AVR112: TWI Bootloader for devices without
boot section

Features

e All 8-bit Atmel AVR microcontrollers with

- 2K bytes Flash

- Without boot section

- Having two wire TWI /USI Interface

AVROSP compatible

Example application code for all supported target devices
Using IAR workbench for debugging and programming
C-Code Driver for TWI Master

C-Code Driver for TWI/ USI Slave

Application Section Programming

- Without any programming tool

- Application section complete erase

- Application section programming

- Application software version readability

- Bootloader software version readability

1 Introduction

This application note describes the implementation of Bootloader using TWI or USI
hardware as TWI communication channel for 8-bit Atmel® AVR® microcontrollers,
without on-chip boot section and with at least 2Kbytes of flash memory. The host
device is based on ATmega2560 communicating via the UART with a PC running
the AVR Open Source Programmer (AVROSP). . Host device will act as TWI
Master while the Target will act as TWI Slave. The host device then communicates
with target device via TWI.

This enables the user to download Application code into the target mcu, to read
boot loader version and application version details without having an external
programmer.

The downloaded file AVR112.zip contains all utilities and examples necessary to
build a test application, program it into Slave device and verifying the test
application.

For general information about self programming please refer to application note
AVR109: Self programming.

The hardware interfacing diagram is illustrated in Figure 1-1.

ATMEL

AIMEL

I ®

8-bit Atmel
Microcontrollers

Application Note

Rev. 8079A-AVR-08/11

ATMEL

Figure 1-1. PC, Host and Target device interface diagram

Vcc
R1 R1
HOST DEVICE TARGET DEVICE
PERSONAL COMPUTER SCL sCL
+— — — — — - — —
TWI TWI / USI
SDA SDA
INTERFACE [° L — — %] INTERFACE
MASTER SLAVE
e ——
| 10 PIN BOOT ENABLE | 10 PIN
0 PIN RESET
» UART -
RS232 SERIAL CABLE
2 Theory

This section gives a detailed description of the microcontroller bootloader. For more
detailed information on TWI / USI module, refer the datasheets.

2.1 What is Microcontroller Boot loader and how it works?

N

AVR112

In general, to program a microcontroller, one needs a programmer that supports the
target device. Apart from being expensive, it might have other disadvantages, like
long programming times, too many interconnections between the microcontroller and
the programmer itself. Upgrading the firmware for a shipped product becomes tedious
because of non availability of programming port. Bootloader comes handy, when
there are standard communications interfaces being available on a connector. Even
in the laboratories, it might not be practical to get a programmer for each working
bench, and the best solution is to provide microcontroller samples which have already
been programmed once with the Bootloader in the program memory.

Once bootloader is programmed, the respective interface (UART or TWI) can be used
to reprogram the remaining flash section without using a conventional programmer. In
this application note, the bootloader uses the TWI interface and other pins to detect
the upgrade process. First the Bootloader firmware checks for the BOOT PIN status,
and if found low, then the program in the configured boot section starts executing,
else the program in the configured Application section starts executing.

The Figure 2-1 gives a brief idea on the flash section which is divided between
Application and Boot section.

8079A-AVR-08/11

- AVR112

Figure 2-1. Flash Memory Map

RESET VECTOR |0x0000

APPLICATION
SEGMENT

0X1C00
BOOTLOADER
SEGMENT

OX1FFF

Please note the addresses specified in the figure: 2-1, varies with different target
devices depending on their flash.

Summarizing, the steps involved a Bootloader are:

Step 1 — After reset, the Bootloader checks for the Boot Pin Status, and depending on
the condition code flow works in Bootloader or jumps to Application. When in boot
section, the Bootloader code starts to listen the TWI interface commands for incoming
data.

Step 2 — If the command received is for updating the flash, the received data is
written in the program memory (application section) as it would be written by a
programmer.

Step 3 — Once the entire incoming data has been written and again if the command
received is to execute the application code, the Bootloader executes a jump at the
first instructions of the regular program.

2.2 Bootloader Requirements

The TWI Bootloader makes it unnecessary for any physical intervention with a
hardware programmer. The target device must have some form of data connection
with the host. In this application note, IIC compatible TWI communication is used. If

AIMEL :

8079A-AVR-08/11

2.3 BASIC OPERATION

3 Hardware Setup

ATMEL

the device uses the TWI port to communicate with other devices on the bus, then no
additional connection is needed. The Bootloader will require the higher side of the
program memory reserved for the Bootloader firmware (see Figure 2-1). The rest of
the program memory can be used by application. No RAM memory needs to be
reserved, since it is used in different contexts and not at the same time.

The basic functionality of a Bootloader is to receive, interpret and execute a set of
commands known both by the host software and the target firmware. The command
set can be more or less complex than shown in the application note, but it must
generally support commands to read, erase and write the Flash memory. Additionally,
it supports a command to jump from the Bootloader code to the application code. This
command is typically issued at the end of a program cycle.

This section describes the role of a TWI Master and TWI Slave, their configuration
and its physical connectivity.

3.1 TWI Master — Description

TWI master accepts the commands from the AVROSP PC software through UART.
The received command will be sent across to the TWI Slave via TWI communication
channel. In this application note, ATmega2560 device on STK600 development board
is used as TWI master and the connection details are mentioned in the table 3-1.

3.2 TWI Slave — Description

TWI slave is target device where the application section to be programmed via
bootloader. The TWI slave accepts the commands via TWI communication channel
and performs the predefined activities on the target device. In this application note,
ATtiny88 device is used as target device on STK600 development board.

3.3 TWI Master and TWI Slave configuration

3.3.1 TWI Master Configuration

3.3.2 TWI Slave Configuration

N

AVR112

This section describes how the TWI master and TWI slaves are configured with target
voltage clock frequency, fuse settings etc.

Device: ATmega2560

Target Voltage: 5V

Target Frequency: External Crystal 3.69MHz

Fuse Settings: OXFF (Extended) 0X19 (High) OXFD (Low)

The slave could be any device from the below list. The slave devices are categorized
into two lists based on the availability of the peripheral module. Some have built in
TWI and others have USI hardware which can be used as TWI interface. Section
“Devices with TWI interface” and “Devices with USI interface" briefs on the
devices which fall in the respective ones. The USI hardware is configured as TWI

8079A-AVR-08/11

AVR112

slave, for more details please refer the application note: “AVR312: Using the USI
module as an I12C slave”. As an example, ATtiny88 configuration is described in

“ATtiny88 as TWI Slave”.

For all other devices in the below list, please refer

“Hardware Setup” page and particular device column of Configuration Details.xls
excel sheet document in the downloaded zip folder.

3.3.2.1 Devices with TWI interface:

ATtiny48, ATtiny88, ATmega48A,

3.3.2.2 Devices with USI interface:

ATtiny45-45V, ATtiny85-85V, ATtiny24A, ATtiny44A, ATtiny84-84V, ATtiny2313A,
ATtiny4313, ATtiny261A, ATtiny461A, ATtiny861A, ATtiny43U, ATtiny87, ATtiny167.

3.3.2.3 ATtiny88 as TWI Slave:

Device: ATtiny88
Target Voltage: 5V
Target Frequency: 8MHz Internal

ATmega48PA.

RC Oscillator

Fuse Settings: OXFE (Extended) 0XDD (High) OXEE (Low)

3.4 Hardware connection between TWI Master and TWI Slave

The test setup includes two STK600, one with TWI master and the second with TWI
Slave. For all the supported target devices, the connection details between Master
and Slave is described in the “Hardware Setup” page of Configuration Details.xls
excel sheet document in the downloaded zip folder. As an example, the connection
details for TWI master (ATmega2560) and TWI Slave (ATtiny88) is mentioned below

table 3-1.

Table 3-1. Hardware connection between TWI master and TWI Slave device

ATMEGA2560 as TWI MASTER

ATTINY88 as TWI SLAVE

Description

Master SDA line, M_PD1_SDA is connected to the Slave
SDA line, S_PC4_SDA (TWI SDA line must be pulled-up

M_PD1_SDA S_PC4_SDA externally)
M_PDO_SCL S_PC5_SCL [TBIL - Table Body 9pt_Left]
This pin helps to Enable Bootloader, active low, polled
by Bootloader when it starts. Master M_PCO0_Enable pin
M_PCO_Enable S _PBO is connected to the Slave S_PBO pin
Master resets the slave using this line, note: disable
debugWire on slave. Master M_PC1_RESET pin is
M_PC1_RESET S_PC6/RESET connected to the S_PC6/RESET pin
VCC VCC Both master and Slave has to connected with Vcc
GND GND Common Ground for both Mater and Slave
LEDO_PB1 LEDO is Connected on Slave PB1 pin
LED1_PB3 LED1 is Connected on Slave PB3 pin

RS232 SPARE to PC Serial (don’t
use USB to Serial Converter)

8079A-AVR-08/11

Connect Master device serial port to PC, to accept the
AVROSP commands from PC

ATMEL

L

4 Software Setup

4.1 PC Side Software

AIMEL

@

This section gives a detailed description of how to use the PC Software, TWI_Master
firmware, TWI Slave firmware and Demo Application Software. It is must to have the
master programmed with “” and slave with "TWI_Slave.a90" files using external
programmer in order to perform the up gradation of slave application section.

The "TWI_Slave.a90" program responds to the commands from “TWI_Master”, and
the “TWI_Master” will be getting commands from PC via AVROSP Windows®
software through UART and allows the chip to reprogram.

Here, we use AVROSP as PC software and ATmega2560 is configured as TWI
master. The PC software, AVROSP has the primary function of importing the hex file
(which is to be programmed in Slave device), splitting it into smaller packets and
sending the data to the master device via RS232 interface.

Figure 4-1. AVROSP software application window

e C:AWINDOWS\system32\cmd.exe

BMicrosoft Windows AP [Uersion 5.1.26001
l{C> Copyright 1985-28081 Microsoft Corp.

jlE - F Drive“Project~Bootloader projectsavrlil?_ BootLoader_programming“trunk-Source
Navrll2y

For more details on AVROSP, please refer Application note “AVR911: AVR Open
Source Programmer”

4.1.1 BOOTLOADER COMMANDS

(e}

AVR112

The Bootloader firmware used in this design supports a set of commands used to
read, erase and write to the Flash memory of the target device. The commands are
shown in Table 4-1.

8079A-AVR-08/11

- AVR112

Table 4-1. Bootloader Commands

Command Name

Description

TWIBL COMSETUP

Configures COM PORT for AVROSP communication

The command prompt should display the following:
Enter the COM_PORT_NUMBER

1

Status for device COM1.:

Baud 115200
Parity: None
Data Bits: 8

Stop Bits: 1
Timeout: ON
XON/XOFF: OFF

CTS handshaking: OFF
DSR handshaking: OFF
DSR sensitivity: OFF
DTR circuit: ON

RTS circuit: ON

TWIBL HOSTSIG

Reads the Signature of TWI_Master, to ensure communication between TWIBL_PROG
(Software) and TWI_MASTER

TWIBL UPDATE <filename.hex>

Loads Application (<filename.hex>) to TWI Slave via Boot loader.

TWIBL DIAG

Displays diagnostic messages for last command except for TWI

TWIBL EXEC

Jumps to Application section from Bootloader and run Application

TWIBL ERASE

Erase entire application section except RESET Vector

TWIBL BVERSION

Read Bootloader Version

TWIBL AVERSION

Read Application Version

4.2 TWI Master Firmware

4.3 TWI Slave Firmware

8079A-AVR-08/11

The Master firmware is written to accept the commands and slave’s application hex
file from the PC side AVROSP software. After receiving the desired packets, it is sent
to the slave device via TWI and helps to perform the flash upgrade on the TWI Slave
device.

This firmware is responsible to communicate to both PC and Target device using
UART and TWI respectively.

The TWI Slave firmware is developed for all the AVR microcontrollers with at least
2Kbyte of flash memory, without boot section and communication channel, is either
TWI or USI hardware as TWI. This bootloader is responsible to receive the flash
content from TWI master (ATmega2560) and perform the necessary actions
depending on the commands received.

ATMEL 7

L

ATMEL

5 Getting Started

1. Get the hardware connection ready mentioned in the “MASTER PROGRAMMER”
column of Hardware Setup of Configuration Details.xls excel sheet document in
the downloaded zip folder.

5.1 Programming the TWI Master Device

1. Open
\avrl12 BootLoader_ programming\trunk\Source\avr112\TWI_Master\TWI_Master.
eww

Save All

Clean

Rebuild all

Program ATmega2560 with ... TWI_Master\Release\Exe\TWI_Master.a90

a s~ wDn

5.2 Programming the TWI Slave Device

1. Open
\avrl12_BootLoader_programming\trunk\Source\avr112\TWI_Masten\TWI_Slave.e
ww

2. Select the TWI Slave device in IAR Embedded Workbench® IDE as mentioned in
the below two figures. For instance here ATtiny88 device is selected as TWI slave.

Go to Project > Options—> Category->General Options—> Target tab

(0]

AVR112

8079A-AVR-08/11

8079A-AVR-08/11

- AVR112

Figure 5-1. IAR Embedded Workbench IDE Setupl

Options for node “TWI_Slave™

Categaony:

General Cptions
I ++ Compiler
Assembler

Cuskom Build Target l Output | Library Configuration | Library Options | Heap Configu_ 4|
Build Actions
Linker . .
Debugger Processor configuration
AYR ONE!
CCR 3 -
ICE200
ITAGICE [Use B4-bit doubles ~
ITAGICE mkIT o |—
Dragan
Sirnulator
Third-Party Driver Memory model

| Smal |

System configuration
[Configure system using dialogs [naot in #<CL file)

| =l -

Project > Options—> Category—> C/C++ Compiler-> Preprocessor tab

ATMEL 0

®

ATMEL

Figure 5-2. IAR Embedded Workbench IDE Setup2

Options for, node “TWI_5lave™

Lategory: Factory Settings |
General Options [Multi-file Compilation
- C/C++ Compiler I
Assembler
Custom Build Languagel Code] Dptimizations] Elutput] Lizt Preprocessar IDM
E.ullli.ﬁ.ctlnns [lgnore standard include directories: STOOLEIT_DIR$AMMCY
e $TOOLKIT_DIR$ANCACLIEY
Debugger
AYR ONE! &dditional include directaries; [one per ling)
CCR
ICEZ200
JTAGICE
JDTAGICE rkdl Preinclude file:
ragon
Sirnulator | J
Third-Parky Driver Defined symbals: [one per ling] W Preprocessor autput to file
_ ATTINYES_ [Preserve comments
[Generate Hline directives
ak | Cancel
3. Save All
4. Clean
5. Rebuild all
6. Program Selected Slave device with ... TWI_Slave\Release\Exe\TWI_Slave.a90

5.3 Generate hex file for LED blink Application to be programmed via Bootloader

1. Open
\avrl12_ BootLoader_ programming\trunk\Source\avrl12\Demo_Appl\Demo_Appl.
eww

2. Select the TWI Slave device in IAR Embedded Workbench IDE as mentioned in
the below two figures. For instance here ATtiny88 device selected as TWI slave.

Go to Project > Options—> Category—>General Options—> Target tab

10 AVR112

8079A-AVR-08/11

Figure 5-3. IAR Embedded Workbench IDE Setupl

Options for node “TWI_Slave™

- AVR112

Categaony:

General Options
I ++ Compiler
Assembler
Custom Build
Build Actions
Lirker
Debugger

AVE ONE!

_CR

ICEZ200

ITAGICE
ITAGICE mkII
Dragon

Simulator
Third-Party Driver

Target]Dulput] Library Configuration | Library Options | Heap Configu 4] *

Proceszsar configuration

[+ [
[Usze B4-bit doubles [

[l—

Memary model

| Smal |

System configuration
[Configure system using dialogs [naot in #<CL file)

| [

Project > Options—> Category—> C/C++ Compiler-> Preprocessor tab

8079A-AVR-08/11

ATmEL

®

11

5.4 Functionality Test

12

AVR112

ATMEL

Figure 5-4. IAR Embedded Workbench IDE Setup2

Options for, node “TWI_5lave™

Categorny: Factary Settings |

[Multifile Compilation
B

General Options
- C/C++ Compiler
Assembler
Custom Build
Build Actions
Linker
Debugger

AYR CME!

CCR

ICEZ200

JTAGICE

JDI::;:E rkdl Preinclude file:

Sirmulakor | J

Third-Party Criver

Preprocessor l DLlLl

[lgnore standard include directories: STOOLEIT_DIR$AMMCY
FTOOLKIT_DIRSMMCWCLIB,

Languagel Code] Dptimizations] Elutput] Lizt

Additional include directories: [one per ling]

Defined symbals: [one per ling]
_ATTIMYSS

[v Preprocessar output ta file
[Preserve comments
[Generate #line directives

/| |

Qk. | Cancel

o 0k w

Save All

Clean

Rebuild all

DemoAppl.hex is now ready

Power both TWI Master and TWI Slave (Both LEDO and LED1 will be LIT to
indicate Host boot delay).

Double-Click file “ Start.Cmd “

Type TWIBL , It will ask for COM PORT NUMBER for the first time, enter the COM
PORT NUMBER that is connected to the Master. This will configure the
COMPORT settings. This will also list the TWIBL commands.

Type TWIBL UPDATE DemoAppl.hex to program the application section with
Demo_Appl.hex.

Type TWIBL EXEC to run the programmed code. If target Slave is programmed
with DemoAppl.hex successfully, this will blink LEDO.

Type TWIBL ERASE to erase the programmed application.

8079A-AVR-08/11

8079A-AVR-08/11

- AVR112

7. Type TWIBL AVERSION to get Application Version from EEPROM address 0X05.
What happens if application sections are not programmed?

8. Type TWIBL BVERSION to get Bootloader Version.

Similarly, generate another application hex file to blink LED1 and reprogram the TWI
Slave device using the above mentioned procedure.

ATMEL 1

AIMEL

Y ©

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F

BEA Tower, Milennium City 5
418 Kwun Tong Road

Kwun Tong, Kowloon

HONG KONG

Tel: (+852) 2245-6100

Fax: (+852) 2722-1369

© 2011 Atmel Corporation. All rights reserved.

Atmel Munich GmbH
Business Campus

Parkring 4

D-85748 Garching b. Munich
GERMANY

Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chou-ku, Tokyo 104-0033
JAPAN

Tel: (+81) 3523-3551

Fax: (+81) 3523-7581

Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, and others, are the registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of Microsoft® Corporation in the US
and/or other countries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

8079A-AVR-08/11

	1 Introduction
	2 Theory
	2.1 What is Microcontroller Boot loader and how it works?
	2.2 Bootloader Requirements
	2.3 BASIC OPERATION

	3 Hardware Setup
	3.1 TWI Master – Description
	3.2 TWI Slave – Description
	3.3 TWI Master and TWI Slave configuration
	3.3.1 TWI Master Configuration
	3.3.2 TWI Slave Configuration

	3.4 Hardware connection between TWI Master and TWI Slave

	4 Software Setup
	4.1 PC Side Software
	4.1.1 BOOTLOADER COMMANDS

	4.2 TWI Master Firmware
	4.3 TWI Slave Firmware

	5 Getting Started
	5.1 Programming the TWI Master Device
	5.2 Programming the TWI Slave Device
	5.3 Generate hex file for LED blink Application to be programmed via Bootloader
	5.4 Functionality Test

