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Using L1 Cache on PIC32MZ Devices

This document provides information on the Level 1 (L1)
CPU cache implementation in the PIC32MZ device
family and describes the risks that are associated with
a cached system. In addition, methods to address
these risks are provided.

For advanced users, both the MPLAB® Harmony
Integrated Software Framework cache management
routines and the special instructions in the
microAptiv™™ core to manage the cache for optimum
performance are also discussed.

Note:  This document is not intended to be a
comprehensive discussion of cache
architectures or implementations, nor
does it address every detail of cache
management. For more information, refer
to the microAptiv™™ Microprocessor core
software user manual, which is available

by visiting: www.imgtec.com.

A familiarity of the PIC32MZ architecture is helpful to
understand this document. Section 50. “CPU for
Devices with microAptiv™ Core” (DS60001192),
which is available from www.microchip.com, is
suggested reading and will be a useful reference.

BACKGROUND

A CPU cache is a separate block of memory that is
used to compensate for access time of main memory.
A cache described as a Level 1 cache uses memory
that is as fast as the CPU, so that as long as the CPU
is accessing the cache, it will never have to wait for an
instruction or data. Level 2 and Level 3 caches are
used in conjunction with a Level 1 cache and have
memory whose access times are greater than the CPU,
but are less than main memory.

The PIC32MZ device family uses only a Level 1 cache.
The L1 cache is divided into two parts, an instruction
cache and a data cache. The CPU accesses to
memory can be made directly to memory or through the
cache.

Use of the cache is critical to achieving the maximum
performance from the PIC32MZ device family. Memory
accesses to and from the cache occur in a single clock
cycle compared to several clock cycles when access
occurs through the system bus.

PIC32MZ ARCHITECTURE

The following sections describe the L1 cache and two
other segments of the PIC32MZ architecture, which are
key to its operation and configuration.

Flash Prefetch Module

The Flash Prefetch module is used to hide Flash Wait
states by fetching program Flash memory usinga 128-
bit data path, four times the width of the 32-bit CPU
bus. It is predictive, assuming that the next needed
data is the next line address. As long as the code does
not branch, the next instruction is always available. A
branch causes a stall while the new line is loaded.
Registers in this module determine the Flash Wait
states and enable prefetch operation. For more
information on the Prefetch module refer to Section 41.
“Prefetch Module for Devices with L1 CPU Cache”
(DS60001183).

Memory Management Unit (MMU)

In all PIC32 architectures, CPU access to memory and
peripherals is accomplished through virtual address
space. The virtual address space is divided into five
segments hamed KSEGO through KSEG3 and KUSEG.
Virtual KSEGO and KSEG1 addresses are both
mapped to the lower 512 MB of physical address
space. Boot Flash, program Flash and data memory
are accessible through both KSEGO and KSEGI1.
Special Function Registers (SFRs) are accessed
through KSEG1 only. KSEG1 is never cached. The
cache policy of KSEGO is programmable, and set
during cache initialization in the start-up code.

The PIC32MZ architecture introduces a Translation
Look-aside Buffer (TLB) based Memory Management
Unit (MMU). The TLB can be configured to perform
virtual to physical address translations for KUSEG,
KSEG2, and KSEG3. The cacheability attributes of
these segments are defined when configuring the TLB
using the CPU Coprocessor 0 (CPO) EntryLoO and
EntryLol registers. Details regarding the Coprocessor
0 registers are described in Section 50. “CPU for
Devices with microAptiv™™ Core” (DS60001192).

© 2013-2014 Microchip Technology Inc.

DS00001600C-page 1



Using L1 Cache on PIC32MZ Devices

L1 Instruction and Data Cache

As shown in Figure 1, CPU accesses to system RAM
can occur either directly or through the cache. Similarly,
accesses to Flash can occur directly or through the
cache. DMA access always occurs directly with RAM.
All accesses except those between the CPU and cache
involve the system bus.

At Reset, code execution occurs from KSEG1 using
uncached access. This is necessary as the cache
cannot be used until it is initialized by start-up code.
Once the cache is initialized, code execution can occur
from KSEGO, which utilizes the cache for optimum
performance.

When the CPU fetches instructions or data from
cached memory, the system checks if required data
exists in the cache. If it exists, the data is read directly
from the cache with no performance penalty. This is
called a cache hit. If required data does not exist in the
cache, hardware fills the cache with data from program
Flash memory or data RAM, as required. The CPU
must wait for the cache fill to complete before reading
the data. This is called a cache miss. A cache miss
incurs a performance penalty proportional to the time
required to perform the cache fill.

The size of the cache is fixed at a fraction of the size of
the program Flash or data RAM. The cache in the
PIC32MZ is “four-way, set-associative”, it means the
cache is divided into four equal parts (ways),
distributed over the entire address range. Each way
consists of a number of cache lines, which represent
the smallest amount of data that can be transferred
between the cache and the Flash or RAM. Any given
memory location is mapped (associated) to a set
location in the cache, and it can be mapped into one of
the four ways within the set. Therefore, each memory
location can be mapped into one of four locations within
the cache.

Each cache line has an associated tag, which contains
the memory mapping of the entry and the status bits.
The PIC32MZ caches are virtually-indexed, physically
tagged (VIPT), it means the cache line tags hold the
physical address of the data in memory. The status bits
identify the data in the cache line as valid or invalid,
locked or unlocked and (for the data cache) dirty or
clean. For more detailed information on cache
organization, see Section 50. “CPU for Devices with
microAptiv™™ Core” (DS60001192).

On a cache miss, if no line allocated for that location in
any of the four ways is available, one of the lines must
be evicted. Hardware chooses the line to evict using a
least recently used (LRU) algorithm. As the name
implies, the cache line that was least recently used is
evicted. Eviction frees the line in the cache and fills it
with data from the new location. If the old data had
been written to by the CPU, it is then written back to
RAM before the location is filled with new data. This
process is called a cache write-back. Cache data that
has been written by the CPU and no longer matches
that in RAM is called dirty and must be written back
before it is replaced.

If the CPU were the only entity accessing memory, the
cache would effectively be transparent to system
operation. In a PIC32MZ device, DMA and DMA-
enabled peripherals also access memory. When DMA
writes to a location that is already loaded into the
cache, the cache no longer represents the contents of
RAM. When this occurs, the data in the cache is said to
be stale. Similarly, locations that have been updated by
the CPU for transfer to a DMA peripheral and are now
dirty, must be written back to the cache before the DMA
fetches the data.

DS00001600C-page 2
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FIGURE 1:

PIC32MZ CACHE IMPLEMENTATION (SIMPLIFIED)
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CACHE COHERENCY

Cache coherency refers to whether or not the data in
the cache is synchronized with the contents of the
physical memory to which it corresponds. Managing
coherency involves maintaining synchronization when
necessary, and recognizing those situations when
synchronization is not needed.

There are many opportunities for the cache and
memory to lose synchronization. This often happens
when the CPU shares memory with another bus
master. Some examples are described in the following
sections. In these cases, coherency must be managed
by software. Ignoring cache coherency can often lead
to disastrous results, which can be hard to predict and
difficult to troubleshoot.
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DMA and Cache Coherency

Cache coherency must be considered in the system
design when using DMA. This includes the DMA
module and any other peripheral with built in DMA
capability including the Flash Controller.

Ensure the following when using DMA:

« Data written by the CPU is available in RAM for
the DMA peripheral when it needs it. It cannot be
assumed that data written to the cache will have
been written to RAM when the DMA reads
memory, as the cache may still be dirty.

« CPU reads of memory updated by DMA are accu-
rate. It cannot be assumed that the cache will
contain the data that the DMA has written to RAM,
as the cache may be stale.

Flash Updates and Cache Coherency

The PIC32MZ can reprogram Flash memory on-the-fly.
Once the Flash has changed, any cached lines of the
updated memory are now stale. Before the CPU
accesses the updated Flash locations, the cache must
be invalidated. The proper cache must be invalidated
based on the use of the updated Flash region, i.e data
cache for data and instruction cache if the Flash region
contains executable code.

Executing Code from RAM and Cache
Coherency

To execute code from RAM, the RAM must first be
written. Writes to the RAM occur through the D-Cache
while execution from RAM will occur through the I-
Cache. Before the instruction is executed the D-Cache
line containing the instruction must be written back to
RAM and, if this results in an I-Cache line being stale,
that line must be invalidated.

CACHE IMPLEMENTATION

Cache Policies

The cacheability attributes of KSEGO are controlled by
three bits in the CP0 Configuration register. The cache
policy of the entire KSEGO region is determined by
these bits. For memory that is mapped into KUSEG,
KSEG2 or KSEG3 using the TLB, the cache policy of
each memory range can be specified individually in the
TLB configuration registers.

The following four cache policies are supported:

¢ Uncached

» Cacheable, non-coherent, write-back, write allocate

« Cacheable, non-coherent, write-through, no write
allocate

» Cacheable, non-coherent, write-through, write
allocate

Cache policy descriptions are as follows:

e Uncached: Addresses in a memory area indi-
cated as uncached are not read from the cache.
Stores to such addresses are written directly to
main memory, without changing cache contents.

« Write-back with write allocation: Loads and
instruction fetches first search the cache, reading
main memory only if the desired data does not
reside in the cache. On data store operations, the
cache is first searched to see if the target address
is cache resident. If it is resident, the cache con-
tents are updated, but main memory is not written.
If the cache lookup misses on a store, main mem-
ory is read to bring the line into the cache and
merge it with the new store data. Therefore, the
allocation policy on a cache miss is read-allocate
or write-allocate. Data stores will update the
appropriate dirty bit in the way-select array to indi-
cate that the line contains modified data. When a
line with dirty data is displaced from the cache, it
is written back to memory.

* Write-through with no write allocation: Loads
and instruction fetches first search the cache,
reading main memory only if the desired data
does not reside in the cache. On data store opera-
tions, the cache is first searched to see if the tar-
get address is cache resident. If it is resident, the
cache contents are updated, and main memory is
also written. If the cache lookup misses on a
store, only main memory is written. Therefore, the
allocation policy on a cache miss is read-allocate
only.

* Write-through with write allocation: Loads and
instruction fetches first search the cache, reading
main memory only if the desired data does not
reside in the cache. On data store operations, the
cache is first searched to see if the target address
is cache resident. If it is resident, the cache con-
tents are updated, and main memory is also writ-
ten. If the cache lookup misses on a store, main
memory is read to bring the line into the cache
and merge it with the new store data. In addition,
the store data is also written to main memory.
Hence, the allocation policy on a cache miss is
read-allocate or write-allocate.

Appendix A: “Cache Policy and Coherency”
demonstrates cache coherency and the effects of
different cache policies on cache and physical
memory contents after writes to virtual and physical
memory using a simple program and
MPLAB® X IDE.
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Pros and Cons to Each Policy

Table 1 summarizes some of the pros and cons for
each cache policy.

The default cache policy for the PIC32MZ family, as is
present in the start-up code supplied in the
development tools, is write-back, write-allocate. For
more information on changing the KSEGO policy, refer
to “MPLAB® XC32 C/C++ Compiler User’'s Guide”
(DS51686). The start-up code also contains source
code showing how the cache is initialized.

TABLE 1: CACHE POLICY COMPARISON
Policy Pros Cons
Uncached No cache coherency issues. Greatly impaired performance since every mem-

ory access must account for bus transfer time
and memory wait states.

Write-back with Write
Allocation

Best performance is achieved with this | Application must address coherency on both
policy. All transactions are done using
the cache with memory accesses
performed only when needed.

reads and writes to memory.

Write-through with no
Write Allocation

Cache coherency issues are eliminated | Results in the CPU taking a larger percentage of
for writes as memory is always updated. |the memory bus bandwidth since every CPU

write results in a bus transaction. Even back to
back writes are written to memory. Cache coher-
ency for CPU reads must still be addressed.

Allocation

a CPU read.

Write-through with Write | Cache coherency issues are eliminated | Results in the CPU taking a larger percentage of
for writes as memory is always updated. |the memory bus bandwidth since every CPU
Writes to memory also fill cache so the | write results in a bus transaction. Even back to
data written is immediately available for |back writes are written to memory. Cache coher-

ency for CPU reads must still be addressed.
Writes to memory also fill the cache which can
result in needed data being evicted from cache.

KSEGO and KSEG1

In MIPS cores, the first 512 MB of physical memory can
be either cached or uncached, depending on the virtual
address used. This 512 MB region is referred to as
KSEGO when cached, and KSEG1 when uncached.
KSEGO addresses are in the range of 0x80000000
through Ox9FFFFFFF. KSEG1 addresses are in the
range of OXA0O000000 through OXxBFFFFFFF. With the
exception of the Special Function Registers, which
exist only in KSEG1, KSEGO and KSEG1 both point to
the same physical memory. Accesses using KSEGO
are cacheable while accesses through KSEG1 are
uncached. The cacheability attribute of KSEGO can be
set using the CPU Coprocessor 0 (CP0) Configuration
register. By default it is set to write-back, read-allocate.

In PIC32MZ devices, the linker allocates data sections
to cached KSEGO segment as specified in the linker
script. The MPLAB development tools provide
functions for run-time heap allocation and link-time
data variable allocation.

Link-time  coherent allocation in KSEG1 s
accomplished using the coher ent variable attribute.
The code in Example 1 will create a 1024 element
unsigned integer array, which will be allocated in
KSEGL.

Since the default stack is allocated to the cached
KSEGO region, run-time allocation of uncached
memory must come from the heap. The development
tools provide two functional equivalents to mal | oc and
f r ee to create uncached variables at run-time. These
functions are pic32_al | oc_coherent and
pi c32_free_coherent. Example2 shows a
function that allocates a 1024 element character buffer,
utilizes it, and then returns it to the heap when finished.

© 2013-2014 Microchip Technology Inc.
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EXAMPLE 1: USING THE LINK-TIME COHERENT ATTRIBUTE

unsigned int __attribute__((coherent)) buffer[1024];

EXAMPLE 2: ALLOCATING/FREEING COHERENT MEMORY AT RUN-TIME

#i ncl ude <xc. h>

voi d myFunction(void) {
char* buffer = __pic32_all oc_coherent(1024);
if (buffer) {
/* do sonething */

}
el se {

/* handle error */
}

if (buffer) {
__pic32_free_coherent (buffer);

}

TABLE 2: ADDRESS TRANSLATION MACROS

Macro Name Description
KVA_TO_PA(V) Translate a kernel (KSEG) virtual address to a physical address.
PA_TO KVAO( pa) Translate a physical address to a KSEGO virtual address.

PA _TO KVA1( pa) Translate a physical address to a KSEG1 virtual address.

KVAO_TO_KVA1(v) Translate a KSEGO virtual address to a KSEG1 virtual address.

KVA1_TO KVAO(V) Translate a KSEG1 virtual address to a KSEGO virtual address.

I'S_KVA(vV) Evaluates to 1 if the address is a kernel segment virtual address, zero otherwise.

IS _KVAO(V) Evaluate to 1 if the address is a KSEGO virtual address, zero otherwise.

IS KVAL(vV) Evaluate to 1 if the address is a KSEGL1 virtual address, zero otherwise.

I'S_KVAOL1(v) Evaluate to 1 if the address is either a KSEGO or a KSEGL1 virtual address, zero otherwise.

Example 3 shows a method for accessing a variable
defined for KSEGO from KSEG1.

EXAMPLE 3: CODE EXAMPLE FOR ADDRESS TRANSLATION MACRO

/* Declare a variable. By default it is defined in KSEQ */
int Var1l nKseg0

5;

/* Declare a pointer to the same variable type and assign */
/* it the translated address using the address translation */

/* macro */
int *pVarll nKsegl = KVAO_TO KVALl( &Var 11 nKsegO) ;

/* Assign x the value of the variable fromthe cache */
x = Var 1l nKsegO;

/* Assign y the uncached val ue */

y = *pVar 1l nKsegl,

DS00001600C-page 6
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PIC32MZ Cache Management Instructions

The Imagination Technologies Limited MIPS core
includes special assembly instructions for managing
the cache. Each instruction operates on a single cache
line. Please refer to the Imagination Technologies
Limited website (www.imgtec.com) for details
regarding the use and operation of these instructions.

CACHE INSTRUCTION

The CACHE instruction is primarily used at start-up to
initialize the cache. To manage coherency, the CACHE
instruction can be used to:

 Invalidate a Cache Address Hit — Searches the
cache for the specified address, and if a hit occurs,
invalidates (evicts) the cache line. No write back is
performed even if the cache line is dirty.

« Write back a Cache Address Hit — Searches the
cache for the specified address, and if a hit occurs
and the line is dirty, writes the cache line to memory.

« Fill Cache — Fills the instruction cache (I-Cache)
with data from the specified address. For data cache
(D-Cache) fills the PREF instruction is used.

» Fetch and Lock — Fills the instruction or data cache
with data from the specified address, and locks it in
the cache. The data remains locked in the cache
until it is invalidated with the cache instruction.

PREF INSTRUCTION

The Prefect instruction (PREF) is provided to optimize
D-Cache performance by allowing software to specify
the optimum cache fill operation:

« Fill a cache line for write operation. A cache line is
reserved but no fill from memory is performed as
memory will ultimately be written with new data.

« Fill a cache line for a read operation. A cache line is
reserved and filled with the contents of memory.

« Streamed and Retained Options allow the user to
specify a cache hierarchy where streamed data will
not evict retained data.

« Write back and invalidate allows the user to free a
cache line, writing it back to memory if it is dirty.
Sometimes referred to as ‘nudge’.

SYNCI INSTRUCTION

When initializing memory to execute from RAM, both
the D-Cache and [-Caches are involved. This
instruction is used when programming RAM with
code to execute by synchronizing caches to make an
instruction write effective. SYNCI forces a D-Cache
write back and [-Cache invalidate on a specific
address.

Refer to “MPLAB® XC32 C/C++ Compiler User’s
Guide” (DS51686) and the related ReadMe file for
details regarding macro support for these
instructions.

MPLAB Harmony Cache Management
Functions

The MPLAB Harmony Integrated Software Framework
includes several functions to help make cache
management easier. These functions use the MIPS
assembly instructions to perform operations on the
cache as a whole, or over a range of addresses. These
functions are part of the Device Control (DEVCON)
System Service Library. Use of these functions is the
recommended method of managing the cache.

The instructions allow the programmer to perform the
following cache operations at run-time:

« Initialization

* Flush (entire cache, data, instruction or both)

« Clean (address range, data or instruction)

« Invalidate (address range, data or instruction)

» Lock (address range, data or instruction)

* Sync

* KSEGO Policy Set or Read

Please see the latest MPLAB Harmony documentation

for a complete description of these functions, including
sample applications demonstrating their use.

© 2013-2014 Microchip Technology Inc.
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METHODS OF ADDRESSING CACHE
COHERENCY ISSUES

This section describes the available options for
addressing cache coherency issues.

DMA

DMA peripherals always access physical memory and
cache coherency must be addressed if the cache is
enabled. The user has the option of using the default
write-back write-allocate policy or changing to a write-
through policy (with write allocation turned on or off).
The recommended approach is to start with a write-
back write-allocate (default) cache policy and use

TABLE 3:

KSEG1 when accessing any memory used by a DMA
peripheral. This is the simplest approach and in most
cases it will provide acceptable performance. Once the
project is running and debugged, performance can be
improved by changing the access of DMA memory to
KSEGO and employing the CACHE and PREF
instructions to manage coherency. In systems
employing multiple DMA bus masters, software
management of the cache can be used only where
necessary and implemented on one DMA peripheral at
a time simplifying the debug process.

Table 3 lists the DMA cache coherency management
options.

DMA CACHE COHERENCY MANAGEMENT OPTIONS

Method Description

When to Use

Write-Back Write-Allocate

Cache policy is set to write-back write-allocate but | This is the recommended
Cache Policy using KSEG1 to |all DMA shared memory is referenced by the CPU | approach to get your project
Access DMA Shared Memory |using uncached KSEGL. This is the simplest cache |up and running.
management approach.

Write-Back Write-Allocate
Cache Policy with Software
Managing Coherency

cache.

Cache policy is set to write-back write-allocate and | Use this approach to achieve
DMA shared memory is referenced by the CPU
using cached KSEGO. Cache coherency is managed | needed.
using the cache management functions provided by
the MPLAB Harmony Integrated Software
Framework, invalidating cache lines and writing
back data as needed. This method provides the best
performance but requires software to manage the

the best performance when

Software Management with a | Cache policy is set using a write-though mode. DMA | Use this approach to achieve
Write-Through Cache Policy shared memory can be referenced using KSEGO
and no cache coherency issues will exist for writes. | needed.
Coherency for reads must be managed using the
CACHE or PREF instructions or directing all reads
through KSEGL1. The write-through policy eliminates
the need to write-back cache data at the expense of
increased system bus bandwidth utilization.

the best performance when

DS00001600C-page 8
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Updates of Flash

Flash updates can occur when a portion of Flash is
used for non-volatile storage or in boot loader
applications.

FLASH PROGRAMMING

When using Row Programming, the Flash controller
can utilize DMA to read the contents of RAM and
program Flash memory using the following methods:

* Initialize ROW data using uncached KSEG1

« Initialize ROW data using cached KSEGO and use
the CACHE write-back instruction or MPLAB
Harmony cache management routines to force the
cached contents to be written to RAM prior to
initiating the NVM Write command

NON-VOLATILE DATA STORAGE

In non-volatile data storage Flash applications, there is
no problem for write-back since writing of Flash occurs
only through the Flash Controller. Cached lines will
become stale once the Flash locations are
reprogrammed. The following options are available:

» Access non-volatile data storage through KSEGL1. If
access to these locations is infrequent, this may be
the best solution since it will not consume excessive
bus bandwidth.

» Access using KSEGO using any cache policy
(except turning the cache off of course) being sure
to invalidate cache locations corresponding to Flash
memory locations that have been reprogrammed

BOOTLOADING

Bootloading, a process that updates the application
code, is typically run infrequently and involves a large
amount of Flash memory, which could potentially span
the entire cache. Because of these characteristics, the
best solution is to invalidate the entire I-Cache before
executing any bootloaded code. If the Bootloader
performs a reset to start execution of the new code, the
start-up code will initialize the cache and no specific
action is needed. However, if a reset is not performed,
itis recommended that the cache be invalidated prior to
executing the new code.

Executing Code from RAM

When loading RAM with data that will later be executed
as code, both the I-Cache and D-Cache are involved.
The SYNCI instruction is provided specifically to solve
this problem. After the executable data is written to
RAM and before it is executed the SYNCI instruction is
used to synchronize both caches.

Data Organization

Caches perform best when spatial locality is employed
in the data. As previously mentioned, the smallest
amount of data that can be transferred to or from the
cache is a cache line.

In PIC32MZ devices, a cache line is four words
(16 bytes). Performance is optimum when static data
that spans multiple words is declared so that is aligned
to the cache line. This prevents a four word data
structure from spanning two cache lines taking twice as
long to load as a single cache line. Forcing groups of
static single word variables that are used together into
the fewest number of cache lines will improve
performance. One method of doing this is to declare
them in a structure that is aligned to a cache line.

CONCLUSION

Optimum performance using the PIC32MZ family of
devices can only be achieved when the L1 CPU cache
is used. Anytime DMA is used, the developer must plan
for cache management in the design of the project to
avoid coherency issues. Options that exist for
managing cache coherency, range from simple to
complex based on the desired system performance.

© 2013-2014 Microchip Technology Inc.
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APPENDIX A: CACHE POLICY AND
COHERENCY

The following four examples use MPLAB X IDE to help
illustrate the effects of cache policy on cache
coherency when the data memory is modified through
KSEGO and KSEGL1.

e Example 1: Uncached Writes to Data Memory

« Example 2: Write-back, Write-allocate Writes to
Data Memory

« Example 3: Write-through, Write-allocate Writes
to Data Memory

« Example 4: Write-through, No-write-allocate
Writes to Data Memory

For simplicity, these examples use KSEG0O and KSEG1
pointers to the address of the same memory location in
SRAM. The KSEGO pointer represents a cached CPU
memory access. The KSEG1 pointer represents an
uncached memory access. Even though the KSEG1
memory access is performed by the CPU, the cache
has no knowledge of it, so it is equivalent to a DMA
access to physical memory.

DS00001600C-page 10
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A.1  Example 1. Uncached Writes to Data Memory

This example shows two different data writes to the
same memory location, the first using a KSEGO pointer
and the second using a KSEG1 pointer. The value is
then read back through the same pointers into two

different global

variables. The cache policy is

“uncached”. As expected, both reads yield the same
value, equal to the second write (Figure A-1).

FIGURE A-1:
Start Page &= Elmain.c ﬁ|
RE-F-ArSFEfe o B|L 2P
[ia wvolatile unsigned int ks0:;
a9 volatile unsigned int k=1:;
70
71 THCACHED 0x02
72 0x03
73 0x01
T4 0x00
75
76 void set cache policy(int cc)
77 o
78 unsigned int cpd;
74
20 cpl = mfcO(l6, 0):
Ll cpl &= ~0=x03;
g2 cpl |= cc:
83 _mtclf{le, 0, cpl);
g4 -
g5
86 [] int main{int argec, char** argv) {
&7
g8 set_cache policy (UNCACHED) ;
29
90 * [volatile unsigned int#®*)0x80000300 = OxDEADBEEF;
91 *(wvolatile unsigned int*)0xA0000300 = OxFOOSBALL;
92
93 k=20 = *(volatile unsigned int*)0x80000300;
94 k=l = *(wvolatile unsigned int#®)O0xA0000300;
95
(=3 while (1) ;
97
98 return (EXIT STCCESS):
95| -
: Search Results : Qutput : Tasks U
E:j Mame Type Address Value
7 ks unsigned int 0xB0000248 OxF005BA11
B | kst unsigned int 0x30000244 0xFO05SBA11

© 2013-2014 Microchip Technology Inc.
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As shown in Figure A-2 and Figure A-3, when we look
at the virtual and physical memory using MPLAB X
IDE, we can see that they both contain the same

correct value.
FIGURE A-2:
: Search Results : Qutput Tasks
Address a0 04 oa ac ASCII
5 2000_02F0 |RBS969101 [BB40DFFY [BEGRAOS5E |[ER20FED0 |...... B, L.9... .
2000_0300 [FOOSBR11 [D49S8BDES |TB2CEEED [CTT2DF9F |vveewwa. wapleal.
E—I‘I &000_0310 [DFARAS032 |105313A0 |3C1eA311 [R380347F |2F. 3 <04..
“ 2000 0320 |7EDTR432 |052DATER BETAESS50 [D1R26E879 |2..X..—-. P.zZ.yh.
2000_0330 |6E622C43 |72CCOCFF (42695403 |5L&E07FD |C,hn...r .TiH..nZ
~ [e000_0340 [EFDDOS0Y [77C06949 [ETDLIERLT |3FS5BELIA | ... .l1.W ..... oz
&000_0350 (E048C411 [45D132CE |EESDOECE [D43EBE4D H..2.E ].M.x>.
2000 0360 |5A390006 (4FE4B36Rk [DS7FEES5 [5113221EB 9Z3..0 ..0..".0
Mernory :DaE Mernory v: Format :Dam - |
FIGURE A-3:
: Search Results : Qutput Tasks
k| | nddress i} 04 08 ac ASCII
EI RO00_02F0 [2B969101 |[EE40DFFY |BEGROGSE [ERZ0FED0 |vwwww. B. X.3..
RO00_0300 |FOOSBAI11 |D492BDEY (TB2CEZEQ [CTT2DFSF |...euw.. waple.r
E—Ll RO00_0310 |DFZAS032 |105313R0 (3C1eLA311 [A380347F |2F. 3 <04,
"' RO00_0320 |78D7R432 [0520ATEL |BETAE950 (D1A26879 |2..XH..—. P.z.yh.
R000_0330 (6ERE2C43 |T2CCOCFF (48695403 [3A6E0TFD |C,hn...r .TiH..nZ
~ |RO00_0340 |[EFDDOS0S [77C06949 [ETDIEELT [SFSSBEIR ... .TiuW ..uw.. g
RO00_0350 |[EO48C411 |45D132CE |EESD02Ce (D43EBE4D H..2.E ].M.=.
RO00_0360 |SRA39000& [4FE4B36L |D9TFBBYS [3113221B 9z23..0 ..0..".0

Memory Data Memory

- . Format .Da13

DS00001600C-page 12
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A2

Using the “write-back, write-allocate” cache policy, the
CPU writes to the cache when using a KSEGO address,
and the data is not written back to SRAM until the line
is evicted. When using a KSEG1 address, the CPU
writes directly to SRAM, bypassing the cache.
Therefore, we would expect to see the first data write in
cache, but the second in the SRAM itself (Figure A-4).

FIGURE A-4:

Example 2: Write-back, Write-allocate Writes to Data Memory

Start Page &= E]main.n: m|
PE-8- QTSR e 0 B8 =

oo TOIECIIE GOSIgIeWU INC ESU;

69 volatile unsigned int ksl;

70

71 #define UNCACHED 0x02

72 #define WEB WL 0x03

73 #define WI WA 0x01

T4 #define WI NWL O=x00

75

T8 void set cache policyiint cc)

770 o

T8 unsigned int cpl;

79

i epl = mfcl(le, 0):

a1 cpl &= ~0x03;

g2 cpl |= cc»

83 _mtecd (16, 0, cpl):

g4

85

86 [-] int main(int argec, char** argv) {

a7

g8 zet_cache policy(WE WR):

29

a0 *(volatile unsigned int*)0x30000300 = OxDEADEBEEF;

Ll *(wvolatile unsigned int*)0xA0000300 = OxFOOSBALD;

92

93 k=0 = #(|volatile unsigned int#®)0x80000300;

94 ksl = *(volatile unsigned int*)0xA0000300;

a5

(= while (1) :

a7

98 return (EXIT SUCCESS);

99 -

100
: Search Results : Qutput : Tasks s Usai
| Name Type Address Value
7 ks0 unsigned int OxB0000248 OxDEADBEEF
B | kst unsigned int 080000244 0xFO05BA11

© 2013-2014 Microchip Technology Inc.
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Using L1 Cache on PIC32MZ Devices

Looking at the virtual versus physical memory in the
MPLAB X IDE watch window (Figure A-5 and Figure A-
6), we see that the same memory location shows
different data, because the cache is now non-coherent.
The cache will remain non-coherent (for this line) until
the data in the cache is written back to SRAM.

FIGURE A-5:

: Search Results : Qutput Tasks

kddreas [} 04 og ac ASCTT

5 2000_0ZF0 |AB963101 [EB40DFFS |BEGAOEBSE |EAZ0FGDO |...... B, ¥.3... .
2000_0300 DEADBEEF (D498BDES (TB2CEEBEO (CTTZDF9F [........ wap{nal.

E—Ll 2000_0310 DFRAS03Z (105313R0 (3C1lea3ll [A380347F |2F. 5 <04..

“ 2000 0320 (78D7h432 |05ZDATER BETAZ950 (D1AZe879 [2..X..-. F.Z.vh.
2000_0330 |6E6eE2C43 [TZCCACFF (48695403 |5A6E0VEFD |C,hn...r .TiH..nZ

T 2000_0340 EFLDOS0% (77C06594% ETD1E2617 [3FS5BE1A [L...J11.W ...... oz
2000_0350 ([E043C411 [45D132C8 (EESDOEBCe |D43EBE4D H..2.E ] .M.>.
2000 0360 (SA39000¢ (4FE84B3ek (DOTFEBEBE95 [2113221EB 9Z27..0 ..0..".0

Memory :DaE Mernory v: Format :DaE -
FIGURE A-6:

: Search Results : Qutput Tasks

@ kddreas oo 04 i} ac LSCTT

(5 [R000_02F0 |AB969101 |BB4ODFFY [BEGAOSSE [EA20FEDO |...... B. H.j... .
A000_0300 |FOOSBALL |D498BDEY |7B2CEBEQD [C772DFOF |........ ..t

%—"" A000_0310 DFRAS03Z2 |105313R0 [3C1leRa311 [A380347F [2F. 5 <04..

“ A000 0320 |78D7hA432 |05ZDATER (BETAZ950 [D1AZ26879 [2..X..-. F.Z.¥h.
A000_0330 |6ERE2C43 (TZCCSCFF (48695403 |5AGE0TED |C,hn...r .TiH..nZ

T A000_0340 |EFLDOS909 |77C068949 |[ETD1E617 [3FS5BEI1IA [L...J11.W ...... oz
A000_0350 ([E048C411 (45D132C8 [EESDOECE |[D43EBE4D H..2.E ].M.>.
A000_ 0360 |(5A390006 (4Fg4B364 (DOTFEBESS [2113221EB 9Z3..0 ..0..7.Q

Mernory .Da13 Mernory

- - Faormat .Da13

DS00001600C-page 14
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As shown in Figure A-7 through Figure A-9, note that if
we eliminate the KSEGO write, the cache is never
written to, so when we do the KSEGO read, the data is
fetched from physical memory, and the cache is
updated at that time (read-allocate).

FIGURE A-7:

Start Page = @main.c ﬁ|
BER-E- AT SFEBFPER s 0% =10

o

a8 volatile unsigned int k=0;

69 wvolatile unsigned int ksl;

70

71 THCACHED 0x02

72 0x03

73 0x01

T4 0x00

75

76 void set cache policy(int cc)

77

78 unsigned int cpl;

79

20 epl = mfcl(le, 0):

21 cpl &= ~0=x03;

82 cpl |= co:

83 _mcel(lse, 0, cp0);

a4 |-

a5

86 -] int main(int argc, char** argv) {

a7

a8 zet cache policy(WE TR):

29

1] ff*(volatile unsigned int*)0x80000300 = OxDEADBEEF:;

91 ¥ (wvolatile unsigned int#*)0xA0000300 = OxFOOSBAll;

92

93 k=0 = *(wvolatile unsigned int#®)0x80000300;

94 k=l = *(volatile unsigned int*)0xA0000300;

a5

(= while (1)

a7

98 return (EXIT SUCCESS);

99| -
: Search Results : Qutput : Tasks s ls
| Name Type Address Value
7 ks unsigned int 0xB800002A3 0xFO0SBA11
D | kst unsigned int 0xB800002A4 0xFO05BA11

© 2013-2014 Microchip Technology Inc.
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Using L1 Cache on PIC32MZ Devices

FIGURE A-8:

: Search Results : Output Tasks

@ Rddress a0 04 0g ac ASCII

E g000_02F0 |AB969101 |[BB40DFFS |BEGAOESE [EA20F6D0 |...... B. X.3... .
2000_0300 [FOOSBR11 (D498BDES |TB2CEEED |[CTT2DF9F |heweunan wapleaEn

%—Ll 8000_0310 [DFRARS03Z (105313R0 |3C16A311 |A3E0347F [ZP....35 <04..

‘" 3000_0320 |TEDT7A432 |05ZDATER BETAS950 |D1RAZ6E79 [2..H..-. P.Z.vh.
8000_0330 |6E&E2C43 |[72CCHCFF (48695403 [SAGEQ7FD |C,hn...r .TiH..nZ

~ [¢000_0340 [EFDDOS0S [T7CORS4D [ETDLIEELT |SFSSBELIR |- ...li.W »..... oz
8000_0350 [E048C411 (45D132CE [EESDOECE |D43EEE4D H..2.E ..].M.>.
3000_0360 |5A390004 (4FE4B36A (D37FEBSS |5113221B (..9%23..0 ..0..".0Q

Mermory :Dam Mermory v: Format :DaE v:
FIGURE A-9:

: Search Results : Qutput Tasks

"EJ Rddress aa 04 oz ac ASCII

I5I RO00_02F0 [AB969101 |[BEB40DFFYS |BEGROESE |[ER20FED0 |...... B, .jee. .
A000_0300 (FOOSBR11 |[D498BDEY |TB2CEEBED [CTT72DF9F |vvveuwn. wapleal.

%—Ll A000_0310 |DFRRS5032 |105313R0 |3C1e4311 |A3E0347F [2P....35 04,

‘. A000_0320 |TEDTR432 |05ZDATER |BETAES950 |D1RAZ6E79 [2..H..-. F.z.yh.
RO0O0_0330 (6E6E2C43 |T2CCOCFF (48695403 [SLEE0TFD |C,hn...r .TiH..nZ

~ |A000_0340 |[EFDDOS09 [77C06949 [ETDIEGLT [SFSSBEIR [....T11.W .v.w.. oz
A0O00_0350 |[E048C411 (45D132CE |EESDOECE |D43EBE4D H..2.E ..].M.>.
A000_0360 |SA390006 (4FE4B36A |DI7FEBASS |5113221B (..5%Z23..0 ..0..".Q

Memary :Dam Memary v: Format :Da13

Note that the cache will read-allocate in all modes

except

“uncached”.

This

can

have

important

consequences when debugging, as the act of running
a debug executive or reading data to print/display can
make the difference between cache coherency and

non-coherency.

DS00001600C-page 16
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A3

Write-through with write allocation works similar to the
write-back with write-allocation; the difference being
that the data written to cache is also written to physical
memory. We can illustrate this by eliminating the
KSEG1 write, and verifying that both the KSEGO read
and KSEG1 read return the same data (Figure A-10).

Example 3: Write-through, Write-allocate Writes to Data Memory

FIGURE A-10
Start Page &= IE]main.u: ﬁ|
BE-F-ATSEfe oo m|L 2P

oy

it volatile unsigned int ks0:;

69 volatile unsigned int ksl;

70

71 $define UNCACHED 0x02

72 #define WE WA 0x03

73 #define WI WA 0x01

T4 #define WT NWAR 0x00

75

T& void set cache policy (int cc)

770 4

T8 un=igned int cpl:

79

ao cpl = mfcld(l6, 0);

g1 cpl &= ~0x03;

el cpl |= cc;

83 _mtclile, 0, cpl):

24| -

25

86 C] int main(int arge, char** argv) {

a7

bt set_cache policy (WT WR):

29

90 *(wvolatile unsigned int#*)0x30000300 = OxDEADEBEEF;

91 Sr* (volatile unsigned int#*)0xA0000300 = OxFOOSEALL;

92

93 k30 = #*(volatile unsigned int+*)0x80000300;

94 k=3l = #*(wvolatile unsigned int+*)0x40000300;

95

=3 while (1} ;

97

98 return (EXIT SUCCESS):

99| -
: Search Results : Qutput : Tasks : Uss
B | Name Type Address Value
€7 ks unsigned int 0x800002A8 0xDEADEBEEF
B | ksl unsigned int 080000244 0xDEADEBEEF

© 2013-2014 Microchip Technology Inc.
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Using L1 Cache on PIC32MZ Devices

As shown in Figure A-11, if we do both writes, however,
we are non-coherent again. The cache never saw the
write to KSEG1, so it still thinks the first write is valid.

FIGURE A-11:

Start Page = IE]main.u: m|
BR-F- | tSFEBFre | ao 0| =0

o TOUISELIIE GOSIged It EST;

69 volatile unsigned int ksl:;

70

71 $define UNCACHED 0x02

72 #define WE WA 0x03

73 #define WT WA 0x01

74 #define WT MWL 0x00

75

T6 void set cache policy(int cc)

770 4

T8 unsigned int cpl:;

79

&0 cpl = mfcd(le, 0);

81 cpl &= ~0x03;

82 cpl |= cc:;

83 _mtcOile, 0, cpl):

24| -

25

86 ] int main(int arge, char** argv) {

a7

bt set_cache policy (WT TR} :

29

90 ¥ (volatile un=signed int#*)0x80000300 = O0xDEADEBEEF;

91 *(vwolatile unsigned int®*) 0xA0000300 = OxFOOSBA1D !

92

93 k=0 = #*(volatile unsigned int+*)}0x80000300;

94 k2]l = #*(volatile unsigned int#*)0x40000300;

95

=3 while (1) ;

97

98 return (EXIT SUCCESS):

99| -

100
: Search Results : Qutput : Tasks : Usages
E Mame Type Address Value
7 ks unsigned int 0xB80000248 0xDEADEEEF
@ 7 kst unsigned int 0xB0000244 OxFO05BA11
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Write-through with no write-allocation means that the
cache is only updated on a write if the corresponding
line is already resident in the cache. If it is not resident,
the data is written directly to physical memory, with no
copy allocated to the cache. If we run our original
program, the first write will not be allocated to cache, so
when we do the KSEGO read, we get the same data as
the KSEG1 read (see Figure A-12).

FIGURE A-12:

Example 4: Write-through, No-write-allocate Writes to Data Memory

Start Page & IE]main.u: E|

BE-8-TSE PR

@ B3|

[itat volatile unsigned int k=0;

09 volatile unsigned int k=1;

70

71 $define UNCLACHED 0Ox02

72 #define WEB WL 0x03

73 $define WT WL om0l

T4 #define WI_NWR 0=x00

75

76 void =et cache policy(int cc)

770 1

T8 unsigned int cpl;

75

20 cpld = mfc0({le, 0):

81 cpl &= ~0x03;

g2 cpl |= cc;

83 _mtcl(l6, 0, cpl);

24 -

25

g6[-] int main{int argc, char*#* argv) f{

B7

] set_cache policy (WI HNWL):

29

90 * (wolatile unsigned int*)0x30000300 = OxDEADBEEF;

91 *# {(wvolatile unsigned int#*)0xn0000300 = OxFOOSBAIL1L;

g2

93 k=0 = *(volatile unsigned int#*)0x80000300;

94 k=l = #*({volatile unsigned int#*)0xA0000300;

a5

= while (1) :

97

g9g return (EXIT SUCCESS);

99| -
: Search Results : Qutput : Tasks : Usages
E Mame Type Address Value
7 ksO unsigned int 0xB800002A3 OxFO05BA11
W | kst unsigned int Ox80000244 OxFO0SBA11

© 2013-2014 Microchip Technology Inc.
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Using L1 Cache on PIC32MZ Devices

However, as shown in Figure A-13, if we do a dummy
read before the KSEGO write, we get different results
due to the read-allocation.

FIGURE A-13:
Start Page & IE]main.u: E|
RE-8- TSR reR|ego m|L =

69 volatile unsigned int ksl;

70

71 $define UNCLCHED Ox02

72 0x03

73 0x01

74 0x00

75

T8 wvolid set cache policy(int cc)

170 4

78 unsigned int cpd:

79

20 cpd = mfcO(le, 0):

81 cpl &= ~0x03;

g2 cpl |= cc:

83 _mtcOfle, 0, cpl):

g4 =

85

g6 [] int main(int argc, char** argv) {

a7

g8 set_cache policy (WI_NWL):

29

90 k=0 = *(volatile unsigned int*)0x80000300;

91

92 ¥ (volatile unsigned int#®*)0x80000300 = OxDEADBEEF;

43 ¥ (wvolatile unsigned inc#*)0xfa0000300 = OxXFOOSBA11;

94

95 k=0 = *(volatile unsigned int#®*)0x80000300;

98 k=l = *(volatile unsigned int#*)0xAD000300;

a7

o while (1)

99

100 return (EXIT SUCCESS):

101 | -

1ln2
: Search Results : Qutput : Tasks : Usages
E MNarme Type Address Value
€7 ks0 unsigned int 0xB80000248 OxDEADBEEF
D | @ kst unsigned int 0x30000244 0xFO05SBALL
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