MicrROCHIP TB3270
Getting Started with PWM Using CCP on PIC18

Introduction

Authors: Grig Barbulescu, lustinian Bujor, Microchip Technology Inc.

This technical brief provides information about Capture/Compare/PWM (CCP) and Pulse-Width Modulation (PWM)
peripherals and intends to familiarize the user with PIC® microcontrollers. The CCP is a peripheral that times and
controls different events and generates Pulse-Width Modulation (PWM) signals. The PWM peripheral generates a
pulse-width modulated signal determined by the duty cycle and period and that can be configured by the user.

This document describes the application area and the modes of operation, as well as the hardware and software
requirements of the PWM module and of the CCP module configured in PWM mode.

Throughout the document, the configuration of the peripherals will be described in detail. The descriptions will start
with the input Timer selection, the mode of operation and how to change the period, in addition to the duty cycle and
resolution to generate the desired PWM signal.

This document covers the following use cases:

» Configuring a PWM Signal Frequency and Duty Cycle:
How to configure the CCP in conjunction with a Timer to generate a low-speed PWM signal with configurable
frequency and duty-cycle.

* Generating a PWM Signal with Constant On-Time and Variable Frequency:
How to configure the CCP in conjunction with a Timer to generate a PWM signal with a constant on-time of one
microsecond and variable frequency.

* RGB-LED Dimming Using PWM:
How to configure the CCP and PWM in conjunction with a Timer to generate three PWM signals that will
produce a color game on an RGB LED, based on the dimming effect.

For each use case, there are two different software implementations that have the same functionalities: one code
generated with MPLAB® Code Configurator (MCC) and one bare metal code.

The MCC generated code offers hardware abstraction layers that make using code across different devices from the
same family easier. Additionally, the bare metal code is easier to follow and allows for a fast ramp-up on the use case
associated code.

Note: The examples in this technical brief have been developed using PIC18F47Q10 Curiosity Nano development
board. The PIC18F47Q10 pin package present on the board is QFN40.

View Code Examples on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 1

https://microchipdeveloper.com/install:mcc
https://github.com/microchip-pic-avr-examples?q=pic18f47q10pwm&type=&language=

TB3270

Table of Contents

Y igeo [UTex (To] o TN 1
1. PEriPREIal OVEIVIEW...... ...ttt e et e e e et e e e e et e e e e e s aabaeeaesentaaeaeeeeasnsaeeaesasnsreneas 3
2. Configuring a PWM Signal Frequency and Duty CyYCle...........cocuiiiiiiiiiiiiinic e 4

b P /(@ O 1T 0 1T =1 (=Y I @ o [T 4

2.2, Bare Metal COE.........ouueieeiee ettt e e e e e e e e e e et e e e e e e e e e e e e e aaaaaas 5
3. Generating a PWM Signal with Constant On-Time and Variable Frequency..........ccccceeeveiiveeee e, 8

I T P |V (O O € T=T g =T =1 1= Te I 0o Lo [YRR 8

3.2, Bare Metal COdE.......ccuuuuuiiiiiiiiieieeeeeee ettt e aabrarraar—————.. 10
4. RGB-LED DImming UsSiNG PWIM...... ..ottt e et e e e et e e e e e nnae e e e e e e ennneeeaaeann 13

o P V(@] O €11 1T =1 (=Y I @ oo [T 13

4.2, Bare Metal COUE........coooiiieie ettt e et e e e e e e e e e e e e e e e eaeaeeeeeeeeeaeaeaeaenaaes 15
LT 3= (=1 =Y o Lot T SRR RRRRORURPRN 19
6. REVISION HISTOIY ... ettt e e ettt e e e e te et e e e e e nbeeeeaeaannteeeaeeannneeaaean 20
The MICrOChID WEDSITE. ..ottt et e e e e e e e eeaaaaaaeeaeaesesaaanannnssnenennnnnes 21
Product Change Notification SEIVICE.ooiiiiiiiii e s 21
(OIS (o] 0 LY AR TU o] o o] SO OSSPSR PR 21
Microchip Devices Code Protection Feature.............ooiiiiiiiiiiiii e 21
[I=To P 1 Ao i o7 TSRS PPRRRRN 22
B = Lo (=10 =T G TS 22
Quality Management SYSTEM........coi ittt 23
WOrIdWIide SalES @NA SEIVICE........uuuuiiiiieieieeeieeeee ettt ettt r e e e e e eaeeeeeeeeeeeseeeeessssssssssssssnnnns 24

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 2

TB3270

Peripheral Overview

Peripheral Overview

The CCP peripheral can operate in one of the three modes:
» Capture
» Compare
* Pulse-Width Modulation (PWM)

This technical brief focuses on presenting the PWM mode of the CCP peripheral. In PWM mode, it can generate
pulse-width modulated signals with configurable frequency and duty cycle.

The PWM peripheral is a simplified version of the CCP module and designed to function only in PWM mode.

The PWM provides power to a load by quickly switching between two states: ON and OFF. The PWM signal consists
of a square wave where the high portion, also known as pulse-width, of the signal is considered the ON state while
the low portion of the signal is considered the OFF state. The three main characteristics of a PWM signal are: period,
duty cycle and resolution.

The PWM period is defined as the duration of one complete cycle or the total amount of On and Off time combined.

The PWM duty cycle describes the proportion of the On time to the Off time and it is expressed in percentages where
0% is fully Off and 100% is fully On. A lower duty cycle corresponds to less power applied and a higher duty cycle
corresponds to more power applied.

The pulse-width can vary in time and is defined in steps. The PWM resolution defines the maximum number of steps
that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse-width
time, which then influences the power that is applied to the load.

For the CCP to operate in PWM mode, Timer2/4/6 must be linked to it. The period of the PWM signal generated by
CCP in PWM mode is represented by the period register of the respective Timer. It is required for the Timer to have
Fosc/4 as clock input for correct PWM operation.

The following figure shows a simplified block diagram of the CCP module in PWM mode of operation.

Figure 1-1. PWM Block Diagram

Duty Cycle registers o 20200100

‘ CCPRY/PWMxDC ‘

\/l
Latched PWMXOUT
(Not visible to user) —_—

to other peripherals

|
‘ Comparator | R Q 0
- > [PWMx
o— S Q L RxyPPS
_____ - — — |/ "

-
TMR2 Module

Output Polarity (PWMxPOL)

Clear Timer,
PWMx pin and
latch Duty Cycle

Note 1: 8-bit timer is concatenated with the two Least Significant bits of 1/Fosc adjusted by the Timer2 prescaler to
create a 10-bit time base.

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 3

21

TB3270
Configuring a PWM Signal Frequency and Dut...

Configuring a PWM Signal Frequency and Duty Cycle

This example shows how to initialize the CCP1 peripheral in PWM mode, the Timer2 and other software and
hardware requirements to generate a low-speed PWM signal with configurable frequency and duty cycle.

The configuration of the PWM parameters is done at run time and through the usage of a button. This allows the
configuration to differentiate long presses from short presses.

When a short press occurs, the value of the PWM duty cycle increases in steps of 25%. Its minimum value is 25%
and its maximum value is 75%. Whenever the maximum value is reached, a new short press will cause a transition to
the minimum value.

When a long press occurs, the value of the PWM frequency increases in steps of one Hz. Its minimum value is 1 Hz
and its maximum value is 4 Hz. Whenever the maximum value is reached, a new long press will cause a transition to
the minimum value.
To achieve the functionality described by the use case, the following actions will have to be performed:

» System clock initialization

» Port initialization

* Timer2 initialization

* CCP1 initialization

» PPS initialization

MCC Generated Code
To generate this project using MPLAB® Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open the MCC from the toolbar. Information about how to install the MCC plug-in can be found here.
3. Go to Project Resources — System — System Module and do the following configuration:
— Oscillator Select: LFINTOSC
— Clock Divider: 1
— In the Watchdog Timer Enable field from the WWDT tab, make sure WDT Disabled is selected.
— In the Programming tab, make sure Low-Voltage Programming Enable is checked.

4. From the Device Resources window, add TMR2 and CCP1. Do the following configurations for
each peripheral:
Timer2 Configuration:

Hardware Settings tab
* Enable Timer: checked
» Control Mode: Roll over pulse
» Start/Reset Option: Software control
Timer Clock tab
» Clock Source: Fogc/4
* Prescaler: 1:32
» Postscaler: 1:1
Timer Period tab
» Timer Period: 1.057s
Software Settings tab
* Enable Timer Interrupt: unchecked

CCP1 Configuration:

— Enable CCP: checked
— CCP Mode: PWM
— Select Timer: Timer2

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 4

https://microchipdeveloper.com/install:mcc

2.2

TB3270
Configuring a PWM Signal Frequency and Dut...

— Duty Cycle: 25%
— CCPR Alignment: right_aligned
5. Open Pin Manager — Grid View window, select UQFN40 in the Package field and do the following pin
configurations:
— Set Port B pin 4 (RB4) as output for CCP1
— Set Port E pin 2 (RE2) as GPIO input

Figure 2-1. Pin Mapping

Package: | UQFN40 | ~ ‘Pin No: 17‘18‘19

20‘21‘22‘29‘28 8 ‘ 9 ‘10‘11‘12‘13‘14‘15 30‘31‘32‘33‘38‘39‘40‘ 1 34‘35‘36 37‘ 2 ‘ 3 ‘ 4 ‘ 5 23‘24‘25‘16

PortA VY PortB Y PortC V¥ PortD V¥ PortEVY

Module Function Direction 0 |12 3|4 5 6(7|0|(1|2|3/4{5 6 7 0 1 2 3(4(5/6(7(0(1 2 3 4|5/6/7/0/1{2]|3
ccP1 CCP1 output B|a|ba|ba|d|a s ssd|d s |E|E BB

0sC CLKOUT |output]

PinModu\eVGPlo input RGO R R R R O R R R CC CC C CRCC IR

GPIO output |m|m|B|B BB B |b|B|B|b|b|b|dE s s e e BB BB BB D DB BB e BB BB

RESET MCLR input]
TMR2 T2IN input GGG OO GGG GG

6. Go to Project Resources — System — Pin Module — Easy Setup and enable WPU for the RE2 pin.
Click Generate in the Project Resources tab.
8. Inthemain.c file generated by MCC, add the following code:

— ButtonCheck () function

— Button press handling

N

The ButtonCheck () function is used to detect if the button is pressed and, if so, to differentiate a long button
press from a short button press. The method used is the incrementation of a counter. As long as the button is
pressed, the counter value increments continuously and, after that, a check is performed to determine if the
counter value is smaller or greater than a specific threshold. The function can return one of the three states:
BT NOCHANGE, BT SHORT PRESS, BT LONG_PRESS.

The button press handling is done inside the while (1) loop. The ButtonCheck () function is called
continuously and, depending on the value that it returned, the PWM frequency and duty cycle change, as
referenced earlier in this use case.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

Bare Metal Code
The necessary code and functions to implement the presented example are analyzed in this section.
The first step is to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage

Programming.

#pragma config WDTE = OFF
#pragma config LVP = ON

The internal oscillator must be set to the desired value. Since the purpose of this example is to generate a low-speed
PWAM signal, the Low-Frequency Oscillator was used. The value of the clock frequency will be 31 kHz. This translates

into the following function:
static void CLK Initialize(void
/* Configure NOSC LFINTOSC; NDIV 1 FOSC = 31kHz */

OSCCON1lbits.NOSC 5
OSCCON1lbits.NDIV 0

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 5

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-pwm-basic-demo-mcc

TB3270
Configuring a PWM Signal Frequency and Dut...

The output driver for I/O pin RB4 must be enabled since it will be used as CCP1 output while RE2 must be configured
as analog input with internal pull-up enabled. This translates into the following function:

static void PORT Initialize (void

/* RB4 is output for PWM1 */

TRISBbits.TRISB4 = 0

/* RE2 is digital input with pull-up for push-button */
TRISEbits.TRISE2 = 1

ANSELEbits .ANSELE2 = 0

WPUEbits .WPUE2 = 1

For Timer2 to use as clock source Fpogc/4 with a 1:32 clock prescaler, the following function is used:

#define XTAL FREQ 31000UL

#define FREQUENCY MIN 1 /* Hz */

#define TIMER_PRESCALER 32 /* 1:32 */

#define FREQUENCY TO_ PR_CONVERT (F) (uint8_t) (((_XTAL_FREQ)/ \

(4* (F))/ (TIMER_PRESCALER)) -1)
static void TMR2 Initialize (void

/* TIMER2 clock source is FOSC/4 */
T2CLKCONbits.CS = 1

/* TIMER2 counter reset */
T2TMR = 0x00

/* TIMER2 ON, prescaler 1:32, postscaler 1:1 */
T2CONbits.OUTPS = 0

T2CONbits.CKPS = 5
T2CONbits .ON = 1

/* Configure the default period */
PR2 = FREQUENCY TO PR _CONVERT (FREQUENCY MIN

CCP1 is configured in PWM mode and uses Timer2 as period generator. The value from the CCPR1 register is left-
aligned and the initial duty cycle value is set at 25%. This translates into the following function:

#define _XTAL FREQ 31000UL
#define FREQUENCY MIN 1 /* Hz */
#define DUTYCYCLE MIN 25 /* percents */

#define DUTYCYCLE_TO_CCPR_CONVERT (D,F) (uintl6_t) ((float) (D) * (((_XTAL_FREQ)/ \
(F) / (TIMER_PRESCALER)) -1)/100.0)

static void PWMl Initialize (void

/* MODE PWM; EN enabled; FMT left_aligned */
CCP1CONbits.MODE = 0x0C

CCP1CONbits.FMT = 1

CCP1CONbits.EN = 1

/* Selecting Timer 2 */
CCPTMRSbits.C1TSEL = 1

/* Configure the default duty cycle */
CCPR1 = (DUTYCYCLE TO CCPR_CONVERT (DUTYCYCLE MIN, FREQUENCY MIN << 6

Configuring the location of the pins is independent of the application purpose and the CCP mode. Each
microcontroller has its own default physical pin position for peripherals, though the pin positions can be changed
using the Peripheral Pin Select (PPS).

Therefore, the CCP pins can be relocated using the CCP1PPS and CCP2PPS registers for the input channels while
using the RxyPPS registers for the output channels. The PPS configuration values can be found in the Peripheral Pin

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 6

TB3270
Configuring a PWM Signal Frequency and Dut...

Select Module section of a device data sheet. For this example, the output PWM signal from CCP1 will be routed to
the RB4 pin. This translates into the following code:

static void PPS_Initialize (void

/* Configure RB4 for PWMl1l output */
RB4PPS = 0x05

At run time, the PWM generator is configured using these functions for duty cycle and period values respectively:

static void PWMl LoadDutyValue (uintl6_t dutyValue

/* Only the upper 10 bits are used in register CCPR1 */
CCPR1 = dutyValue << 6

static void TMR2_ LoadPeriodRegister (uint8_ t periodval

/* Configure the period register */
PR2 = periodvVal

To achieve the functionality presented in the description of this use case, the following functions need to be
implemented:
e ButtonCheck () function

» Button press handling

The ButtonCheck () function is used to detect if the button is pressed and, if so, to differentiate a long button press
from a short button press. The method used is the incrementation of a counter. As long as the button is pressed, the
counter value increments continuously and, after that, a check is performed to determine if the counter value is
smaller or greater than a specific threshold. The function can return one of the three states: BT NOCHANGE,

BT SHORT PRESS, BT LONG PRESS.

The button press handling is done inside the while (1) loop. The ButtonCheck () function is called continuously
and, depending on the value that it returned, the PWM frequency and duty cycle changes, as referenced earlier in
this use case.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 7

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-pwm-basic-demo-bare

TB3270
Generating a PWM Signal with Constant On-Time ...

3. Generating a PWM Signal with Constant On-Time and Variable
Frequency

This example shows the initialization of the CCP2 peripheral in PWM mode, the initialization of Timer4 and other
software and hardware requirements to generate a PWM signal with a constant pulse-width of one microsecond and
variable frequency.

The configuration of the PWM frequency is done through the usage of a button.

When a press occurs, the PWM frequency value doubles. Its minimum value is 50 kHz and its maximum value is 800
kHz. Whenever the maximum value is reached, a new press will cause a transition to the minimum value.

Figure 3-1. PWM Signals for Each Frequency

A

F =50 kHz

F =100 kHz

F =200 kHz

F =400 kHz

essows VU U

'Time
1 3

To achieve the functionality described by the use case, the following actions must be performed:
» System clock initialization
« Portinitialization
» Timer4 initialization
» CCP2 initialization
+ PPS initialization

31 MCC Generated Code
To generate this project using MPLAB® Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.

2. Open the MCC from the toolbar. Information about how to install the MCC plug-in can be found here.
3. Go to Project Resources — System — System Module and do the following configuration:

Oscillator Select: HFINTOSC

HF Internal Clock: 64 MHz

Clock Divider: 1

In the Watchdog Timer Enable field in the WWDT tab, make sure WDT Disabled is selected.

In the Programming tab, make sure Low-Voltage Programming Enable is checked.

4. From the Device Resources window, add TMR4 and CCP2. Do the following configurations for
each peripheral:
Timer4 Configuration:

— Hardware Settings tab

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 8

https://microchipdeveloper.com/install:mcc

TB3270
Generating a PWM Signal with Constant On-Time ...

* Enable Timer: checked

« Control Mode: Roll over pulse

» Start/Reset Option: Software control
— Timer Clock tab

* Clock Source: Fogc/4

* Prescaler: 1:2

* Postscaler: 1:1
— Timer Period tab

» Timer Period: 20 us
— Software Settings tab

* Enable Timer Interrupt: unchecked

CCP2 Configuration:

Enable CCP: checked
CCP Mode: PWM
Select Timer: Timer4
Duty Cycle: 5%
— CCPR Alignment: right_aligned
5. Open Pin Manager — Grid View window, select UQFN40 in the Package field and do the following pin
configurations:
— Set Port C pin 7 (RC7) as output for CCP2
— Set Port E pin 2 (RE2) as GPIO input

Figure 3-2. Pin Mapping

Package: | UQFN40 | ~ ‘Pin No: 17‘18‘19

37‘ 2 ‘ 3 ‘ 4 ‘ 5 23‘24‘25‘16

20‘21‘22‘29‘28 8 ‘ 9 ‘10‘11‘12‘13‘14‘15 30‘31‘32‘33‘38‘39‘40‘ 1 34‘35‘36

PortAY PortBY PortC V¥ PortD ¥ PortEVY
Module Function Direction 0 |12 3|4 5 6(7|0|(1|2|3|4/5 6 7 01 2 3(4(5/6|7|0(1 2 3 4|5/6/7|/0/112]3
CCP2 CCP2 output I I T T A A A - I B B BIG BIGR L
0sC CLKOUT |output B

DGO GG GGG GGG G GG

r
r

GPIO input RG]

Pin Module ¥
GPIO output 'BmBBBE B B|bE|BEE|EEEEEEEEBb|h|B|b|E|EEE e EE BB B|A
RESET MCLR input a8
TMR4 TAIN input GG R R R B

6. Go to Project Resources — System — Pin Module — Easy Setup and enable WPU for the RE2 pin.
Click Generate in the Project Resources tab.
8. Inthemain.c file generated by MCC, add the following code:

— ButtonCheck () function

— Button press handling

The ButtonCheck () function is used to detect if the button is pressed. Whenever a press is detected, a 10
ms delay is applied to avoid the bouncing effect and the program waits until the button is released. The
function can return one of the two states: BT NOCHANGE or BT PRESS.

N

void main (void)

{
uint8 t index = 0;
/* Initialize the device */
SYSTEM Initialize();

while (1)
{
if (ButtonCheck () == BT_PRESS)

{
/* When a button press is detected, the index is updated */

index++;
if (index >= FREQUENCY_LIST_DIMENSION)
index = 0;

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 9

3.2

TB3270
Generating a PWM Signal with Constant On-Time ...

/* and the frequency is changed to the next one in the list */
TMR4 LoadPeriodRegister (frequencies list[index

The frequencies_list array contains the selectable PWM frequencies presented in the description of this
use case (50 kHz, 100 kHz, 200 kHz, 400 kHz, and 800 kHz).

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

Bare Metal Code

The necessary code and functions to implement the presented example are analyzed in this section.

The first step is to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming.

#pragma config WDTE = OFF
#pragma config LVP = ON

The internal oscillator must be set to the desired value. This example uses the HFINTOSC with a frequency of 64
MHz. This translates into the following function:

static void CLK Initialize (void

/* Configure NOSC HFINTOSC; NDIV 1; FOSC = 64MHz */
OSCCON1lbits.NOSC 6
OSCCONlbits.NDIV 0

/* HFFRQ 64 _MHz */
OSCFRQbits.HFFRQ = 8

The output driver for I/O pin RC7 must be enabled since it will be used as CCP2 output. RE2 must be configured as
analog input with internal pull-up enabled. This translates into the following function:

static void PORT Initialize (void

/* RC7 is output for PWM2 */

TRISCbits.TRISC7 = 0

/* RE2 is digital input with pull-up for push-button */
TRISEbits.TRISE2 = 1

ANSELEbits.ANSELE2 = 0

WPUEbits WPUE2 = 1

For Timer4 to use as clock source Fpgc/4 with a 1:2 clock prescaler, the following function is used:

static void TMR4 Initialize (void

/* TIMER4 clock source is FOSC/4 */
T4CLKCONbits.CS = 1

/* TIMER4 counter reset */
T4TMR = 0x00

/* TIMER4 ON, prescaler 1:2, postscaler 1:1 */
T4CONbits.OUTPS = 0

T4CONbits.CKPS = 1
T4CONbits.ON = 1

/* Configure initial period register value */

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 10

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-pwm-constant-on-time-mcc

TB3270
Generating a PWM Signal with Constant On-Time ...

PR4 = frequencies_list|[0];
}

CCP2 is configured in PWM mode with a constant pulse-width of one microsecond and uses Timer4 as period
generator. This translates into the following function:

static void PWM2 Initialize (void)
{
/* MODE PWM; EN enabled; FMT right_aligned */
CCP2CONbits .MODE = 0x0C;
CCP2CONbits.FMT = 0
CCP2CONbits.EN = 1;

/* Constant on-time setting is 1 us */
CCPR2 = 32;

/* Select timer 4 */
CCPTMRSbits.C2TSEL = 2;
}

Configuring the location of the pins is independent of the application purpose and the CCP mode. Each
microcontroller has its own default physical pin position for peripherals, but the pin positions can be changed using
the Peripheral Pin Select (PPS).

Therefore, the CCP pins can be relocated using the CCP1PPS and CCP2PPS registers for the input channels while
using the RxyPPS registers for the output channels.

The PPS configuration values can be found in the Peripheral Pin Select Module section of a device data sheet. For
this example, the output PWM signal from CCP2 will be routed to RC7 pin. This translates into the following code:

static void PPS_Initialize (void)

{
/* Configure RC7 for PWM2 output */
RC7PPS = 0x06;

}

To achieve the functionality presented in the description of this use case, the following functions need to be
implemented:

* ButtonCheck () function
» Button press handling
* TMR4 loadPeriodRegister () function

The ButtonCheck () function is used to detect if the button is pressed. Whenever a press is detected, a delay of 10
ms is applied to avoid the bouncing effect and the program waits until the button is released. The function can return
one of the two states: BT NOCHANGE or BT PRESS.

static void TMR4 LoadPeriodRegister (uint8_t periodval)
{

/* Configure the period register */

PR4 = periodVal;
}

void main (void)
{
uint8_t index = 0;
/* Initialize the device */
PORT_Initialize();
PPS Initialize() ;
CLK Initialize();
TMR4 Initialize();
PWM2_ Initialize();

while (1)
{
if (ButtonCheck () == BT_PRESS)
{
/* When a button press is detected, the index is updated */
index++;
if (index >= FREQUENCY_ LIST DIMENSION)

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 11

TB3270
Generating a PWM Signal with Constant On-Time ...

index = 0

/* and the frequency is changed to the next one in the list */
TMR4 LoadPeriodRegister (frequencies_list[index

The frequencies list array contains the selectable PWM frequencies presented in the description of this use
case (50 kHz, 100 kHz, 200 kHz, 400 kHz and 800 kHz).

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 12

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-pwm-constant-on-time-bare

TB3270
RGB-LED Dimming Using PWM

4, RGB-LED Dimming Using PWM

This example shows the initialization of the CCP1, CCP2, PWM3, Timer2 peripherals as well as other software and
hardware requirements to generate three PWM signals. This signal generation will then produce a color game on an
RGB LED, based on the dimming effect.

The color game is based on the dimming effect applied on an RGB LED. It is composed of three steps:

The red channel decreases its brightness from fully On to fully Off as the green channel increases its brightness
from fully Off to fully On. During this step, the blue channel is turned fully Off.

The green channel decreases its brightness from fully On to fully Off as the blue channel increases its
brightness from fully Off to fully On. During this step, the red channel is turned fully Off.

The blue channel decreases its brightness from fully On to fully Off as the red channel increases its brightness
from fully Off to fully On. During this step, the green channel is turned fully Off.

The three steps are repeating circularly and the updates of the duty cycles are triggered by interrupts.

Figure 4-1. LED Light Intensity for Each Channel

LED Light Intensity 4

>

= = == = RED
GREEN
BLUE

MAX_BRIGHT §

- - - -

e
w

-— e
'
'
'
'

MIN_BRIGHT

) Y Ls2 I 5o Y S2

To achieve the functionality described by the use case, the following actions must be performed:

System clock initialization
Port initialization

Timer2 initialization
CCP1 initialization

CCP2 initialization
PWM3 initialization

PPS initialization
Interrupts initialization
Timer2 interrupt handling

4.1 MCC Generated Code
To generate this project using MPLAB® Code Configurator (MCC), follow the next steps:

1.
2.
3.

Create a new MPLAB X IDE project for PIC18F47Q10.
Open the MCC from the toolbar. Information about how to install the MCC plug-in can be found here.
Go to Project Resources — System — System Module and do the following configuration:

— Oscillator Select: HFINTOSC

— HF Internal Clock: 64_MHz

— Clock Divider: 1

— In the Watchdog Timer Enable field in the WWDT tab, make sure WDT Disabled is selected.

— In the Programming tab, make sure Low-Voltage Programming Enable is checked.

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 13

https://microchipdeveloper.com/install:mcc

TB3270
RGB-LED Dimming Using PWM

4. From the Device Resources window, add TMR2, CCP1, CCP2 and PWM3. Do the following configurations for
each peripheral:
Timer2 Configuration:
— Hardware Settings tab
« Enable Timer: checked
» Control Mode: Roll over pulse
» Start/Reset Option: Software control
Timer Clock tab
» Clock Source: Fogc/4
* Prescaler: 1:8
* Postscaler: 1:16
Timer Period tab
» Timer Period: 2.048 ms
Software Settings tab
* Enable Timer Interrupt: checked

CCP1 Configuration:

— Enable CCP: checked

— CCP Mode: PWM

Select Timer: Timer2

Duty Cycle: 100.0%

CCPR Alignment: left_aligned

CCP2 Configuration:

Enable CCP: checked

CCP Mode: PWM

Select Timer: Timer2

Duty Cycle: 100.0%

CCPR Alignment: left_aligned

PWM3 Configuration:

Enable CCP: checked
Select Timer: Timer2
Duty Cycle: 100.0%
— PWM Polarity: active_hi
5. Open Pin Manager — Grid View window, select UQFN40 in the Package field and do the following pin
configurations:
— Set Port B pin 0 (RBO) as output for CCP1
— Set Port B pin 3 (RB3) as output for CCP2
— Set Port D pin 0 (PDO) as output for PWM3

Figure 4-2. Pin Mapping

Package: ‘ UQFN40 | > | Pin No: 17‘18‘19‘20‘21‘22‘29‘28 8 ‘ 9 ‘10‘11‘12‘13‘14‘15 30‘31‘32‘33‘38‘39‘40‘ 1 34‘35‘36‘37‘ 2 ‘ 3 ‘ 4 ‘ 5 23‘24‘25‘16

PortAY PortBY PortCV¥ PortD ¥ PortEY
Module Function Direction 0 (1|2 3 |4(5 6|7/0|1|2/3|4|5(6 7/0/1 2(3/4/ 5|/6(7]/0|1|2 3|45 6|7(01 2|3
CCP1 CCP1 output GGG RGN G R R RGO

CcCcp2 CCcp2 output Blb|b|6|b BB B BB BB B BB
QsC CLKOUT |output
PWM3 PWM3 |output |B|B|B8 B |8 |
GPIO input
GPIO output BB |d B |B|HB
RESET MCLR input a
TMR2 T2IN input CRCRRCRN IO

-4
or
o
-4
or
o
|| |
or
o
[
o>
o
[
or
o
-4
or
o
-4
or
o
-4
or
o
-3
-3
o
-4
or
o
-4
or
o
-4
or

Pin Module ¥

-
-
-
-
-
-
-
-
-
-

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 14

4.2

TB3270
RGB-LED Dimming Using PWM

6. Go to Project Resources — System — Pin Module — Easy Setup and enable WPU for the RE2 pin.
7. Click Generate in the Project Resources tab.
8. Inthemain.c file generated by MCC, add the following code:

— Enable the global interrupt function

— Add TMR2 interrupt function

— Set the TMR2 interrupt handler initializer

void RGB_LED Handler (void
void main (void
/* Initialize the device */
SYSTEM Initialize
TMR2 SetInterruptHandler (RGB_LED Handler

/* Enable the Global Interrupts */
INTERRUPT GlobalInterruptEnable

/* Enable the Peripheral Interrupts */
INTERRUPT PeripherallnterruptEnable

while (1

//Add your application code

The RGB_LED Handler () function creates the color game on the RGB LED, as presented in the description
of this use case.

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

Bare Metal Code

The necessary code and functions to implement the presented example are analyzed in this section.

The first step is to configure the microcontroller to disable the Watchdog Timer and to enable Low-Voltage
Programming.

#pragma config WDTE = OFF
#pragma config LVP = ON

The internal oscillator must be set to the desired value. This example uses the HFINTOSC with a frequency of 64
MHz. This translates into the following function:

static void CLK Initialize (void
/* Configure NOSC HFINTOSC; NDIV 1; FOSC = 64MHz */

OSCCON1lbits.NOSC 6
OSCCON1lbits.NDIV 0

/* HFFRQ 64 MHz */
OSCFRQbits.HFFRQ = 8

The output driver for I/O pins RBO, RB3 and RDO must be enabled. They will be used as output for CCP1, CCP2 and
PWMB, respectively. This translates into the following function:

static void PORT Initialize (void

/* RBO is output for PWM1l */

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 15

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-pwm-rgb-led-mcc

TB3270

RGB-LED Dimming Using PWM

TRISBbits.TRISBO = 0
/* RB3 is output for PWM2 */
TRISBbits.TRISB3 = 0;
/* RDO is output for PWM3 */
TRISDbits.TRISDO = 0;

Timer2 uses as clock source Fogc/4 with a 1:8 clock prescaler and a 1:16 postscaler and has the overflow interrupt

enabled. This translates into the following function:

#define MAX DCY 1023

static void TMR2 Initialize (void)

{
/* TIMER2 clock source is FOSC/4 */
T2CLKCONbits.CS = 1;

/* TIMER2 counter reset */
T2TMR = 0x00;

/* TIMER2 prescaler 1:8, postscaler 1:16 */
T2CONbits.CKPS = 3;
T2CONbits.OUTPS = 15;

/* TIMER2 period register setting, divided by 4 because FOSC/4 is used for PWM mode */

T2PR = MAX DCY >> 2;

/* Clearing IF flag before enabling the interrupt */
PIR4bits.TMR2IF = 0;

/* Enabling TIMER2 interrupt */
PIE4bits.TMR2IE = 1;

/* TIMER2 ON */
T2CONbits.ON = 1;

CCP1 is configured in PWM mode and uses Timer2 as period generator. The value from the CCPR1 register is left-
aligned and the initial duty cycle value is set at 100%, corresponding to a minimum brightness in common anode
LEDs. For a common cathode LED, the initial duty cycle will be set at 0%. This translates into the following function:

#define MAX DCY 1023
#define LED_MIN BRIGHT (MAX_DCY)

static void PWMl Initialize (void)
{
/* MODE PWM; EN enabled; FMT left aligned */
CCP1CONbits .MODE = 0x0C;
CCP1CONbits.FMT = 1;
CCP1CONbits.EN = 1;

/* Selecting Timer 2 */
CCPTMRSbits.CIlTSEL = 1;

/* Configure initial duty cycle */
CCPR1 = (uintl6_t)LED_MIN BRIGHT << 6;

CCP2 is configured in PWM mode and uses Timer2 as period generator. The value from the CCPR2 register is left-
aligned and the initial duty cycle value is set at 100%, corresponding to a minimum brightness in common anode
LEDs. For a common cathode LED, the initial duty cycle will be set at 0%. This translates into the following function:

#define MAX DCY 1023
#define LED_MIN_BRIGHT (MAX_DCY)

static void PWM2 TInitialize (void)
{
/* MODE PWM; EN enabled; FMT left aligned */
CCP2CONbits .MODE = 0x0C;
CCP2CONbits.FMT = 1;
CCP2CONbits.EN = 1;

© 2020 Microchip Technology Inc. Technical Brief

DS90003270B-page 16

TB3270
RGB-LED Dimming Using PWM

/* Selecting Timer 2 */
CCPTMRSbits.C2TSEL = 1;

/* Configure initial duty cycle */
CCPR2 = (uintl6_t)LED_MIN BRIGHT << 6
}

PWM3 uses Timer2 as period generator. The initial duty cycle value is set at 100%, corresponding to a minimum
brightness in common anode LEDs. For a common cathode LED, the initial duty cycle will be set at 0%. This
translates into the following function:

#define MAX DCY 1023
#define LED MIN BRIGHT (MAX DCY)

static void PWM3 Initialize (void)

{
/* PWM3 enabled module, polarity normal */

PWM3CONbits .EN = 1;
PWM3CONbits.POL = O;

/* Select timer 2 */
CCPTMRSbits.P3TSEL = 1;

/* Configure initial duty cycle */
PWM3DC = (uintlé_t)LED MIN BRIGHT << 6;
}

Configuring the location of the pins is independent of the application purpose and the CCP mode. Each
microcontroller has its own default physical pin position for peripherals, but the pin positions can be changed using
the Peripheral Pin Select (PPS).

Therefore, the CCP pins can be relocated using the CCP1PPS and CCP2PPS registers for the input channels while
using the RxyPPS registers for the output channels. The PPS configuration values can be found in the Peripheral Pin
Select Module section of a device data sheet.

For this example, the output PWM signal from CCP1 will be routed to the RBO pin, the output PWM signal from CCP2
will be routed to RB3, and the output PWM signal from PWM3 will be routed to RDO. This translates into the following

code:

static void PPS_Initialize (void)

{
/* Configure RBO for PWM1l output */

RBOPPS = 0x05;
/* Configure RB3 for PWM2 output */
RB3PPS = 0x06;
/* Configure RDO for PWM3 output */
RDOPPS = 0x07;

}

Before any processing is done, the interrupts of the microcontroller must be activated. This is done by setting the
Global Interrupt Enable (GIE) and the Peripheral Interrupt Enable (PIE) bits of the INTCON register.

static void INTERRUPT Initialize (void)

{
/* Enable the Global Interrupts */

INTCONbits.GIE = 1;

/* Enable the Peripheral Interrupts */
INTCONbits.PEIE = 1;
}

Whenever Timer2 interrupt occurs, the duty cycle of the PWM signals is changed as mentioned in the use case
description.

static void TMR2_ ISR (void)

/* clear the TMR2 interrupt flag */
PIR4bits.TMR2IF = 0O;

/* user ISR function call; */

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 17

TB3270
RGB-LED Dimming Using PWM

RGB_LED Handler

The RGB_LED Handler () function creates the color game on the RGB LED, as presented in the use case
description. Using LED_COMMON ANODE macro definition, the color sequence can be configured at compile time for
either common anode or common cathode LEDs.

The Timer2 interrupt handler is handled by the following function:

static void __ interrupt INTERRUPT InterruptManager (void

/* interrupt handler */
if (INTCONbits.PEIE

if PIE4bits.TMR2IE) && (PIR4bits.TMR2IF

TMR2_ISR

View the PIC18F47Q10 Code Example on GitHub

Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 18

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-pwm-rgb-led-bare

TB3270

References

5. References
1. MPLAB Code Configurator User’s Guide
2. PIC1000: Getting Started with Writing C-Code for PIC16 and PIC18

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 19

http://ww1.microchip.com/downloads/en/devicedoc/40001725b.pdf
https://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en1002117

6.

TB3270

Revision History

Revision History

oocrer oo comens

B 10/2020 Updated PIC1000 link from References section

A 5/2020 Initial document release

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 20

TB3270

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

» Microchip products meet the specifications contained in their particular Microchip Data Sheet.

» Microchip believes that its family of products is secure when used in the intended manner and under normal
conditions.

* There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

» Microchip is willing to work with any customer who is concerned about the integrity of its code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 21

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

TB3270

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS 1S”. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeelLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/0, SMART-I.S., SQlI, SuperSwitcher, SuperSwitcher I, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-6880-6

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 22

TB3270

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2020 Microchip Technology Inc. Technical Brief DS90003270B-page 23

http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC B

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

© 2020 Microchip Technology Inc.

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Technical Brief

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS90003270B-page 24

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Peripheral Overview
	2. Configuring a PWM Signal Frequency and Duty Cycle
	2.1. MCC Generated Code
	2.2. Bare Metal Code

	3. Generating a PWM Signal with Constant On-Time and Variable Frequency
	3.1. MCC Generated Code
	3.2. Bare Metal Code

	4. RGB-LED Dimming Using PWM
	4.1. MCC Generated Code
	4.2. Bare Metal Code

	5. References
	6. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

