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Using L1 Cache on PIC32MZ Devices
This document provides information on the Level 1 (L1)
CPU cache implementation in the PIC32MZ device
family and describes the risks that are associated with
a cached system. In addition, methods to address
these risks are provided.

For advanced users, both the MPLAB® Harmony
Integrated Software Framework cache management
routines and the special instructions in the
microAptiv™ core to manage the cache for optimum
performance are also discussed. 

A familiarity of the PIC32MZ architecture is helpful to
understand this document. Section 50. “CPU for
Devices with microAptiv™ Core” (DS60001192),
which is available from www.microchip.com, is
suggested reading and will be a useful reference.

BACKGROUND

A CPU cache is a separate block of memory that is
used to compensate for access time of main memory.
A cache described as a Level 1 cache uses memory
that is as fast as the CPU, so that as long as the CPU
is accessing the cache, it will never have to wait for an
instruction or data. Level 2 and Level 3 caches are
used in conjunction with a Level 1 cache and have
memory whose access times are greater than the CPU,
but are less than main memory. 

The PIC32MZ device family uses only a Level 1 cache.
The L1 cache is divided into two parts, an instruction
cache and a data cache. The CPU accesses to
memory can be made directly to memory or through the
cache. 

Use of the cache is critical to achieving the maximum
performance from the PIC32MZ device family. Memory
accesses to and from the cache occur in a single clock
cycle compared to several clock cycles when access
occurs through the system bus. 

PIC32MZ ARCHITECTURE

The following sections describe the L1 cache and two
other segments of the PIC32MZ architecture, which are
key to its operation and configuration. 

Flash Prefetch Module

The Flash Prefetch module is used to hide Flash Wait
states by fetching program Flash memory using a   128-
bit data path, four times the width of the 32-bit CPU
bus. It is predictive, assuming that the next needed
data is the next line address. As long as the code does
not branch, the next instruction is always available. A
branch causes a stall while the new line is loaded.
Registers in this module determine the Flash Wait
states and enable prefetch operation. For more
information on the Prefetch module refer to Section 41.
“Prefetch Module for Devices with L1 CPU Cache”
(DS60001183).

Memory Management Unit (MMU)

In all PIC32 architectures, CPU access to memory and
peripherals is accomplished through virtual address
space. The virtual address space is divided into five
segments named KSEG0 through KSEG3 and KUSEG.
Virtual KSEG0 and KSEG1 addresses are both
mapped to the lower 512 MB of physical address
space. Boot Flash, program Flash and data memory
are accessible through both KSEG0 and KSEG1.
Special Function Registers (SFRs) are accessed
through KSEG1 only. KSEG1 is never cached. The
cache policy of KSEG0 is programmable, and set
during cache initialization in the start-up code.

The PIC32MZ architecture introduces a Translation
Look-aside Buffer (TLB) based Memory Management
Unit (MMU). The TLB can be configured to perform
virtual to physical address translations for KUSEG,
KSEG2, and KSEG3. The cacheability attributes of
these segments are defined when configuring the TLB
using the CPU Coprocessor 0 (CP0) EntryLo0 and
EntryLo1 registers. Details regarding the Coprocessor
0 registers are described in Section 50. “CPU for
Devices with microAptiv™ Core” (DS60001192).

Note: This document is not intended to be a
comprehensive discussion of cache
architectures or implementations, nor
does it address every detail of cache
management. For more information, refer
to the microAptiv™ Microprocessor core
software user manual, which is available
by visiting: www.imgtec.com.
 2013-2014 Microchip Technology Inc. DS00001600C-page 1



Using L1 Cache on PIC32MZ Devices
L1 Instruction and Data Cache

As shown in Figure 1, CPU accesses to system RAM
can occur either directly or through the cache. Similarly,
accesses to Flash can occur directly or through the
cache. DMA access always occurs directly with RAM.
All accesses except those between the CPU and cache
involve the system bus. 

At Reset, code execution occurs from KSEG1 using
uncached access. This is necessary as the cache
cannot be used until it is initialized by start-up code.
Once the cache is initialized, code execution can occur
from KSEG0, which utilizes the cache for optimum
performance. 

When the CPU fetches instructions or data from
cached memory, the system checks if required data
exists in the cache. If it exists, the data is read directly
from the cache with no performance penalty. This is
called a cache hit. If required data does not exist in the
cache, hardware fills the cache with data from program
Flash memory or data RAM, as required. The CPU
must wait for the cache fill to complete before reading
the data. This is called a cache miss. A cache miss
incurs a performance penalty proportional to the time
required to perform the cache fill. 

The size of the cache is fixed at a fraction of the size of
the program Flash or data RAM. The cache in the
PIC32MZ is “four-way, set-associative”, it means the
cache is divided into four equal parts (ways),
distributed over the entire address range. Each way
consists of a number of cache lines, which represent
the smallest amount of data that can be transferred
between the cache and the Flash or RAM. Any given
memory location is mapped (associated) to a set
location in the cache, and it can be mapped into one of
the four ways within the set. Therefore, each memory
location can be mapped into one of four locations within
the cache.

Each cache line has an associated tag, which contains
the memory mapping of the entry and the status bits.
The PIC32MZ caches are virtually-indexed, physically
tagged (VIPT), it means the cache line tags hold the
physical address of the data in memory. The status bits
identify the data in the cache line as valid or invalid,
locked or unlocked and (for the data cache) dirty or
clean. For more detailed information on cache
organization, see Section 50. “CPU for Devices with
microAptiv™ Core” (DS60001192). 

On a cache miss, if no line allocated for that location in
any of the four ways is available, one of the lines must
be evicted. Hardware chooses the line to evict using a
least recently used (LRU) algorithm. As the name
implies, the cache line that was least recently used is
evicted. Eviction frees the line in the cache and fills it
with data from the new location. If the old data had
been written to by the CPU, it is then written back to
RAM before the location is filled with new data.   This
process is called a cache write-back. Cache data that
has been written by the CPU and no longer matches
that in RAM is called dirty and must be written back
before it is replaced. 

If the CPU were the only entity accessing memory, the
cache would effectively be transparent to system
operation. In a PIC32MZ device, DMA and DMA-
enabled peripherals also access memory. When DMA
writes to a location that is already loaded into the
cache, the cache no longer represents the contents of
RAM. When this occurs, the data in the cache is said to
be stale. Similarly, locations that have been updated by
the CPU for transfer to a DMA peripheral and are now
dirty, must be written back to the cache before the DMA
fetches the data. 
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FIGURE 1: PIC32MZ CACHE IMPLEMENTATION (SIMPLIFIED)

CACHE COHERENCY

Cache coherency refers to whether or not the data in
the cache is synchronized with the contents of the
physical memory to which it corresponds. Managing
coherency involves maintaining synchronization when
necessary, and recognizing those situations when
synchronization is not needed. 

There are many opportunities for the cache and
memory to lose synchronization. This often happens
when the CPU shares memory with another bus
master. Some examples are described in the following
sections. In these cases, coherency must be managed
by software. Ignoring cache coherency can often lead
to disastrous results, which can be hard to predict and
difficult to troubleshoot. 
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Using L1 Cache on PIC32MZ Devices
DMA and Cache Coherency

Cache coherency must be considered in the system
design when using DMA. This includes the DMA
module and any other peripheral with built in DMA
capability including the Flash Controller. 

Ensure the following when using DMA:

• Data written by the CPU is available in RAM for 
the DMA peripheral when it needs it. It cannot be 
assumed that data written to the cache will have 
been written to RAM when the DMA reads 
memory, as the cache may still be dirty. 

• CPU reads of memory updated by DMA are accu-
rate. It cannot be assumed that the cache will 
contain the data that the DMA has written to RAM, 
as the cache may be stale. 

Flash Updates and Cache Coherency

The PIC32MZ can reprogram Flash memory on-the-fly.
Once the Flash has changed, any cached lines of the
updated memory are now stale. Before the CPU
accesses the updated Flash locations, the cache must
be invalidated.   The proper cache must be invalidated
based on the use of the updated Flash region, i.e data
cache for data and instruction cache if the Flash region
contains executable code.

Executing Code from RAM and Cache 
Coherency

To execute code from RAM, the RAM must first be
written. Writes to the RAM occur through the D-Cache
while execution from RAM will occur through the I-
Cache. Before the instruction is executed the D-Cache
line containing the instruction must be written back to
RAM and, if this results in an I-Cache line being stale,
that line must be invalidated. 

CACHE IMPLEMENTATION

Cache Policies

The cacheability attributes of KSEG0 are controlled by
three bits in the CP0 Configuration register. The cache
policy of the entire KSEG0 region is determined by
these bits. For memory that is mapped into KUSEG,
KSEG2 or KSEG3 using the TLB, the cache policy of
each memory range can be specified individually in the
TLB configuration registers. 

The following four cache policies are supported:

• Uncached

• Cacheable, non-coherent, write-back, write allocate

• Cacheable, non-coherent, write-through, no write 
allocate

• Cacheable, non-coherent, write-through, write 
allocate

Cache policy descriptions are as follows:

• Uncached: Addresses in a memory area indi-
cated as uncached are not read from the cache. 
Stores to such addresses are written directly to 
main memory, without changing cache contents.

• Write-back with write allocation: Loads and 
instruction fetches first search the cache, reading 
main memory only if the desired data does not 
reside in the cache. On data store operations, the 
cache is first searched to see if the target address 
is cache resident. If it is resident, the cache con-
tents are updated, but main memory is not written. 
If the cache lookup misses on a store, main mem-
ory is read to bring the line into the cache and 
merge it with the new store data. Therefore, the 
allocation policy on a cache miss is read-allocate 
or write-allocate. Data stores will update the 
appropriate dirty bit in the way-select array to indi-
cate that the line contains modified data. When a 
line with dirty data is displaced from the cache, it 
is written back to memory.

• Write-through with no write allocation: Loads 
and instruction fetches first search the cache, 
reading main memory only if the desired data 
does not reside in the cache. On data store opera-
tions, the cache is first searched to see if the tar-
get address is cache resident. If it is resident, the 
cache contents are updated, and main memory is 
also written. If the cache lookup misses on a 
store, only main memory is written. Therefore, the 
allocation policy on a cache miss is read-allocate 
only.

• Write-through with write allocation: Loads and 
instruction fetches first search the cache, reading 
main memory only if the desired data does not 
reside in the cache. On data store operations, the 
cache is first searched to see if the target address 
is cache resident. If it is resident, the cache con-
tents are updated, and main memory is also writ-
ten. If the cache lookup misses on a store, main 
memory is read to bring the line into the cache 
and merge it with the new store data. In addition, 
the store data is also written to main memory. 
Hence, the allocation policy on a cache miss is 
read-allocate or write-allocate.

Appendix A: “Cache Policy and Coherency”
demonstrates cache coherency and the effects of
different cache policies on cache and physical
memory contents after writes to virtual and physical
memory using a simple program and
MPLAB® X IDE.
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Pros and Cons to Each Policy

Table 1 summarizes some of the pros and cons for
each cache policy.

The default cache policy for the PIC32MZ family, as is
present in the start-up code supplied in the
development tools, is write-back, write-allocate. For
more information on changing the KSEG0 policy, refer
to “MPLAB® XC32 C/C++ Compiler User’s Guide”
(DS51686). The start-up code also contains source
code showing how the cache is initialized.

TABLE 1: CACHE POLICY COMPARISON

KSEG0 and KSEG1

In MIPS cores, the first 512 MB of physical memory can
be either cached or uncached, depending on the virtual
address used. This 512 MB region is referred to as
KSEG0 when cached, and KSEG1 when uncached.
KSEG0 addresses are in the range of 0x80000000
through 0x9FFFFFFF. KSEG1 addresses are in the
range of 0xA0000000 through 0xBFFFFFFF. With the
exception of the Special Function Registers, which
exist only in KSEG1, KSEG0 and KSEG1 both point to
the same physical memory. Accesses using KSEG0
are cacheable while accesses through KSEG1 are
uncached.   The cacheability attribute of KSEG0 can be
set using the CPU Coprocessor 0 (CP0) Configuration
register. By default it is set to write-back, read-allocate. 

In PIC32MZ devices, the linker allocates data sections
to cached KSEG0 segment as specified in the linker
script. The MPLAB development tools provide
functions for run-time heap allocation and link-time
data variable allocation.

Link-time coherent allocation in KSEG1 is
accomplished using the coherent variable attribute.
The code in Example 1 will create a 1024 element
unsigned integer array, which will be allocated in
KSEG1.

Since the default stack is allocated to the cached
KSEG0 region, run-time allocation of uncached
memory must come from the heap. The development
tools provide two functional equivalents to malloc and
free to create uncached variables at run-time. These
functions are pic32_alloc_coherent and
pic32_free_coherent. Example 2 shows a
function that allocates a 1024 element character buffer,
utilizes it, and then returns it to the heap when finished. 

Policy Pros Cons

Uncached No cache coherency issues. Greatly impaired performance since every mem-
ory access must account for bus transfer time 
and memory wait states. 

Write-back with Write 
Allocation

Best performance is achieved with this 
policy. All transactions are done using 
the cache with memory accesses 
performed only when needed. 

Application must address coherency on both 
reads and writes to memory. 

Write-through with no 
Write Allocation

Cache coherency issues are eliminated 
for writes as memory is always updated. 

Results in the CPU taking a larger percentage of 
the memory bus bandwidth since every CPU 
write results in a bus transaction. Even back to 
back writes are written to memory. Cache coher-
ency for CPU reads must still be addressed. 

Write-through with Write 
Allocation

Cache coherency issues are eliminated 
for writes as memory is always updated. 
Writes to memory also fill cache so the 
data written is immediately available for 
a CPU read. 

Results in the CPU taking a larger percentage of 
the memory bus bandwidth since every CPU 
write results in a bus transaction. Even back to 
back writes are written to memory. Cache coher-
ency for CPU reads must still be addressed. 
Writes to memory also fill the cache which can 
result in needed data being evicted from cache. 
 2013-2014 Microchip Technology Inc. DS00001600C-page 5



Using L1 Cache on PIC32MZ Devices
EXAMPLE 1: USING THE LINK-TIME COHERENT ATTRIBUTE

EXAMPLE 2: ALLOCATING/FREEING COHERENT MEMORY AT RUN-TIME

TABLE 2: ADDRESS TRANSLATION MACROS

Example 3 shows a method for accessing a variable
defined for KSEG0 from KSEG1.

EXAMPLE 3: CODE EXAMPLE FOR ADDRESS TRANSLATION MACRO

Macro Name Description

KVA_TO_PA(v) Translate a kernel (KSEG) virtual address to a physical address.

PA_TO_KVA0(pa) Translate a physical address to a KSEG0 virtual address.

PA_TO_KVA1(pa) Translate a physical address to a KSEG1 virtual address.

KVA0_TO_KVA1(v) Translate a KSEG0 virtual address to a KSEG1 virtual address.

KVA1_TO_KVA0(v) Translate a KSEG1 virtual address to a KSEG0 virtual address.

IS_KVA(v) Evaluates to 1 if the address is a kernel segment virtual address, zero otherwise.

IS_KVA0(v) Evaluate to 1 if the address is a KSEG0 virtual address, zero otherwise.

IS_KVA1(v) Evaluate to 1 if the address is a KSEG1 virtual address, zero otherwise.

IS_KVA01(v) Evaluate to 1 if the address is either a KSEG0 or a KSEG1 virtual address, zero otherwise.

unsigned int __attribute__((coherent)) buffer[1024]; 

#include <xc.h> 

void myFunction(void) { 
char* buffer = __pic32_alloc_coherent(1024); 
if (buffer) { 

/* do something */ 
} 
else { 

/* handle error */ 
} 
if (buffer) { 

__pic32_free_coherent(buffer); 
} 

}

/* Declare a variable. By default it is defined in KSEG0    */
    int Var1InKseg0 = 5;
    
    /* Declare a pointer to the same variable type and assign   */ 
    /* it the translated address using the address translation  */
    /* macro                                                    */
    int *pVar1InKseg1 = KVA0_TO_KVA1(&Var1InKseg0);
    
    /* Assign x the value of the variable from the cache        */
    x = Var1InKseg0;
    /* Assign y the uncached value                              */
    y = *pVar1InKseg1;
DS00001600C-page 6  2013-2014 Microchip Technology Inc.
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PIC32MZ Cache Management Instructions

The Imagination Technologies Limited MIPS core
includes special assembly instructions for managing
the cache. Each instruction operates on a single cache
line. Please refer to the Imagination Technologies
Limited website (www.imgtec.com) for details
regarding the use and operation of these instructions.

CACHE INSTRUCTION

The CACHE instruction is primarily used at start-up to
initialize the cache. To manage coherency, the CACHE
instruction can be used to: 

• Invalidate a Cache Address Hit – Searches the 
cache for the specified address, and if a hit occurs, 
invalidates (evicts) the cache line. No write back is 
performed even if the cache line is dirty.

• Write back a Cache Address Hit – Searches the 
cache for the specified address, and if a hit occurs 
and the line is dirty, writes the cache line to memory.

• Fill Cache – Fills the instruction cache (I-Cache) 
with data from the specified address. For data cache   
(D-Cache) fills the PREF instruction is used.

• Fetch and Lock – Fills the instruction or data cache 
with data from the specified address, and locks it in 
the cache. The data remains locked in the cache 
until it is invalidated with the cache instruction.

PREF INSTRUCTION

The Prefect instruction (PREF) is provided to optimize
D-Cache performance by allowing software to specify
the optimum cache fill operation:

• Fill a cache line for write operation. A cache line is 
reserved but no fill from memory is performed as 
memory will ultimately be written with new data.

• Fill a cache line for a read operation. A cache line is 
reserved and filled with the contents of memory. 

• Streamed and Retained Options allow the user to 
specify a cache hierarchy where streamed data will 
not evict retained data. 

• Write back and invalidate allows the user to free a 
cache line, writing it back to memory if it is dirty. 
Sometimes referred to as ‘nudge’. 

SYNCI INSTRUCTION

When initializing memory to execute from RAM, both
the D-Cache and I-Caches are involved. This
instruction is used when programming RAM with
code to execute by synchronizing caches to make an
instruction write effective. SYNCI forces a D-Cache
write back and I-Cache invalidate on a specific
address. 

Refer to “MPLAB® XC32 C/C++ Compiler User’s
Guide” (DS51686) and the related ReadMe file for
details regarding macro support for these
instructions.

MPLAB Harmony Cache Management 
Functions

The MPLAB Harmony Integrated Software Framework
includes several functions to help make cache
management easier. These functions use the MIPS
assembly instructions to perform operations on the
cache as a whole, or over a range of addresses. These
functions are part of the Device Control (DEVCON)
System Service Library. Use of these functions is the
recommended method of managing the cache.

The instructions allow the programmer to perform the
following cache operations at run-time:

• Initialization

• Flush (entire cache, data, instruction or both)

• Clean (address range, data or instruction)

• Invalidate (address range, data or instruction)

• Lock (address range, data or instruction)

• Sync

• KSEG0 Policy Set or Read

Please see the latest MPLAB Harmony documentation
for a complete description of these functions, including
sample applications demonstrating their use.
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Using L1 Cache on PIC32MZ Devices
METHODS OF ADDRESSING CACHE 
COHERENCY ISSUES

This section describes the available options for
addressing cache coherency issues. 

DMA 

DMA peripherals always access physical memory and
cache coherency must be addressed if the cache is
enabled. The user has the option of using the default
write-back write-allocate policy or changing to a write-
through policy (with write allocation turned on or off).
The recommended approach is to start with a write-
back write-allocate (default) cache policy and use

KSEG1 when accessing any memory used by a DMA
peripheral. This is the simplest approach and in most
cases it will provide acceptable performance. Once the
project is running and debugged, performance can be
improved by changing the access of DMA memory to
KSEG0 and employing the CACHE and PREF
instructions to manage coherency. In systems
employing multiple DMA bus masters, software
management of the cache can be used only where
necessary and implemented on one DMA peripheral at
a time simplifying the debug process.

Table 3 lists the DMA cache coherency management
options.

TABLE 3: DMA CACHE COHERENCY MANAGEMENT OPTIONS

Method Description When to Use

Write-Back Write-Allocate 
Cache Policy using KSEG1 to 
Access DMA Shared Memory

Cache policy is set to write-back write-allocate but 
all DMA shared memory is referenced by the CPU 
using uncached KSEG1. This is the simplest cache 
management approach. 

This is the recommended 
approach to get your project 
up and running. 

Write-Back Write-Allocate 
Cache Policy with Software 
Managing Coherency

Cache policy is set to write-back write-allocate and 
DMA shared memory is referenced by the CPU 
using cached KSEG0. Cache coherency is managed 
using the cache management functions provided by 
the MPLAB Harmony Integrated Software 
Framework, invalidating cache lines and writing 
back data as needed. This method provides the best 
performance but requires software to manage the 
cache.

Use this approach to achieve 
the best performance when 
needed. 

Software Management with a 
Write-Through Cache Policy

Cache policy is set using a write-though mode. DMA 
shared memory can be referenced using KSEG0 
and no cache coherency issues will exist for writes. 
Coherency for reads must be managed using the 
CACHE or PREF instructions or directing all reads 
through KSEG1. The write-through policy eliminates 
the need to write-back cache data at the expense of 
increased system bus bandwidth utilization. 

Use this approach to achieve 
the best performance when 
needed.
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Updates of Flash

Flash updates can occur when a portion of Flash is
used for non-volatile storage or in boot loader
applications.

FLASH PROGRAMMING

When using Row Programming, the Flash controller
can utilize DMA to read the contents of RAM and
program Flash memory using the following methods:

• Initialize ROW data using uncached KSEG1 

• Initialize ROW data using cached KSEG0 and use 
the CACHE write-back instruction or MPLAB 
Harmony cache management routines to force the 
cached contents to be written to RAM prior to 
initiating the NVM Write command

NON-VOLATILE DATA STORAGE

In non-volatile data storage Flash applications, there is
no problem for write-back since writing of Flash occurs
only through the Flash Controller. Cached lines will
become stale once the Flash locations are
reprogrammed. The following options are available:

• Access non-volatile data storage through KSEG1. If 
access to these locations is infrequent, this may be 
the best solution since it will not consume excessive 
bus bandwidth. 

• Access using KSEG0 using any cache policy 
(except turning the cache off of course) being sure 
to invalidate cache locations corresponding to Flash 
memory locations that have been reprogrammed 

BOOTLOADING

Bootloading, a process that updates the application
code, is typically run infrequently and involves a large
amount of Flash memory, which could potentially span
the entire cache. Because of these characteristics, the
best solution is to invalidate the entire I-Cache before
executing any bootloaded code. If the Bootloader
performs a reset to start execution of the new code, the
start-up code will initialize the cache and no specific
action is needed. However, if a reset is not performed,
it is recommended that the cache be invalidated prior to
executing the new code.

Executing Code from RAM

When loading RAM with data that will later be executed
as code, both the I-Cache and D-Cache are involved.
The SYNCI instruction is provided specifically to solve
this problem. After the executable data is written to
RAM and before it is executed the SYNCI instruction is
used to synchronize both caches. 

Data Organization

Caches perform best when spatial locality is employed
in the data. As previously mentioned, the smallest
amount of data that can be transferred to or from the
cache is a cache line. 

In PIC32MZ devices, a cache line is four words
(16 bytes). Performance is optimum when static data
that spans multiple words is declared so that is aligned
to the cache line. This prevents a four word data
structure from spanning two cache lines taking twice as
long to load as a single cache line. Forcing groups of
static single word variables that are used together into
the fewest number of cache lines will improve
performance. One method of doing this is to declare
them in a structure that is aligned to a cache line. 

CONCLUSION

Optimum performance using the PIC32MZ family of
devices can only be achieved when the L1 CPU cache
is used. Anytime DMA is used, the developer must plan
for cache management in the design of the project to
avoid coherency issues. Options that exist for
managing cache coherency, range from simple to
complex based on the desired system performance.
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Using L1 Cache on PIC32MZ Devices
APPENDIX A: CACHE POLICY AND 
COHERENCY

The following four examples use MPLAB X IDE to help
illustrate the effects of cache policy on cache
coherency when the data memory is modified through
KSEG0 and KSEG1.

• Example 1: Uncached Writes to Data Memory

• Example 2: Write-back, Write-allocate Writes to 
Data Memory

• Example 3: Write-through, Write-allocate Writes 
to Data Memory

• Example 4: Write-through, No-write-allocate 
Writes to Data Memory

For simplicity, these examples use KSEG0 and KSEG1
pointers to the address of the same memory location in
SRAM. The KSEG0 pointer represents a cached CPU
memory access. The KSEG1 pointer represents an
uncached memory access. Even though the KSEG1
memory access is performed by the CPU, the cache
has no knowledge of it, so it is equivalent to a DMA
access to physical memory.
DS00001600C-page 10  2013-2014 Microchip Technology Inc.
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A.1 Example 1: Uncached Writes to Data Memory

This example shows two different data writes to the
same memory location, the first using a KSEG0 pointer
and the second using a KSEG1 pointer. The value is
then read back through the same pointers into two
different global variables. The cache policy is
“uncached”. As expected, both reads yield the same
value, equal to the second write (Figure A-1).

FIGURE A-1:
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Using L1 Cache on PIC32MZ Devices
As shown in Figure A-2 and Figure A-3, when we look
at the virtual and physical memory using MPLAB X
IDE, we can see that they both contain the same
correct value.

FIGURE A-2:

FIGURE A-3:
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A.2 Example 2: Write-back, Write-allocate Writes to Data Memory

Using the “write-back, write-allocate” cache policy, the
CPU writes to the cache when using a KSEG0 address,
and the data is not written back to SRAM until the line
is evicted. When using a KSEG1 address, the CPU
writes directly to SRAM, bypassing the cache.
Therefore, we would expect to see the first data write in
cache, but the second in the SRAM itself (Figure A-4).

FIGURE A-4:
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Using L1 Cache on PIC32MZ Devices
Looking at the virtual versus physical memory in the
MPLAB X IDE watch window (Figure A-5 and Figure A-
6), we see that the same memory location shows
different data, because the cache is now non-coherent.
The cache will remain non-coherent (for this line) until
the data in the cache is written back to SRAM.

FIGURE A-5:

FIGURE A-6:
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As shown in Figure A-7 through Figure A-9, note that if
we eliminate the KSEG0 write, the cache is never
written to, so when we do the KSEG0 read, the data is
fetched from physical memory, and the cache is
updated at that time (read-allocate).

FIGURE A-7:
 2013-2014 Microchip Technology Inc. DS00001600C-page 15
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FIGURE A-8:

FIGURE A-9:

Note that the cache will read-allocate in all modes
except “uncached”. This can have important
consequences when debugging, as the act of running
a debug executive or reading data to print/display can
make the difference between cache coherency and
non-coherency.
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A.3 Example 3: Write-through, Write-allocate Writes to Data Memory

Write-through with write allocation works similar to the
write-back with write-allocation; the difference being
that the data written to cache is also written to physical
memory. We can illustrate this by eliminating the
KSEG1 write, and verifying that both the KSEG0 read
and KSEG1 read return the same data (Figure A-10).

FIGURE A-10:
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As shown in Figure A-11, if we do both writes, however,
we are non-coherent again. The cache never saw the
write to KSEG1, so it still thinks the first write is valid. 

FIGURE A-11:
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A.4 Example 4: Write-through, No-write-allocate Writes to Data Memory

Write-through with no write-allocation means that the
cache is only updated on a write if the corresponding
line is already resident in the cache. If it is not resident,
the data is written directly to physical memory, with no
copy allocated to the cache. If we run our original
program, the first write will not be allocated to cache, so
when we do the KSEG0 read, we get the same data as
the KSEG1 read (see Figure A-12).

FIGURE A-12:
 2013-2014 Microchip Technology Inc. DS00001600C-page 19
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However, as shown in Figure A-13, if we do a dummy
read before the KSEG0 write, we get different results
due to the read-allocation.

FIGURE A-13:
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