build Debug Tools Window Help
0-oB-Au-2WP|XA|2-C -] |E]|ar| > W Debug ~| Debug Browser + z
W@ e Plota | Hex % | @~ < 1+ AN TR N

mainc # X Data Visualizer ATtiny817 Xplained Pro - 0806 LIOGACZIN Solution Explorer v & X
2 mainc ~]2 C\Users\ghu\Documents\Atmel Studio\7.0\ATtiny81, R o-5FE | p =
#include <atmel_start.h>

Search Solution Explorer (Ctrl+") »-
(@l Solution 'ATtiny817_getting_start_events' (1 projed
4 [ATtiny817 _getting start_events

<4 Dependencies

Sint main(void)

/* Initializes MCU, drivers and middleware */

atmel_start_init(); = Output Files

>
13
b [Libraries
/* Replace with your application code */ b [Config
while (1) { b [include
3 b [st
} : b [utils
€ atmel_start.c
h atmel_starth 1

< driver_isr.c
main.c

1. The Solution Explorer sub-window for the generated ATtiny817_getting started_events Studio
project should be present, as shown in the figure above. If not, click on the Solution Explorer sub-
window as indicated in the figure to unhide it. It can also be opened by clicking View followed by
Solution Explorer. Double-click the main.c file in the Solution Explorer sub-window to open it.

2. Right-click on the atmel start init () function and then click Goto Implementation. Repeat the
procedure for the system init () function, which is called by atmel start init () and
observe that system init () calls the initialization functions for the generated peripheral drivers.

ﬂ Info: Themcu init () function enables the internal pull-up resistor on all pins to reduce
power consumption. All driver initialization functions are called from the system init ()
function, in addition to configuring the port pin associated with LEDO to output mode with
a defined initial level.

3. Go to implementation of CLKCTRL init () and observe that the default clock settings are
commented out.

ﬂ Info: If the non-default clock settings are selected in START, it will be reflected in
CLKCTRL init ().

4. Open the atmel_start _pins.h file in the Solution Explorer sub-window and then click on the down
arrow, as shown in the figure below, to open the list of functions defined in this file. Observe that
many useful GPIO functions have been generated.

Figure 2-10. atmel_start_pins.h Functions

E ATtiny817_getting_start_events - AtmelStudio (Administrator)
File Edit View VAssistX ASF Project Build Debug Tools V

i0-0B-AL-AMP XFA|?-C-|EQ|
AR Pleo t @t h T he B @5
amelsar pinsh = X [amet surpinsn_+ < O
atmel_start_pins.h < C\Users\ghu\Documents\Atmel Studio\ LEDO_get_level()] -
=/F e $ @ LEDO_get_level()
* Code generated from Atmel Start. ® LEDO_set_dir(const enum part_dir dir)
* @ LEDO_set_level(const bool level)
* This file will be overwritten when reconfiguring @ LEDO_set_pull_mode(const enum port_pull_mode pull_made)
* Please copy examples or other code you want to k @ LEDO_toggle_level() |
* to avoid losing it when reconfiguring. S } :

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 15

Getting Started with Events on the tinyAVR 1-series

Result: The Atmel | START project overview is completed.

23 Code Development

Here the RTC overflow interrupt will be set up to trigger LEDO toggling on the ATtiny817 Xplained Pro
development kit.

To do: Write code to toggle LEDO in the RTC interrupt handler.
1. Open the driver_isr.c file in the ATtiny817_getting_started_events project.

To do: Edit the driver_isr.c file.

2. Insertthe code LEDO toggle level(); inthe ISR(RTC CNT vect) interrupt handler, as
shown below. This will, as the function name reveals, toggle the level on the pin connected to LEDO
each time the RTC overflow interrupt is executed.

ISR(RTC_CNT_ vect)

{
/* Insert your RTC Overflow interrupt handling code */

LEDO_toggle level();

/* Overflow interrupt flag has to be cleared manually */
RTC.INTFLAGS = RTC_OVF bm;

ﬂ Info: Since the RTC clock runs at 1 kHz and the RTC period is set to 500, the RTC
overflow interrupt will be executed two times per second. LEDO will consequently toggle
two times per second.

3. The main.cfile is kept as is. Click Build — Build Solution in the top toolbar or press F7 in Atmel
Studio to build the solution.
Note: The build should finish successfully with no errors.

24 Debug the Application

To do: Debug the application where the RTC overflow interrupt triggers LEDO toggling.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 16

Getting Started with Events on the tinyAVR 1-series

Power the ATtiny817 Xplained Pro kit by connecting a Micro-USB cable to the computer.
2. In Studio, click Debug — Start Debugging and Break to program the kit and start debugging, as

shown below. This can also be done by pressing Alt+F5.
Figure 2-11. Start Debugging and Break

E; ATTiny817_events_test_START_new_release - AtmelStudio (Administrator)

File Edit View VAssistX ASF Project Build Debug | Tools Window Help
;;°’ i:ﬁ’@ - & Hu"" é’é[j—l =2 Windows

P ‘

T

4 ‘ Yo 3 Hex Ml Start Debugging and Break

Atmel | START driver_isr.c* + X [ElnEEgead] B Attach to Target

: : s Stop Debugging
=» driver_isr.c vi= I—) CA\Users\ghu\Doci 5 el
P Start Without Debugging
#include <driver_init.h> Disable debugWIRE and Close
#include <compiler.h> b s

#include "main.h"

—ISR(RTC_CNT_vect)

{
/* Insert your RTC Overflow interrug :
LEDO_toggle_level(); QuickWatch
¥ StepInto
= :
= /* Overflow interrupt flag has to be 7 Step Over
@ RTC.INTFLAGS = RTC_OVF_bm;
} Step Out

k RunTo Cursor

Alt+F5

Ctrl+Shift+F5

Ctrl+Alt+F5

F5

Ctrl+F10

ﬂ Info: If the embedded debugger firmware version on is lower than the one in the Atmel

Studio installation, a firmware upgrade dialog will be opened.

Figure 2-12. Firmware Upgrade

Firmware Upgrade

)

EDBG firmware upgrade started

On Tool On Disk

Firmware Version 3.1c 3.1f

Upgrading Debugger MCU Firmware

b

Select Upgrade and when the progress bar is complete, select Close. Now start debugging by

clicking Debug — Start Debugging and Break or by pressing Alt+F5.

© 2017 Microchip Technology Inc. Training Manuals

DS00002533A-page 17

Getting Started with Events on the tinyAVR 1-series

Result: The kit is programmed with the application and a debugging session is initiated,
starting with the code in main.c.

3. Click in the margin to the left of the RTC. INTFLAGS = RTC_OVF_ bm; to place a breakpoint in the
code in driver_isr.c, as shown above. This breakpoint is set after the LED0 toggle level();
function call is executed.

4. Run the application until the breakpoint is hit by clicking Debug — Continue, pressing F5, or by

clicking the play button >

Tip: The play button ¥ is located in the top toolbar in Atmel Studio and in the Debug
menu.

5. To check the status of all the PORTB pins, open the 1/O View window by selecting Debug —
Windows — I/0O and click on the I/O Ports (PORTB) register group, as shown in Figure 2-13.

ﬂ Info: In the I/O View, the status and register values of all peripherals can be inspected.
Pin status is indicated for PBO to PB7 from right to left under the Bits column in the OUT
register. As shown in the image below, the level of pin PB4 (LEDO) is HIGH, since a filled
square corresponds to bit status 1. An empty square indicates that the bit status is 0/
LOW.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 18

Getting Started with Events on the tinyAVR 1-series

Figure 2-13. 1/0 View

/o > 1 x
E E | Filter: - g‘
MName Value
2 General Purpose 10 (GPIO) -
W& /0 Ports (PORTA)
19}

W& /O Ports (PORTC)
ﬁlnterrupt Controller (CPUINT)
[Lockbit (LOCKBIT)
[ENon—volatile Memaory Controller (...
W& port Multiplexer (PORTMUX)
@) Real-Time Counter (RTC)
Ik Reset controller (RSTCTRL)
= Serial Peripheral Interface (SPIO)
Signature row (SIGROW)
= '@ Sleep Controller (SLPCTRL)
System Configuration Registers (5...

T e T8 TR bt
MName Address Value Bits
B DR O000e00ao
B DIRSET Pin level: O000e00ao Pin level: LOW
B DRRCLR HIGH N O0080000
B DIRTGL % OSYB0000
B out 0424 0x10 OOCBO0O0

BoutseT oud2s oxio OO0O@O0000
Boutcr o026 oxi0 OOOBO0O0OO0O
BoutteL o027 oxio OO0OBO00O0

BN o428 oxfFf OO0 0E0
® L JINTFLAGS 0x429 O0x00 O0O0O00000
B PINOCTRI 0xd30 kDR (1 mrrnm

6. Clickon » to continue the execution and observe that the value of the OUT register in the
PORTB register alternates between 0x00 and 0x10 each time the breakpoint is hit. This indicates
that pin PB4 is being set and reset alternatively, and LEDO is toggling correspondingly.

7. Remove the breakpoint by clicking the L shown in Figure 2-11 and run the code again by

pressing F5 or clicking » . Now LEDO should continuously toggle two times per second.
8. End the debugging session by clicking Debug — Stop Debugging, pressing Ctri+Shift+F5, or by

clicking ™

Result: An application that toggles LEDO on the RTC overflow interrupt has been
successfully programmed on the ATtiny817 Xplained Pro evaluation kit.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 19

3.1

Getting Started with Events on the tinyAVR 1-series

Assignment 2: RTC Interrupt Triggers String Sent to USART Terminal

In this assignment it will be demonstrated how to configure the USART module and use it to send a
string, as well as how to display the string "Hello World!" in the terminal embedded in the Atmel Studio
Data Visualizer. An application will be developed so that the RTC overflow interrupt, when set, will trigger
reading of the string from the USART and output it in the terminal.

First, Atmel | START will be used from within Studio to reconfigure the project from Assignment 1. In
START, the USART component will be added to the project and then configured. The basic USART
drivers will be automatically generated from START for the project in Studio. An extended USART
function code is required to be added manually in Studio.

Peripherals used:

« USART
* RTC (from previous assignment)
* GPIO (PB4, from previous assignment)

Clock details:

¢ 3.333 MHz main clock
* 1 kHz RTC clock (from previous assignment)

USART Configuration in Atmel | START

To do: Add the USART driver and configure the module in Atmel | START by reconfiguring the
project from within Atmel Studio.

which identifies itself as a composite USB device with a Virtual COM Port interface when
connected to a computer. The Virtual COM Port is connected to the UART on the ATtiny817 via
the EDBG and provides an easy way to communicate with the target application through
terminal software. It offers variable baud rate, parity, and stop bit settings. Note that the settings
on the ATtiny817 must match the settings given in the terminal software.

ﬂ Info: The ATtiny817 Xplained Pro is equipped with the Atmel Embedded Debugger (EDBG),

Tip: The USART TX line on the device on ATtiny817 Xplained Pro connected to the EDBG
Virtual COM Port is available on pin PB2.

1. Open the ATtiny817_getting_started_events project from assignment 1.

2. Right-click on ATtiny817 _getting started_events, in the Solution Explorer window the sub window
pops up. In the sub-window, select Re-Configure Atmel START Project, as shown in the figure
below.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 20

Getting Started with Events on the tinyAVR 1-series

Figure 3-1. Re-Configure Atmel | START Project

Data Visualizer Atmel | START driver_isr.c INETH NS ST IS Ell Solution Explorer vy Ro|X

21> while () N o-5s B L=
EMES SReel S Search Solution Explorer (Ctrl+7) P~

ﬂ Solution 'ATtiny817_getting_start_events' (1 projeq
ey 1 tiny817_getting start_events
I Dependencies

= main.while 2

—int main(void)

{ <
Sk 3 g Build
/* Initializes MCU, drive¢ = :

salyadold Ialojdx3 uonnios O/1

atmel_start_init(); Rebuild I Output Files
Clean § Libraries
/* Replace with your app] B3 copy Full Path J Config
while (1) { J include
Collapse d sic
> }
} Scope to This i utils
&) New Solution Explorer View atmel _start.c
atmel_start.h
— ¢ driver_isr.c
2 Add Library main.c

$+ Setas StartUp Project
Add Arduino Library

Re-Configure Atmel Start Project 2

View Project Snapshots
Take Snapshot
View Example Project Help »
Export Project as Extension
% Cut Ctrl+X
& Properties

n Info: Atmel | START will be opened in the default web browser in Studio.

L3
A
To do: Add in the USART component.

3. Open the ADD SOFTWARE COMPONENTS window by clicking .

4. Expand the Drivers category and scroll down to locate the USART driver. Click it to select it and
then click Add Component(s), as shown below.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 21

Getting Started with Events on the tinyAVR 1-series

Figure 3-2. Add Software Components

ADD SOFTWARE COMPONENTS X

Name Description Add
WFriC rerprerdr roucrLornuoner (Fire) or tdpaciuve J %
touch measurement on sensors that function as
buttons, sliders, and wheels.

O R1C Real-time clock (RTC) is used to keep track of the ®
current time.

O SPI Serial Peripheral Interface (SPI), synchronous serial O
communication interface.

O Timer Task timer functionality using a timer counter ®
peripheral.

£ USART Universal Synchronous Asynchronous Receiver ®

Transmitter (USART) to transfer data from one
device to the other.

O WDT Watchdog Timer (WDT) for monitoring correct O
operation and make it possible to recover from >
————_
Add component(s) Cancel
e —————

v

Result: The USART driver will now be added to the project.

To do: Configure the USART baud rate to 9600 and enable the transmitter.

5. Click the newly added USART_0 box to open the driver configuration view.
Figure 3-3. USART Configuration

USART_O0

USART driver in asynchnous mode

GENERAL COMPONENT SETTINGS SIGNALS
Driver: [Drivers:USART:USART_Init | rxo: pB3

Mode: [Asynchronous Mode } TXD: i b
|1l Remove component s

Tl Remove component o
2

DRIVERS:USART:USART INIT (ASYNCHRONOUS MODE) CONFIGURATION ON USARTO

BASIC CONFIGURATION ADVANCED CONFIGURATION
RXEN: Reciever enable: [: LBME: Loop-back Mode Enable: D
TXEN: Transmitter Enable: V])3 RS485: RS485 Mode internal [RS485 Mode disabled
3 transmitter:
PMODE: Parity Mode: No Parity |
MPCM: Multi-processor D
SBMODE: Stop Bit Mode: | 1 stop bit | Communication Mode:
CHSIZE: Character Size: Character size: 8 bit | ODME: Open Drain Mode Enable: [_]
—
Baud Rate: 9600) | RXMODE: Receiver Mode: l Normal mode
————

U

SFDEN: Start Frame Detection Enable:
INTERRIIPT CONEIGHRATION

Getting Started with Events on the tinyAVR 1-series

6. Perform the configuration steps in red markings as illustrated in the figure above:
— Click the TXD dropdown menu under SIGNALS
— Select PB2 as TXD pin

— Tick the TXEN checkbox to let the USART transmitter to be enabled in the USART
initialization routine which will be generated by START

— Observe that the default baud rate is 9600 and leave it as is

Result: The USART driver configuration is completed.

7. Click the GENERATE PROJECT button at the bottom of the window to regenerate the project in

Atmel Studio.

Figure 3-4. Project Code Regenerated
Project Summary I&I
There are differences between some of the imported Atmel Start files and the corresponding files in your
project.

Please select the files you would like to overwrite from the list below.

| Files Modified

| driverisr.c

~ Files Added
‘ﬂ Import File : include/ccp.h
{ﬂ Import File : include/rstctrl.h
{é Import File : src/ccp.S
‘ﬂ Import File : utils/assembler.h
Lﬂ Import File : utils/assembler/gas.h
Lﬂ] Import File : utils/assembler/iar.h
ﬂ Import File : utils/compiler.h
‘ﬁ] Import File : utils/interrupt_avr8.h
ﬂ Import File : utils/utils.h
'h] Import File : utils/utils asserth

|| Backup Current Project File Name: Atmel_Start 4

Result: The Project Summary window will appear, as shown in the figure above.

ﬂ Info: The Project Summary gives an overview of the differences between the original
and the reconfigured Studio project. Clicking View Diff... as shown in figure above will
open the external WinMerge tool, which shows the changes to that file. This external
WinMerge tool is not installed within Studio by default. Here is the info on how to install it.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 23

Getting Started with Events on the tinyAVR 1-series

— Download the tool from http://downloads.sourceforge.net/winmerge/WinMerge-2.14.0-
Setup.exe
— Install the tool at the default path (i.e. C:\Program Files (x86)\WinMerge) or a user-defined
path
— In Atmel Studio, go to the Tools Options — Atmel Start — File Compare menu. In “Path of the
application used for comparing files”, enter C:\Program Files (x86)\WinMerge
\WinMergeU.exe. In “Command line arguments to be used for file comparison:”, enter
%original %mine /s /u.
— Click OK and the View Diff..., as shown in Figure 3-4, should work now
8. Since we do not want to overwrite the driverisr.c file, there is no need to inspect this file. Leave the
checkbox unticked and click OK as illustrated in the figure above to regenerate the project for Atmel
Studio.

Result: The project will be regenerated in Studio including reconfiguration updates
performed in Atmel | START.

3.2 Expand the USART Functionality

To do: In Atmel Studio, add code to the USART peripheral to send the string "Hello World!"
and output it to terminal.

1. In Studio Solution Explorer window, locate the usart.c file under the src directory, as shown in
Figure 3-5, and double-click to open it.

2. Expand the function list by clicking the arrow as shown in the red marking number 2. All USART
driver functions are listed, which are automatically generated by Atmel | START. Inspect the
functions and pay attention to the functionality of USART 0 putc (const uint8 t data) and
USART 0 tx empty (), which have been used in this project. Selecting a function will jump to the
declaration of that function.

Figure 3-5. USART Driver Function List

usartc ® X usarth PEIERYSIE| VS8 Solution Explorer v & X

SART_0_data_transmitted() |82 N o-5s B o=
@ USART_O_data_transmittedc 2 Fse i} Search Solution Explorer (Ctrl+7) Pl
® USART_0_getc() }‘mit
@ USART 0.init) _ﬂ Solutiot:\ 'ATtinyS17_.getting_start_events' (1 proje
® USART_0_putc(const uint8_t data) S0 4 = ATtlny817_geftlng_start_events
@ USART_O_rx_full) ';tiol i (Es pendeneks
@ USART 0_tx emptyQ P =4 Output Files
. . . . | b [Libraries

* 2. Redistributions in bi b [3 Config

% this list of conditic} b 3 include

¥ and/or other material 4 B sre

X

1
Training Manuals DS00002533A-page 24

© 2017 Microchip Technology Inc.

http://downloads.sourceforge.net/winmerge/WinMerge-2.14.0-Setup.exe
http://downloads.sourceforge.net/winmerge/WinMerge-2.14.0-Setup.exe

Getting Started with Events on the tinyAVR 1-series

3. Inthe main.c file, manually implement the function which will write a string to the USART TX buffer.
— Declare a char array hello that holds "Hello World!\n and a HELLO LEN definition that
defines the string length:

const char hello[]="Hello World!\n";
#define HELLO LEN 13

— Implementa usart put string() function based on the USART 0 putc () and
USART 0_tx_empty () functions, which are included in the usart.c file.

//USART Functions
void usart put string(const char str[], const uint8 t STR LEN) {
for (int i=0; i<STR7LEN; i++) {
while (!USART 0 tx empty());
USART 0 putc(str[i]);
}
}

— Addacalltousart put string() inthemain () function before the while (1) loop:

usart put string(hello, HELLO_LEN) ;

— The complete code for main.c looks as Figure 3-6 (the code in red markings are supposed to
be added in):
Figure 3-6. Add USART Function in main.c

Data Visualizer atmel_start_pins.h main.c® * X GLINEEERe
= mainc v =2 C\Users\ghu\Documents\Atmel Studio\7.0\ATtiny817_getting_st:
7 N\

const char hello[]="Hello World!\n";
#define HELLO LEN 13

//USART Functions
—=void usart_put_string(const char str[], const uint8 t STR_LEN){
for (int i=0; i<STR_LEN; i++){
while(!USART_@_tx_empty());
USART_@_putc(str[i]);
h
h

g J 1

=int main(void)

{
/* Initializes MCU, drivers and @L@ngﬁﬁg@ o7 4
atmel start init();

E usart_put_string(hello, HELLO_LEN); 32

/* Replace with your application code */
while (1) {
}

4. Build the solution by pressing F7 or clicking Build — Build Solution.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 25

Getting Started with Events on the tinyAVR 1-series

ﬂ Info: The solution should build without errors.

Result: An application that transmits the string "Hello World!"™ to USART have been
implemented.

3.3 USART Output to Data Visualizer Terminal

To do: Set up the Data Visualizer terminal in Studio to display the string transmitted from the
evaluation kit via the EDBG Virtual COM Port.

1. In Studio 7, click Tools — Data Visualizer to open the Data Visualizer.

2. Inthe Data Visualizer window, click Configuration located all the way to the left, expand the
External Connection group and double-click Serial Port as illustrated by the steps in the figure
below.

3. Expand the drop-down list of COM ports in the Serial Port Control Panel and select the COM port
associated with the Virtual COM Port of the EDGB on the evaluation kit, as shown in the figure
below.

Tip: The EDBG Virtual COM Port number associated with the ATtiny Xplained Pro kit
can be found in Windows Device Manager by clicking: Start — Control Panel — Device
Manager — Ports.

4. Leave the serial port settings at default values and click Connect as shown in the figure below to
open the terminal.
Figure 3-7. Select USART Serial Port

usartc m X ~

main.c* driver_isr.c

Data Visualizer # X ENREESElelS0]

a Configuration Serial Port Control Panel

— -

% 1 Modules n “ e I

@ 4 External Connection a3 -

S Data Gateway Interface (DGI) VI DTR [JRTS

3 2 [¥] Open Terminal
Visualization Autodetect ADP
Utilities

Protocols

5. Program the device and run the program by pressing Ctri+Alt+F5 or by clicking Debug — Start
Without Debugging.

6. Inspect the terminal in the Data Visualizer tab and verify that Hello World! is printed as shown in
the figure below.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 26

Getting Started with Events on the tinyAVR 1-series

Figure 3-8. String Printed to Terminal

Serial Port Control Panel -~ X
‘ Disconnect ‘
COM24 e
[¥] DTR [C] RTS
; : [v] Open Terminal
Baud rate Parity Stop bits Il Autodetect ADP
9600 None 1 bit c_‘—. .
Terminal 2 I
Hello World!

Result: Transmission of Hello World! using USART has been verified with the Data Visualizer

terminal.

3.4 RTC Interrupt Triggers USART Transmission

To do: Update the application to enable the RTC overflow interrupt to trigger the USART
transmission of "Hello World!" to the Data Visualizer Terminal.

To do: Add in the new main.h file.

1. Right-click on the project ATtiny817_getting_start_events in Solution Explorer and click Add — New

Item, as shown below.

© 2017 Microchip Technology Inc.

Training Manuals

DS00002533A-page 27

Getting Started with Events on the tinyAVR 1-series

Figure 3-9. Add New Item

mainc ® X driver_isr.c Solution Explorer 8 X
ers\ghu\Documents\Atmel Studio\7.0\ATtiny81 & ‘ -5 8@ | F -

Search Solution Explorer (Ctrl+7) P~

saiyadold

Solution ‘ATtiny817_getting_start_events' (1 proje
ATtiny817 _getting_start_events

=

2

[e 5

e Rt Dependencies =

Rebuild Output Files -

Clean Libraries %}

- Config g

53 Copy Full Path i °

o include g

ollapse " e

Scope to This € bod.c g

&' New Solution Explorer View O ccpsS g‘

A - 1. =

Add * | %3 Newltem.. Cul+shift+A | B3

| i 1o) <]

‘3 Add Library *a Existing Item... Shift+Alt+A &
$i Set as StartUp Project ¥ New Folder
Add Arduino Library Reference...

Re-Configure Atmel Start Project Add New Class

2. In the pop-up window, choose Include File, rename the file to main.h and click Add, as shown
below.

. Result: An empty file named main.h will be added to the project and listed just below the
main.c file in Solution Explorer.

Figure 3-10. Add main.h File

4 Installed Sort by: Default = = Search Installed Templates (Ctrl+E) P~
GG é Preprocessing Assembler File (...C/C++ Type: C/C++
— A blank include (h) file.
= Assembler File (.s) C/C++
=| crile C/C++
| =| Include File C/C++ I 1
jes}
|llt ‘ QTouch Design File C/C++
<@ XML File C/CH+
Name: |main.h | 3
: [=])

3. Locate the main.h file in Solution Explorer and open it.

(]
&
To do: Update the newly created main.h file.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 28

Getting Started with Events on the tinyAVR 1-series

4. Addtheline extern volatile uint8 t sendflag; in main.h, as shown below.
Figure 3-11. Updating main.h File

mainh + X EEIERUNIEIVL atmel_start_pins.
|9 main.h - :|9 C:\Users\ghu\C

—#ifndef INCFILE1 H_
#define INCFILE1 H_

|extern volatile uint8 t sendflag;

#endif /* INCFILE1 H_ */

ﬂ Info: The variable sendf1ag will be used by the application in driver_isr.c to initiate
USART transmissions.

5. Open the driver _isr.c file from Solution Explorer.

r

6. Make the sendflag variable available in the driver_isr.c by including it as shown below.

7. Raise the flag by writing 1 to the sendflag variable in the RTC ISR, as shown below. This can
serve as a notification to the CPU that the RTC overflow interrupt has been executed.
Figure 3-12. Updating driver_isr.c File

main.c atmel_start_pins.h driver_isrc ® X IDEICRYIIE|[VLl

h C\Users\ghu\Documents\Atmel Studio\7.0\ATtiny817_
#include <driver_init.h>

#include <compiler.h>
[#include "main.h"]

To do: Update the driver_isr.c file.

= ISR(RTC_CNT_vect)
{
/* Insert your RTC Overflow interrupt handling code */
LED® toggle level(); // ./include/atmel start pin.h

| sendflag = 1; |

/* overflow interrupt flag has to be cleared manually */
RTC.INTFLAGS = RTC_OVF_bm;

-0
L
To do:

Update the main.c file.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 29

Getting Started with Events on the tinyAVR 1-series

8. In main.c, include the main.h file and declare the sendflag variable as:

#include "main.h"
volatile uint8 t sendflag = 0;

9. In main.c, add the following code in the while (1) loop of the main() function.

if (sendflag) {
usart put string(hello, HELLO LEN);
sendflag = 0;

}

This piece of code will check if sendflag is set and then call usart put string() to print the
"Hello World!" string to the USART terminal. The sendflag is set each time the RTC overflow
interrupt routine defined in driver _isr.c is executed. After the USART transmission, sendflag is reset
and ready for a new check.

The complete modifications in the main.c file are highlighted in the red markings, as shown below.

Figure 3-13. Updating main.c File

Data Visualizer atmel_start_pins.h driver_isr.c mainc + XI
= main.while.if - :I+ if (sendflag)
#include <atmel start.h>

[C#include "main.h”] 1

const char hello[]="Hello World!\n";
#define HELLO LEN 13

Golatile uint8 t sendflag = j 2

//USART Functions
-void usart_put _char(uint8 t data){

—int main(void)

{

/* Initializes MCU, drivers and middleware */
atmel start init();

usart_put_string(hello, HELLO_LEN);

/* Replace with your application code */

if (sendflag) {
usart_put_string(hello, HELLO_LEN);

sendflag = 0; C

10. Press F7 to build the solution.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 30

Getting Started with Events on the tinyAVR 1-series

ﬂ Info: The solution should build without errors.

11. Program the kit and start the application by pressing Ctri+Alt+F5 or by clicking Debug — Start
Without Debugging.

ﬂ Info: The application should start executing on the kit.

12. Open the Data Visualizer terminal and verify that Hello World! is printed approximately two times
per second, as shown below.
Figure 3-14. RTC Interrupt Continuously Triggers String Print to Terminal

Serial Port Control Panel ~ X
Disconnect ‘
coM24 —
[¥] DTR [C] RTS
: : V| Open Terminal
Baud rate Parity Stop bits B St cdsccABD
9600 None 1 bit ‘_‘_ .
Terminal 2 ~ %
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

Result: The RTC overflow interrupt continuously triggers USART transmission of the Hello
World! string to the Data Visualizer terminal two times per second.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 31

4.1

Getting Started with Events on the tinyAVR 1-series

Assignment 3: ADC ISRRDY Interrupt Triggers ADC Data Output to
USART Terminal

The ATtiny817 has an ADC module, which will be configured. The application code will also be updated.
A potentiometer will be connected to the ADC input pin to observe the added ADC functionality. ADC data
will be sent to USART and observed in the Data Visualizer terminal window.

This is based on the project Assignment 2: RTC Triggers Print to USART Terminal. Here, an
application will be developed demonstrating the ADC functionality with ADC data output to the USART
terminal. First use Atmel | START to add in the ADC drivers and then get the module configured. Now two
ADC functions must manually be added to Atmel Studio. The RTC overflow interrupt will trigger the start
of an ADC conversion and the ADC data ready interrupt will trigger sending the ADC data to the USART
terminal.

Peripherals used:

« ADC

* USART (from previous assignment)

* RTC (from previous assignment)

* GPIO (PB4, from previous assignment)

Clock details:

* 3.333 MHz ADC clock
* 3.333 MHz main clock (from previous assignment)
* 1 kHz RTC clock (from previous assignment)

Add ADC Driver In Atmel | START

To do: Add ADC driver to the project, using Atmel | START.

1. Open the ATtiny817_getting_started_events project from Assignment 2.

2. Select the project name, right-click in the Solution Explorer window, and select Re-Configure Atmel
START Project.

ﬂ Info: Atmel | START will be opened in the default web browser.

3. Click in the Atmel | START window and expand Drivers from the ADD
SOFTWARE COMPONENT window.

4. Add the ADC to the project by selecting ADC and clicking .

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 32

Getting Started with Events on the tinyAVR 1-series

Result: ADC driver is added to ATtiny817 _getting_started_events.

4.2 Configure ADC in Atmel | START

Once the ADC module has been added to ATtiny817_getting_started_events the ADC driver will be
configured here.

To do: Configure the ADC Module.

1. Click ADC_0in the Atmel | START window.
2. Perform the configuration steps, marked with red, as depicted in Figure 4-1.
— Enable the ADC by checking the ENABLE: ADC Enable checkbox

— Enable PAG6 as an analog input for the ADC by checking the PA6 checkbox. Then select ADC
input pin 6 from the MUXPOS:Analog Channel Selection Bits dropdown menu to actually
select the enabled PA6 as ADC input pin.

— Configure the ADC resolution to be 8-bit by selecting 8-bit mode from the RESSEL:ADC
Resolution dropdown menu
— Configure the voltage reference, REFSEL, to be VDD from the dropdown menu

— Enable the Result Ready interrupt by checking the RESRDY:Result Ready Interrupt Enable
checkbox

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 33

Getting Started with Events on the tinyAVR 1-series

Figure 4-1. ADC Configuration in Atmel | START

ADC 0 ®

ADC driver

GENERAL COMPONENT SETTINGS SIGNALS

i User guide Driver: Drivers:ADC:Init AIN/O: D PAO
- AIN/T: D PA1
AIN/2: |:| PA2
Remove compone
. m

AIN/4: D PA4

AIN/5:

AlIN/6:

AIN/T:

AIN/8:

AIN/9: EI PB4 (PORT/P/12)

AIN/10: |:|PB1
AIN/11: I:]PEIO

DRIVERS:ADC:INIT (ADC) CONFIGURATION ON ADCO

BASIC CONFIGURATION TIMING CONFIGURATION

7 1
ENABLE: ADC Enable: D ASDV: Automatic Sampling Delay |:|
[]

w

Variation:
FREERUN: ADC Freerun mode:

SAMPDLY: Sampling Delay Selection: l:l
INITDLY: Initial Delay Selection: Delay 0 CLEk

PRESC: Clock Prescaler: CLK_PER dit 4|NTERRUPT CONFIGURATION

RESSEL: ADC Resolution: 8-bit mode

SAMPNUM: Accumulation Samples: 1 ADC samj

REFSEL: Reference Selection: VDD RESRDY: Result Ready Interrupt

Enable:

MUXPOS: Analog Channel Selection

ADC input pin 6
Bits: e

WCMP: Window Comparator
Interrupt Enable:

|

WINDOW COMPARATOR CONFIGURATION
OTHER CONFIGURATION

i
WINCM: Window Comparator Mode: Outside Wil
DUTYCYC: Duty Cycle:

WINHT: Window Comparator High 500
Threshold: SAMPLEN: Sample length:

WINLT: Window Comparator Low
Threshold:

DBGRUN: Debug run:

RUNSTBY: Run standby mode:

EVENT CONFIGURATION SAMPCAP: Sample Capacitance

Selection:

D i

STARTE!: Start Event Input Enable:

Getting Started with Events on the tinyAVR 1-series

Note: Clicking the question mark next to each configuration will provide the data sheet description
of the individual bit setting.

3. Generate the project by clicking . The following project summary window

pops up:
Figure 4-2. Summary of Project Code Generated by Atmel | START

Project Summary lﬁ

There are differences between some of the imported Atmel Start files and the corresponding files in your
project.

g

Please select the files you would like to overwrite from the list below.

~ Files Modified

main.c View Diff...

|Isrc/driverinit.c View Diff...

m

\/|[include/driverinit.h View Diff

||driverisr.c View Diff...

Vfinclude/atmelstart_pins.h View Diff...

» Files Added
&] Import File : include/ccp.h
Lﬂ Import File : include/rstctrl.h
é Import File : src/ccp.S
ﬂ Import File : utils/assembler.h
! ﬂ Import File : utils/assembler/gas.h !

a3

|v/| Backup Current Project File Name: Atmel Start 6

4. Click View Diff on the driver_isr.c file as in red marking in the Figure 4-2. A window pops up
showing the code difference between Assignment 2 version and the Atmel | START regenerated

version as:
Figure 4-3. driver_isr.c View Difference After Atmel START Modification
c\..\tiny817 getting start events\driver isr.c __ |G\Users\qhu\AppData\Local\Temp\AcmeStartOutput\ob00gpqg5.uck\driver_isr.c

ISR (RTC_CNT_vect) ISR (RTC_CNT_vect)

/* Insert your RTC Overflew interrupt handling codes */ /* Insert your RTC Overflow interrupt handling code */
LEDO_toggle level():
sendflag = 1;

/* overflow interrupt flag has to be cleared manually */ /* overflow interrupt flag has to be cleared manually */

RTC.INTFLAGS = RTC_OVF_bm; RTC.INTFLAGS = RTC_OVF_bm;

ISR (ADCO_RESRDY_vect)
{
/* Insert your ADC result ready interrupt handling code here */

/* The interrupt flag has to be cleared manually */
ADC0.INTFLAGS = ADC_ RESRDY bm;
}

4 1 K 1l »

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 35

Getting Started with Events on the tinyAVR 1-series

As shown, the ISR(ADCO_RESRDY _vect) function has been added in while the two lines,
LEDOQ_toggle level(); and sendflag = 1;, are missing in the Atmel | START generated version of
code. The regenerated version needs to be updated including the code that existed in the
Assignment 2 version.

By clicking on View Diff on other three files, one can see that these files can simply be overwritten
without modification required.

5. Now, choose to regenerate the project in Atmel | START by selecting the three files as circled in red
marking in Figure 4-2. These three selected files do not require modification and will be overwritten
by the Atmel | START generated version of codes when clicking the OK button at the bottom in
Figure 4-3. The main.c and driver_isr.c files needs to be updated manually as driver_isr.c is shown
in Figure 4-3.

Result: The Atmel | START project has been regenerated in Atmel Studio, including the
newly added ADC drivers.

4.3 Add ADC Functionality to Application Code

Once the ADC module has been added and reconfigured using Atmel | START, the application code
needs to be updated using Atmel Studio.

To do: Update the code in ATtiny817 _getting_started events to make use of the ADC driver
just added through Atmel | START. Specifically update the main.c, main.h and driver _isr.c files.

1. Update the code in main.c by performing the steps below. The complete code after updating is
shown in Figure 4-4.

— Add a variable declaration for the ADC result, adc result:

volatile uint8 t adc result = 0;

— Add the function for starting an ADC conversion, ADC_start conversion () and the
function for reading out the ADC result, ADC_get result ().

//ADC Functions
void ADC start conversion () {
ADCO.COMMAND = ADC_STCONV bm; //Set start conversion enable mask bit
}
void ADC get result () {
adc_result = ADCO.RESL;

}
— In the while-loop of the main function, comment out the code which sent the hel1lo string
from assignment 2, and add code for sending adc_result via the USART instead.

//usart_put_string(hello, HELLO_LEN) ;
USART 0 putc(adc_result);

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 36

Getting Started with Events on the tinyAVR 1-series

Figure 4-4. Updates to main.c in Atmel Studio
#include <atmel_start.h>

#include "main.h"

const char hello[]="Hello World!\n";
#define HELLO_LEN 13

volatile uints t sendflag = ©;
[volatile uint8 t adc_result = 0;

1

//USART Functions
-void usart_put_string(const char str[], const uint8 t STR_LEN){
for (int i=@; i<STR_LEN; i++){
while(!USART_©_tx_empty());
USART_O_putc(str[i]);

-

}

(//ADC Functions A

—void ADC_start_conversion(){
ADCO.COMMAND = ADC_STCONV_bm; //Set start conversion enable mask bit

}

- void ADC_get_result(){
adc_result = ADCO.RESL;

\} 7

—int main(void)
{
/* Initializes MCU, drivers and middleware */
atmel_start_init();

usart_put_string(hello, HELLO_LEN);
/* Replace with your application code */

while (1) {
if (sendflag) {

3
//usart_put_string(hello, HELLO_LEN);
USART 0 putc(adc_result);
sendflag = 0;

-

}

2. Add a global declaration of the adc_result variable, two functions ADC_start conversion ()
and ADC_get result () in main.h, as shown in Figure 4-5.
Figure 4-5. Updates to main.h in Atmel Studio

—#ifndef INCFILE1 H_
#define INCFILE1 H_

extern volatile wint8 t sendflag;
volatile uint8 t sendflag;
volatile uint8 t adc_result;

void ADC_start_conversion();
void ADC_get_result();

#endif /* INCFILE1_H_ */
3. Update the code in driver_isr.c by following the steps shown in Figure 4-6.
— Add in #include "main.h" in the header
— Make the application code trigger an ADC conversion each time the RTC overflows by adding
ADC_start conversion () to the RTC interrupt handler, ISR (RTC CNT vect).

ADC_start conversion();

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 37

Getting Started with Events on the tinyAVR 1-series

Make the application code trigger a read-out of the ADC result for each ADC conversion by
adding ADC_get_result () to the ADC interrupt handler, ISR (ADCO_RESRDY vect).

ADC get result();

Ensure that the new ADC result is sent to the terminal window using the USART by moving
sendflag from the RTC interrupt handler to the ADC interrupt handler.

sendflag = 1;

Figure 4-6. Updates to driver_isr.c in Atmel Studio

#include <driver_init.h>
#include <compiler.h>
#include "main.h" 1

- ISR(RTC_CNT_vect)

{

/* Insert your RTC Overflow interrupt handling code */
LED® toggle level();
sendflag = 1; 4
2

[ADC start conversion(i;]

/* overflow interrupt flag has to be cleared manually */
RTC.INTFLAGS = RTC_OVF_bm;

}
= ISR(ADCO_RESRDY_vect)
{

/* Insert your ADC result ready interrupt handling code here */

ADC_get_result(); 3
s

/* The interrupt flag has to be cleared manually */
ADCO.INTFLAGS = ADC_RESRDY_bm;
}

4. Build the project by clicking & o £7. Make sure there are no compiler errors or warnings.

Result: The ADC functionality code is done.

4.4 Connect Potentiometer to ADC
A potentiometer, also called a potmeter, is a three-terminal resistor with a sliding or rotating contact that
provides an adjustable voltage divider. As shown in the upper left corner of the figure below, the potmeter

has three pins marked in red as 1, 2, and 3 respectively.

To do: Connect a potentiometer to ATtiny817 Xplained Pro by using a breadboard and three
male-to-female cables.

1. Place the potmeter in the breadboard and notice how the pins corresponds with the letters/numbers

on the breadboard.
2. Connect the pins of the potmeter to ATtiny817 Xplained Pro by using male-to-female cables:

- Pin1to VCC
— Pin2to PA6

Training Manuals DS00002533A-page 38

© 2017 Microchip Technology Inc.

4.5

Getting Started with Events on the tinyAVR 1-series

— Pin3to GND
Figure 4-7. Potentiometer Connected to ATtiny817 Xplained Pro

: : 3 RWRT T
MEASUI OV_IN GND 1 fllmgts ~ LS
L MEASPRE 5.0V veoe 3 b

B8) ; -
YPASS 1 o _A' BYPASS e
- e
S = EBUG
o e
H
T

CURRE
MEASURE“ENT
5 XT1
(- —
[+ N g
Atmel OND e

PAG PA7 A
arem s ATTINYS17 X PLAINED SRR
PBO PB1 €. &

« « ATTINY817
LI Y

PAS5 PA4 (. &

PA1 PA2 (0 €&

PB3 PB2 ,‘_ &

PC3 PC2 € &

PC1 Pco € §,
-

GND vce € €,
o 5 W O 19 20
g 4 GND

GND

=3 3rco peq

am
=
=y

= Dvce

/|

Observe ADC Functionality
Now, the ADC driver has been added to the project, the application code has been updated to make use
of the ADC, and the potentiometer has been connected to the ADC input pin. It is time to observe the

ADC functionality, using the Data Visualizer in Atmel Studio.
Observe ADC functionality using Data Visualizer.

Program the code by selecting Debug — Start Without Debugging or clicking b on the top of

1.
menu bar.
2. Open the Data Visualizer by clicking the Data Visualizer tab. The output to the USART terminal
should look as shown in Figure 4-8.
Figure 4-8. Output from USART Terminal Window
i
Note: The output in the USART terminal window is currently in ASCII format, which does not give
the best readability when it comes to observing how turning the potmeter knob affects the output.
3. Select the output format to be in hexadecimal values by checking the Hexadecimal Values check-

box, as depicted in red marking in Figure 4-9.

DS00002533A-page 39

© 2017 Microchip Technology Inc. Training Manuals

Getting Started with Events on the tinyAVR 1-series

Figure 4-9. Output in Hex Format from USART Terminal Window

Terminal 0 ~ X
yiryyHello WorldHello World!
VYV yyyyyFF DOF D1 FF FF FF FF CE 48 2E 80 080 3C
Cc= [Clear | [7] Add \r\n|[¥]|Hexadecimal Values ["] Show Timestamp
[¥] Automatically Scroll to End

Result: By rotating the potentiometer knob, the voltage input to ADC input pin, PAG, is

changing. This can be observed as the ADC result being sent to USART terminal window is
changing as one rotates the knob.

Note: When rotating the potentiometer knob, the ADC result printed in the USART terminal window is in
the range of 0x00-0xFF. This is expected as the ADC resolution has been configured to be 8 bits.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 40

5.1

Getting Started with Events on the tinyAVR 1-series

Assignment 4: ADC WCMP Interrupt Triggers ADC Data Print to Data
Visualizer

In this assignment an application will be developed that will configure ADC Window Comparison (WCMP)
interrupt triggering ADC data print to USART terminal and graph in Data Visualizer.

The ADC window comparison is a feature which allows the user to further filter the ADC output in their
predefined way. It is enabled when the window comparator interrupt enable (INTCTRL.WCOMP) bit is
set. There are four window mode options: output ADC results only when they are below window, above
window, within window, or outside window. The mode is configured by writing the CTRLE.WINCM field.
WINLT and/or WINHT registers also need to be configured to set the window comparator to low and/or
high threshold. The ADC interrupt will then be triggered when the ADC output is available and it also
satisfies the configured mode.

First, Atmel | START will be used within Atmel Studio to reconfigure the project from Assignment 3. In
Atmel | START, the ADC driver will be updated using the WCMP interrupt option instead of a result ready
(RESRDY) interrupt.

ADC Re-Configuration in Atmel START

1. Open the ATtiny817 _getting_started _events project from Assignment 3.

2. Right-click on the project name ATtiny817_getting_started_events in Solution Explorer and then
right-click Re-Configure Atmel Start Project.

3. Inthe "Atmel | START" window, click the ADC component.

4. Scroll down and reconfigure ADC as shown in Figure 5-1. Reconfiguration is shown with red
markings.
Figure 5-1. ADC Reconfiguration in START

DRIVERS:ADC:INIT (ADC) CONFIGURATION ON ADCO

BASIC CONFIGURATION TIMING CONFIGURATION
ENABLE: ADC Enable: ASDV: Automatic Sampling Delay []
Variation:
FREERUN: ADC Freerun mode: D
SAMPDLY: Sampling Delay Selection: [0 \
RESSEL: ADC Resolution: [8-bit mode |
INITDLY: Initial Delay Selection: I Delay 0 CLK_ADC cycles ‘
SAMPNUM: Accumulation Samples: l 1 ADC sample J
PRESC: Clock Prescaler: l CLK_PER divided by 2] INTERRUPT CONFIGURATION
REFSEL: Reference Selection: ‘ vDD] RESRDY: Result Ready Interrupt @
MUXPOS: Analog Ct 1Sel AL
u : Analog Channel Selection . i
Bits: ‘ ADGInpUt i WCMP: Window Comparator

Interrupt Enable:

WINDOW COMPARATOR CONFIGURATION
OTHER CONFIGURATION

WINCM: Window Comparator Mode: [Qutside Window I
DUTYCYC: Duty Cycle: [503 Duty cycle \
WINHT: Window Comparator High ‘ Oxc8 | l , :
Threshold: SAMPLEN: Sample length: 0
WINLT: Window Comparator Low ‘03(64 |] DBGRUN: Debug run: D
Threshold:
RUNSTBY: Run standby mode: [—
EVENT CONFIGURATION SAMPCAP: Sample Capacitance E
Selection:
STARTEI: Start Event Input Enable: D

5. Take alook at the configuration steps described below:
— Unselect the checkbox for the RESRDY: Result Ready Interrupt Enable field

— Select the checkbox for the WCMP: Window Comparator Interrupt Enable field as it now
replaces the just unselected RESRDY interrupt

— Select Outside Window from the WINCM: Window Comparator Mode dropdown menu
— Enter 200 (0xc8 hexadecimal value) in the WINHT: Window Comparator High Threshold field.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 41

Getting Started with Events on the tinyAVR 1-series

6.

Enter 100 (0x64 hexadecimal value) in the WINLT: Window Comparator Low Threshold field.
Click the GENERATE PROJECT button at the bottom of the window in order to regenerate the

project in Atmel Studio. The project summary window pops up as shown in Figure 5-2.

Figure 5-2. Project Code Regenerated

Project Summary

)

project.

» Files Modified
[] main.c

[driverisr.c

(~) Files Added
Import File : includefccp.h
include/rstctrl.h

srcfccp.S

Import File :
Import File :
Import File : utils/assembler.h
Import File :
Import File :
Import File : utils/compiler.h

Import File :

[h]
[h]
[h]
[n]
[h]
[h]
q

|| Backup Current Project

Tmnanrt File = utile/fittils h

File Name :

utils/assembler/iar.n

utils/interrupt_avr8.h

There are differences between some of the imported Atmel Start files and the corresponding files in your

Please select the files you would like to overwrite from the list below.

utils/assembler/gas.h

Atmel_Start_8

m

View Diff...

e e e e e e e e e e e we aa

7.

Atmel | START regeneration, as shown below.

Figure 5-3. Driver_isr.c View Diff

For the driver_isr.c file, click on View Diff in red marking to see the difference before and after the

Ve

* Ccode generated from Atmel Start.

#include "main.

ISR (RTC _CNT_vect)

/* Insert your RTC Ov
LEDO_toggle_level();
//sendflag = 1;

ADC_start_conversion();
/* Over w interrupt flag has

RTC.INTFLAGS = RTC_OVF bm;

to be cleared manually

rerflow interrupt handling code */

.| CA-\Atmel Studio\7.0\ATtiny817_getting_start_events\ATtiny817_getting_start_events\driver_isnc |C:\Users\qhu\AppData\Local\Temp\AcmeStartOutput\equnsgatvhd\driver_isr.c

/

* Code generated from ?

/* overf

interrupt flag has
RTC.INTFLAGS = RTC_OVF_bm;

to be cleared manually */

ISR(ADCO RESRDY vect)

/* Insert your ADC result ready interrupt handling co
ADC_get_result():
sendflag = 1;

/* The interrupt flag has to be cleared manually */
ADCO.INTFLAGS = ADC_RESRDY bm;

e here

ISR (ADCO_WCOMP_vect)

/* Insert your ADC window comparator interrupt handling co

/* The interrupt flag
ADCO. INTFLAGS = ADC_WCMP_bm;

e

< 1

Ln:1 Col:1/3 Ch:1/3 RO 1252

Unix

< 1 3

Ln:1 Col:1/3 Ch:1/3 RO 1252 Unix

8. main.c and driver_isr.c are not checked as in Figure 5-2 and need to be manually modified

afterward.

© 2017 Microchip Technology Inc.

Training Manuals

DS00002533A-page 42

Getting Started with Events on the tinyAVR 1-series

Click OK to regenerate the project.

Result: The Atmel | START project has been regenerated in Atmel Studio, including the
newly updated ADC drivers.

5.2 Update Application in Atmel Studio and Output ADC Data to Data Visualizer
Graph

To do: Update the code in the driver _isr.c file.

1. In Atmel Studio open the driver _isr.c file and replace the ISR(ADCO_RESRDY vect) function with
the ISR(ADCO_WCOMP_vect) function as shown below in red marking.
Figure 5-4. Driver_isr.c Updates

#include <driver_init.h>
#include <compiler.h>
#include "main.h"

—ISR(RTC_CNT vect)

{
/* Insert your RTC Overflow interrupt handling code */
LED® toggle level();
ADC_start conversion();
/* overtlow interrupt flag has to be cleared manually */
RTC.INTFLAGS = RTC_OVF_bm;
}
(~ ISR(ADC®_WCOMP_vect))
{
/* Insert your ADC window comparator interrupt handling code here */
ADC_get result();
sendflag = 1;
/* The interrupt flag has to be cleared manually */
ADCO.INTFLAGS = ADC_WCMP_bm;
k} W,

2. Click the Data Visualizer tab and expand the Configuration tab on the left side of the window. Click
Visualization and double-click Graph, as shown below.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 43

Getting Started with Events on the tinyAVR 1-series

Figure 5-5. Data Visualizer Graph Selection

Data Visalzer & X

<) Configuration
2 Modules 7 |
2
a 4 External Connection
Q_A Data Gateway Interface (DGI)
e Serial Port
4 Visualization

Terminal
Oscilloscope
Power Debugging
Custom Dashboard
Utilities
Protocols

3. As shown in Figure 5-6 (red marking number 1), drag the terminal input from Serial Port Control
Panel to the New plot in the Graph window to connect the terminal input to the graph. Then select

input as Points (red marking number 2).

DS00002533A-page 44

© 2017 Microchip Technology Inc. Training Manuals

Getting Started with Events on the tinyAVR 1-series

Figure 5-6. Data Visualizer Graph Data Output

Atmel | START Data Visualizer + X [Ell&d driver_init.c driver_isr.c Makefile mainh <<
L@ Scrial Port Control Panel ~ x [
[al
o o
g Disconnect |
s | COM24
s 4] DTR [C] RTS
g | Open Terminal
= Baud rate Pari Stop bits
ty P Autodetect ADP

FF FF FF FF FF FF FF FF FF FF FRIFF FF
FF FF FF FF FF FF FF FF FF FF Rf FF FF FF FF FF_FF_FF FF FF FF FF FF FF FF FF FF FF FF FF FF_FF_FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF fF FF FF FF CB[A1 3E 20 0@ 00 00 1F 62 (9 E8 F3 FF FF E9 58 26 65 00)

3
7

/ 4]

""" . / ﬁ Clear TJ3 Add \n\n [¥] Hexadecimal Values ["] Show Timestamp [¥] Automatically Scroll to End
250
200

T T T T T T T T T
01:12:55 01:13:00

Configuration

Scroll the mouse-wheel while pressing and holding

A i I I V| Auts tically fit Y :
‘_ oo .Scm puplcE | Salllic the left shift key to zoom in the time axis.

A Axis 0

w plot New band New string

(<] (-] Q ||
Plot 0 1PN | Paints .} nput (@ Sample rate |0 Set| | Delete| Graph Plot 100
2 |k4444444,. i (B8t

Add Horiz. Cursor| | Delete Axis

[7] Show Cursors

4. Program the code by selecting Debug — Start Without Debugging.

Rotate the potmeter and observe the plotted ADC data in the Graph.

6. Observe that the plotted points for the ADC value matches the ADC value printed in the Terminal
(red marking number 3 in Figure 5-6). When the ADC value is within the 100-200 range, points are
not plotted in the Graph. Observe that the plotted values in the graph in the Figure 5-6 matches the
ADC values printed in the terminal outlined by red marking number 3.

o

Result: The Data Visualizer Graph shows the plotted ADC data.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 45

6.1

Getting Started with Events on the tinyAVR 1-series

Assignment 5: RTC Interrupt Replaced by Event System

In this assignment the RTC overflow event signal, instead of the RTC overflow interrupt, will be used to
trigger an ADC conversion.

The Event System (EVSYS) enables direct peripheral-to-peripheral signaling. It allows a change in one
peripheral (the Event Generator) to trigger actions in the other peripherals (the Event Users) through
Event channels without using the CPU. A channel path can either be asynchronous or synchronous to the
main clock.

Here the RTC overflow event signal will be used to trigger an ADC conversion.

Event System Configuration in Atmel START

To do: Configure Event system in Aimel | START.

1. Open project ATtiny817_getting_started_events assignment 4.

2. Right-click on ATtiny817_getting_started_events in the Solution Explore window, and select Re-
Configure Atmel Start Project.

3. Inthe Atmel | START window, click the ADD SOFTWARE COMPONENT box and then expand
Drivers from the ADD SOFTWARE COMPONENT window.

4. Search for the Events driver, select it and then click the Add Component(s). (Refer to Figure 2-4 for
adding component of RTC as an example.)
Note: The Events driver will be added to the project. Now the EVENT_SYSTEM peripheral
configuration needs to be done.

5. Configure Asynchronous Event Channel 0 as shown below (see the red markings numbered 1 to
3).

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 46

Getting Started with Events on the tinyAVR 1-series

Figure 6-1. Event Source Selection

2

L -4

EVENT SYSTEM SETTINGS X

ASYNCHRONOUS EVENT CHANNEL 0 (CHANNEL SETTINGS)

ASYNCCHD: PoYTICHINGUS | Real Time Counter overflow |]
Multiplexer Channel 0:

— &

3

Execute the configuration steps described below:

— Select the "EVENTS" icon on the left side of the window (red marking number 1).

— Select Asynchronous Event Channel 0 (red marking number 2) and the EVENT SYSYEM
SETTINGS window pops up.

— In the popped up EVENT SYSTEM SETTINGS window, scroll down and select the Real Time
Counter overflow option, and close the window.

6. Now, configure the Event user as shown in Figure 6-2 below (see the red markings numbered 1 to
3):
— Click the settings dialog under USERS — ADCO (red marking number 1)

— In the popped up EVENT SYSTEM SETTINGS window, select the checkbox of Start Event
Input Enable (red marking number 2)

— Select Asynchronous Event Channel 0 (red marking number 3) as ASYNCUSER1 and close
the window

Figure 6-2. Event Channel Selection

EVENT SYSTEM SETTINGS x 1 D
EVENT ACTIONS
TRIGGER CONVERSION ON EVENT 2

STARTEI: Start Event Input Enable:

ASYNCUSER1: Asynchronous User
Selection Ch 1 - ADCO:

3

—
|| Asynchronous Event Channel 0 |

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 47

Getting Started with Events on the tinyAVR 1-series

ﬂ Info: The Event system configuration is now completed with the event generator, event
channel, and event user defined, as shown below.

Figure 6-3. Event User Selection

GENERATORS CHANNELS USERS

RTC I—b{ Asynchronous Event Channel 0 Channels 41 h ADCO
Real Time Counter overflow

Trigger Conversion On Event

Real Time Counter compare ‘ Asynchronous Event Channel 1 Channels 4.8 }

RTC will be reconfigured in Atmel | START:

Click DASHBOARD on the left side of the window and click on the existing RTC_0 module to
reopen the RTC configuration window. Unselect the checkbox for OVF: Overflow Interrupt enable in
the red marking, as shown below.

Figure 6-4. RTC Reconfiguration

DRIVERS:RTC:INIT (RTC) CONFIGURATION ON RTC

CONFIGURATION CLOCK CONFIGURATION Enable:
PER: Period: ‘ 512 ‘ RTCEN: Enable:

CMP: Compare: l 0 ‘ PITEN: Enable: :|

CNT: Counter: ‘ 0 ‘ RTC Clock Source Selection: 32KHz Internal Ultra Low Power Oscillator |
RUNSTDBY: Run In Standby: PRESCALER: Prescaling Factor: | 32 I
DBGRUN: Run in debug;:]

PERIODIC INTERRUPT TIMER

RTC INTERRUPT CONFIGURATION

PERIOD: Period: [or |
Include ISR harness in driver_isr.c: Pl: Periodic Interrupt: D
CMP: Compare Match Interrupt DBGRUN: Run in debug: D

enable:

OVF: Overflow Interrupt enable:

O Ox

Click the GENERATE PROJECT button. The project summary window pops up as shown in the
figure blow:

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 48

Getting Started with Events on the tinyAVR 1-series

Figure 6-5. Project Summary After Regenerated

Project Summary ﬁ
There are differences between some of the imported Atmel Start files and the corresponding files in your
project.

Please select the files you would like to overwrite from the list below.
~ Files Modified .
: main.c View Diff.. 3
|| driverisr.c View Diff...
I include/usartbasic.h View Diff...
|
| src/adowindow.c View Diff...
src/clkctrl.c View Diff...
config/clockconfig.h View Diff...
| Files Added
g Import File : main.c
g Import File : src/driver_init.c
ﬂ Import File : include/driver_init.h
Iﬂ Import File : include/atmel_start_pins.h .
| Backup Current Project File Name: Atmel Start 8

9. Click View Diff for the src/adc_window.c file (see the red marking) to inspect the difference, as
shown below:
Figure 6-6. driver_isr.c View Diff

C\..ADC_Training\src\adc_window.c C\Users\ghu\AppData\Local\TemphAcmeStartOutput\tzifwhjywhrsrc\ade_window.c
// RADCO.DBGCTRL = 0 << ADC_DBGRUN_bp; /* Debug run: disabled */ // ADCO.DBGCTRL = 0 << ADC_DBGRUN bp; /* Debug run: disabled */ I
// BDCO.EVCTRL = 0 << ADC STARTEI bp; /* Start Event Input Enable: disabled ADCO.EVCTRL = 1 << ADC STARTEI bp; /* Start Event Input Enable: enabled ¥/
ADCO.INTCTRL = 0 << ADC_RESRDY_bp /* Result Ready Interrupt Enable: disable¢ ADCO.INTCTRL = 0 << ADC_RESRDY_bp /* Result Ready Interrupt Enable: QLSEDLKE
1 << ADC_WCMP_bp; /* Window Comparator Interrupt Enable: e 1 << ADC_WCMP_bp; /* Window Comparator Interrupt Enable: e
ADCO.MUXPOS = ADC_MUXPOS_AIN10_gc; /* ADC input pin 10 */ ADCO.MUXPOS = ADC_MUXPOS_AIN10_gc; /* ADC input pin 10 */
// BDCO.SAMPCTRL = 0 << ADC_SAMPLEN gp; /* Sample length: 0 */ // ADCO.SAMPCTRL = 0 << ADC_SAMPLEN gp; /* Sample length: 0 */

< i K (T b

10. Tick the checkbox in order to overwrite the src/adc_window.c file.
11. Click OK to regenerate the project, with overwriting adc_window.

6.2 Event System Driver Code Development

To do: Add code in driver_isr.c to send ADC data to the terminal when the result is outside of
the configured window range.

1. Update the driver _isr.c file:

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 49

Getting Started with Events on the tinyAVR 1-series

— Add #include “main.h” as the difference is shown in Figure 6-6
— Addinthe two lines of ADC get result(); and sendflag=1; inthe
ISR (ADCO WCOMP_ vect) function, as shown in the comparison figure above
— The ISR(RTC _CNT vect) () function should now have been removed as it has been
replaced by event system
2. The complete code of the driver _isr.c looks like:

#include <driver init.h>
#include <compiler.h>
#include "main.h"

ISR (ADCO_WCOMP vect)

{
/* Insert your ADC window comparator interrupt handling code here */
ADC_get result();
sendflag = 1;

/* The interrupt flag has to be cleared manually */
ADCO.INTFLAGS = ADC WCMP bm;
}

3. Press F7 to build the solution.

ﬂ Info: The solution should build without errors.

4. Run the project by clicking Starting Without Debugging or use the hot-key CTRL+ALT+F5.

Info: The application should start executing on the kit.

5. Click the Data Visualizer tab. Now the potentiometer can be adjusted. The ADC data printed in the
terminal and the plotted ADC data shown in the graph should have the same behavior, as shown in
Figure 5-6.

Result: The Event system functions as expected and has successfully replaced the RTC
overflow interrupt.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 50

Getting Started with Events on the tinyAVR 1-series

Conclusion

This training demonstrated configuring RTC triggering ADC conversation using interrupt or event system.
With the feature of Atmel Studio 7: Data Visualizer, it is easy to check the data output on the USART
terminal or even in the graph view.

With Atmel | START, it is easy to configure/reconfigure a project by adding/removing peripheral drivers
and use automatically generated driver functions in the code.

With Atmel Studio, it is easy to run real-time debugging of an application and use I/O view, which
provides register view capability and allows modifying the microcontroller registers in real-time. It is
possible to debug the application using various debugging methods such as:

* Breakpoints
e 1/O view

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 51

8.

Getting Started with Events on the tinyAVR 1-series

Revision History

ooc e oo commens

A 08/2017 Initial document release.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 52

Getting Started with Events on the tinyAVR 1-series

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

* Product Support — Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

* General Technical Support — Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

* Distributor or Representative

* Local Sales Office

» Field Application Engineer (FAE)
* Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

* Microchip products meet the specification contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is one of the most secure families of its kind on the
market today, when used in the intended manner and under normal conditions.

* There are dishonest and possibly illegal methods used to breach the code protection feature. All of
these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

* Microchip is willing to work with the customer who is concerned about the integrity of their code.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 53

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

Getting Started with Events on the tinyAVR 1-series

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings,
BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeelLoq logo,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA,
SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom,
chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL
ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher Il, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestlIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 54

Getting Started with Events on the tinyAVR 1-series

ISBN: 978-1-5224-2066-8

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®
DSCs, KEELOQ® code hopping devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

© 2017 Microchip Technology Inc. Training Manuals DS00002533A-page 55

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC R

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu

Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chonggqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou

Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai

Tel: 86-21-3326-8000
Fax: 86-21-3326-8021
China - Shenyang

Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen

Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai

Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune

Tel: 91-20-3019-1500
Japan - Osaka

Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo

Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu

Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
France - Saint Cloud
Tel: 33-1-30-60-70-00
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2017 Microchip Technology Inc.

Training Manuals

DS00002533A-page 56

	Prerequisites
	Introduction
	Table of Contents
	1. Icon Key Identifiers
	2. Assignment 1: RTC Overflow Interrupt Triggers LED Toggling
	2.1. Atmel | START Project Creation
	2.2. Atmel | START Project Overview In Atmel Studio
	2.3. Code Development
	2.4. Debug the Application

	3. Assignment 2: RTC Interrupt Triggers String Sent to USART Terminal
	3.1. USART Configuration in Atmel | START
	3.2. Expand the USART Functionality
	3.3. USART Output to Data Visualizer Terminal
	3.4. RTC Interrupt Triggers USART Transmission

	4. Assignment 3: ADC ISRRDY Interrupt Triggers ADC Data Output to USART Terminal
	4.1. Add ADC Driver In Atmel | START
	4.2. Configure ADC in Atmel | START
	4.3. Add ADC Functionality to Application Code
	4.4. Connect Potentiometer to ADC
	4.5. Observe ADC Functionality

	5. Assignment 4: ADC WCMP Interrupt Triggers ADC Data Print to Data Visualizer
	5.1. ADC Re-Configuration in Atmel START
	5.2. Update Application in Atmel Studio and Output ADC Data to Data Visualizer Graph

	6. Assignment 5: RTC Interrupt Replaced by Event System
	6.1. Event System Configuration in Atmel START
	6.2. Event System Driver Code Development

	7. Conclusion
	8. Revision History
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

