

Getting Started with HLVD (High/Low-Voltage Detect)

Introduction

Author: Namrata Dalvi, Microchip technology Inc.

Many PIC® microcontrollers have a High/Low-Voltage Detect (HLVD) module that can be used to monitor the device voltage (V_{DD}) and inform the user through an interrupt signal when the supply voltage drops below the specified threshold (i.e., trip point) or exceeds the trip point. This is a programmable circuit that allows the user to set the device voltage trip point and the direction of change from the trip point: positive going (exceeding the trip point), negative going (falling below the trip point) or both. This feature is useful in battery monitoring applications.

This technical brief describes the HLVD peripheral in detail. It also covers the following use cases:

- · Monitoring battery discharge
- · Detection of USB-power attach or detach

© 2019 Microchip Technology Inc.

Technical Brief

DS90003237A-page 1

Table of Contents

Intr	oducti	on	1		
1.	. Relevant Devices				
2.	2. General Overview				
3.	3. Block Diagram				
4.	Detailed Operation				
	4.1.	6			
	4.2.	Operation of the Module in Various Sleep Modes	7		
	4.3.	7			
	4.4.	HLVD Start-up Time	7		
5.	Applications				
	5.1.	Battery Monitoring	8		
	5.2.	Detection of Universal Serial Bus (USB) Attach or Detach	10		
6.	Conclusion				
The	Micro	ochip Website	14		
Pro	duct C	Change Notification Service	14		
Cus	stome	Support	14		
Mic	rochip	Devices Code Protection Feature	14		
Leç	jal Not	tice	14		
Tra	demaı	ks	15		
Qua	ality M	anagement System	15		
Wo	rldwid	e Sales and Service	16		

1. Relevant Devices

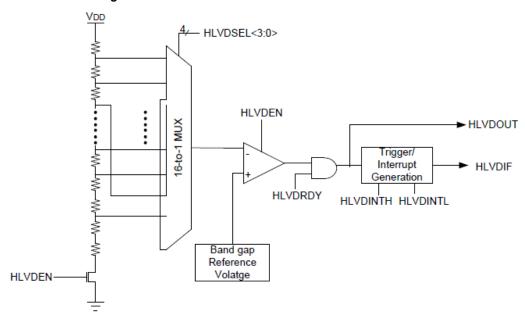
The following PIC® microcontroller families are equipped with the HLVD module:

- PIC18-Q10
- PIC18-K40
- PIC18-K42
- PIC18-K83

2. General Overview

The HLVD is a necessary power supply monitoring feature in numerous battery-powered applications, where the supply voltage of a microcontroller may fall below the specified threshold level and require battery replacement or recharging for the uninterrupted operation of the microcontroller. The HLVD feature is capable of monitoring the supply voltage of a microcontroller which is directly powered by a battery power source. The HLVD-based voltage monitoring circuitry has several advantages over an ADC-based voltage monitoring circuit, as listed below:

- The microcontroller PORT pins are not required to implement the supply voltage monitor.
- 2. This module does not require external components, and hence no excess power consumption by the external circuitry.
- 3. The HLVD module uses an internal bandgap reference and draws a typical of 22 μA when enabled. It can be disabled except when needed to reduce even this tiny current draw.
- 4. It can generate an interrupt when V_{DD} is below or above the selected trip point (depending on how it is configured).


Note:

- The HLVD can only be used to measure the supply voltage of the microcontroller (i.e., V_{DD}), so it cannot be used to monitor a battery supplying power through a voltage regulator.
- 2. There are 16 steps over the measurement range with manufacturing tolerances on the bandgap reference and internal resistive voltage divider. The trip point settings shown below in Table 4-1 are available for a PIC18-Q10 family of devices. The trip point settings depend on the device used. Refer to the device data sheet for more details.

3. Block Diagram

The HLVD module's block diagram is shown in the figure below.

Figure 3-1. HLVD Block Diagram

The HLVD can be software-enabled through the HLVDEN bit. Each time the HLVD module is enabled, the HLVDRDY bit can be used to detect when the module is stable and ready to use. The HLVDINTH and HLVDINTL bits of the HLVDCON0 register determine the overall operation of the module. When INTH is set, the module monitors for rise in V_{DD} above the trip point set by the SEL bits. When INTL is set, the module monitors for drop in V_{DD} below the trip point set by the SEL bits. When both the INTH and INTL bits are set, any changes above or below the trip point set by the SEL bits can be monitored. The OUT bit can be read to determine if the voltage is greater than or less than the selected trip point. If the supply voltage is below the set point, then the HLVDOUT bit will be set and, if the supply voltage is above the set point, the OUT bit will be cleared.

4. Detailed Operation

When the HLVD module is enabled, a comparator inside the HLVD module uses an internally generated voltage reference as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The trip point voltage is the voltage level at which the device detects a high or low voltage event, depending on the configuration of the module. When the supply voltage is equal to the trip point, the voltage tapped from the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit. The trip point voltage is software programmable to any of the 16 values. The trip point is selected by programming the SEL bits.

Table 4-1. HLVD Trip Point Settings

Sr. No.	HLVDSEL	Trip Point Voltage (V)		
31. NO.		Min.	Тур.	Max.
1	HLVDSEL=b'0000'	1.81	1.90	1.90
2	HLVDSEL=b'0001'	2.00	2.10	2.12
3	HLVDSEL=b'0010'	2.20	2.25	2.33
4	HLVDSEL=b'0011'	2.40	2.50	2.54
5	HLVDSEL=b'0100'	2.50	2.60	2.65
6	HLVDSEL=b'0101'	2.70	2.75	2.86
7	HLVDSEL=b'0110'	2.80	2.90	2.97
8	HLVDSEL=b'0111'	3.00	3.15	3.18
9	HLVDSEL=b'1000'	3.30	3.35	3.50
10	HLVDSEL=b'1001'	3.50	3.60	3.71
11	HLVDSEL=b'1010'	3.60	3.75	3.82
12	HLVDSEL=b'1011'	3.80	4.00	4.03
13	HLVDSEL=b'1100'	4.00	4.20	4.24
14	HLVDSEL=b'1101'	4.20	4.35	4.45
15	HLVDSEL=b'1110'	4.50	4.65	4.77

Note: Refer to the device data sheet for the typical Trip Point Voltage (V) settings and to the MPLAB® Code Configurator (MCC) configuration GUI of the HLVD peripheral for minimum and maximum Trip Point Voltage (V) settings.

4.1 Operation with Various Supply Voltages

The allowable operating voltage of the microcontroller should be considered in determining the low-level threshold that needs to be set. For instance, the PIC18-Q10 microcontrollers can operate up to 1.8V so all the voltage thresholds mentioned in Table 4-1 can be used. Some 8-bit PIC microcontrollers can operate up to 2.3V while others can operate up to 2V.

Note: The maximum allowed clock speed is a function of the supply voltage. The LF versions of the PIC microcontrollers can operate down to 2V at a maximum clock speed of 4 MHz.

Refer to the device data sheet to confirm the operating voltage range and maximum clock speed with respect to the operating voltage.

© 2019 Microchip Technology Inc.

Technical Brief

DS90003237A-page 6

4.2 Operation of the Module in Various Sleep Modes

If enabled, the HLVD module can operate during various Power-Down modes such as Idle, Doze and Sleep mode. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake up from the Power-Down mode (i.e., Doze/Idle/Sleep). The device execution will continue from the interrupt vector address if interrupts have been globally enabled.

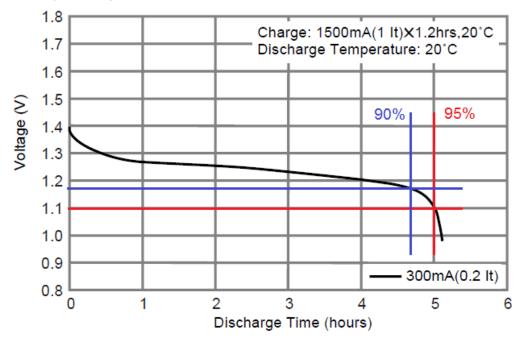
4.3 Current Consumption

When enabled, the HLVD module draws a typical current of 22 μ A in the PIC18-Q10 devices. Refer to the Electrical Specifications section of the device data sheet for details on the current consumption.

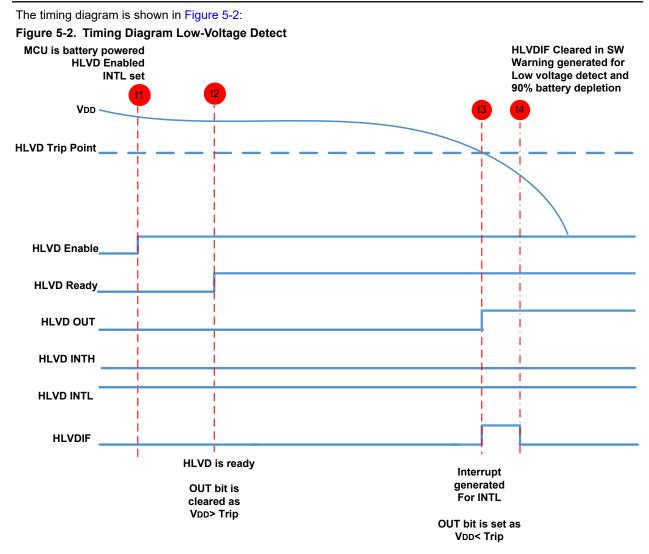
4.4 HLVD Start-up Time

If the HLVD module is disabled to lower the device current consumption, the reference voltage used by the HLVD circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This FVR start-up time (TFVRST), is typically 25 µs for the PIC18-Q10 devices. The HLVD interrupt flag is not enabled until TFVRST has expired and a stable reference voltage has been reached.

Note: The FVR start-up time (TFVRST), may vary with the PIC microcontroller family. Refer to the device data sheet to confirm the start-up time.


5. Applications

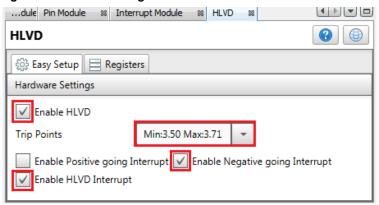
5.1 Battery Monitoring


Monitoring the battery voltage is very important in case of battery-powered applications for safe and steady operation of the system and for protecting the battery from operating outside its safe operating area. The below section discusses how to monitor battery discharging cycles when the HLVD peripheral is used.

• Monitoring Battery Discharge: Determining the threshold for 'low battery' depends on the battery chemistry and the load drawn by the circuit. A typical discharge curve of a 1.2V battery is shown in Figure 2. The voltage decreases slowly in the operating range of the battery but starts to fall rapidly when the battery depletes. The challenge is to get the maximum life from the battery but still provide a warning in time to allow any action which is necessary before the battery is dead. The blue lines show that 90% of the battery capacity has been used and the cell voltage at this point is about 1.19V. The red line shows that 95% of the battery capacity has been used and that the cell voltage is about 1.1V. The cell voltage is dropping rapidly at this point. A three-cell pack would provide 4.2V with new and unused batteries. The 90% point would be 3.57V, and the 95% point would be 3.3V. This need to fit with the HLVD thresholds of the device. HLVDSEL=b'1001' provides a trip point of 3.6V and the next setting HLVDSEL=b'1000' provides a trip point of 3.35V. Thus, in order to provide a warning at 90% battery depletion, the HLVDSEL=b'1001' can be used.

Figure 5-1. Battery Discharge Curve

Applications



- Set the trip point voltage for HLVD. Set the INTL bit and enable the HLVD module. (event t1 in the figure above).
- The HLVD module will be ready after the HLVD start-up time, typically 25 uS in the PIC18-Q10 devices (t2).
- When the supply voltage goes below the trip point, the OUT bit will be set and the HLVD module will generate an interrupt for INTL (t3).
- The HLVDIF flag can be cleared in Interrupt Service Routine (ISR) and a warning can be generated for the low-voltage detect (t4) event.

The MPLAB® Code Configurator (MCC) is a free, graphical programming environment that generates seamless, easy-to-understand C code to be inserted into the project. Using an intuitive interface, it enables and configures a rich set of peripherals and functions specific to the application. The HLVD configuration in MCC for detecting low-voltage events is explained below:

- Select the HLVD module from the **Device Resources** tab in the MCC Configuration window.
- 2. Select the desired HLVD trip point from the drop-down options. This will alter the values in the HLVDSEL bits of the HLVDCON1 register. The value selected here is 'Min:3.50' and 'Max:3.71'.
- To detect the low-voltage drops, set the check box for enabling negative going interrupt which will set the INTL bit.
- 4. Enable the HLVD module by checking the 'Enable HLVD' check box .
- 5. If interrupts are desired, enable the HLVD interrupt by setting the 'Enable HLVD Interrupt' check box .

Figure 5-3. HLVD Configuration for Low-Voltage Detect

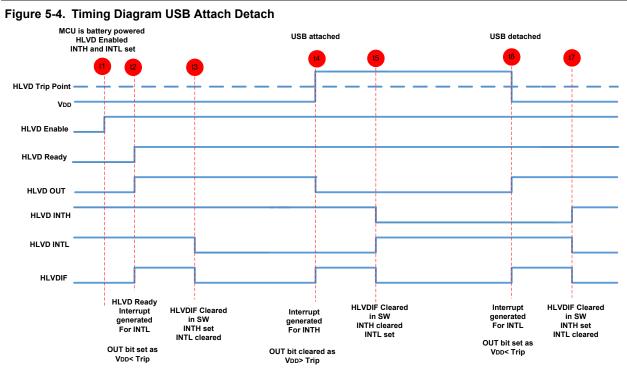
In the Interrupt Service Routine (ISR), add relevant application code to take appropriate action.

MCC generates ready to use APIs for easy usage of the HLVD module. The following APIs are generated by MCC.

1. The HLVD Initialize() API can be used for initialization of the HLVD module.

```
void HLVD_Initialize(void)
{
    // set the HLVD_Initialize module to the options selected in the User Interface
    // SEL Min:3.00 Max:3.18;
    HLVDCON1 = 0x07;
    // HLVDINTL enabled; HLVDINTH disabled; HLVDEN enabled;
    HLVDCON0 = 0x81;

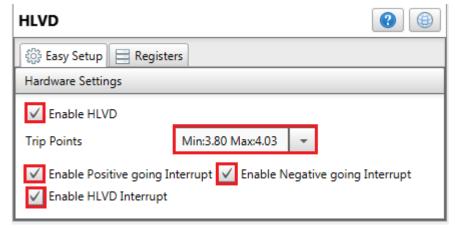
PIR2bits.HLVDIF = 0;
    // Enable HLVD interrupt.
    PIE2bits.HLVDIE = 1;
}
```


2. The HLVD_OutputStatusGet() API can be used to determine the status of the HLVDOUT bit.

```
bool HLVD_OutputStatusGet(void)
{
    //return HLVD voltage status
    return(HLVDCONObits.HLVDOUT);
```

3. If the HLVD trip point has to be changed, then the HLVD_TripPointSetup(bool Negative_Trip, bool Positive Trip, HLVD TRIP POINTS trip points) API can be used.

5.2 Detection of Universal Serial Bus (USB) Attach or Detach


If the device can be powered either using the Universal Serial Bus (USB) or battery having lower voltage than USB, the HLVD module could be periodically enabled to detect USB attach or detach. An attach would indicate a high-voltage detect from 3.3V (battery voltage) to 5V (the voltage on USB) and vice versa for a detach. This feature could save few extra components for a design and an attach signal (input pin). HLVDSEL=b'1011' provides a trip point of 4V. Thus, to detect if USB is attached, the INTH bit can be set while to detect the USB detach, INTL bit will be set. The timing diagram is shown in Figure 5-4:

- After the device is powered up for the very first time, set both INTH and INTL bits. Also, enable the HLVD module. (event t1 in the timing diagram above).
- After the HLVD module is ready, it will generate an interrupt (t2). In the ISR, monitor the OUT bit status to determine whether the microcontroller is powered with USB or battery. If the microcontroller is powered with a 3.3V battery, then the supply voltage is below the trip point (i.e., 4V) so the OUT bit would have been set.
- · The INTH bit should be kept set to detect USB attach and the INTL bit should be cleared (t3).
- When the USB is attached, the supply voltage (5V) is above the trip point (e.g., 4V) so the OUT bit will be cleared and the HLVD module will generate an interrupt for INTH (t4).
- In the ISR, the INTL bit should be set and INTH should be cleared to detect the USB detach (t5).
- When USB is detached (t6), the supply voltage (3.3V) is below the trip point (i.e., 4V) so the OUT bit will be set and the HLVD module will generate an interrupt for INTL (t6).
- In the ISR, the INTH bit should be set to detect the next USB attach (t7) event.

The HLVD configuration in MCC for the detection of USB attach detach is shown in Figure 5-5:

Figure 5-5. HLVD Configuration in MCC for USB Attach or Detach Detection

After the first power-on and first HLVD interrupt, check the status of the HLVD OUT bit using MCC generated API HLVD OutputStatusGet (). If the OUT bit is set, the USB is detached, and the device is powered using the

battery. Clear the INTL bit and keep the INTH bit set using <code>HLVD_TripPointSetup</code> API (bool <code>Negative_Trip</code>, <code>bool Positive_Trip</code>, <code>HLVD_TRIP_POINTS</code> trip_points). Use the same <code>HLVD_TripPointSetup</code> API for setting either the INTH or INTL bits to detect USB attach and detach events, subsequently.

Note: The code example for the usage of the <code>HLVD</code> module can be found at the following page: https://mplabxpress.microchip.com/mplabcloud/example.

6. Conclusion

The HLVD module of the 8-bit PIC microcontrollers is a valuable feature for monitoring the supply voltage of a microcontroller that is directly battery-powered. The usage of the HLVD module does not require any extra PORT pin and components for supply voltage monitoring. The HLVD module can be configured seamlessly using MCC GUI. MCC also generates ready to use APIs for using and configuring the HLVD module.

The Microchip Website

Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- **Technical Support**

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today. when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

DS90003237A-page 14 © 2019 Microchip Technology Inc.

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-5378-9

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit http://www.microchip.com/quality.

© 2019 Microchip Technology Inc.

Technical Brief

DS90003237A-page 15

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4450-2828
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
http://www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
http://www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen	16 6 . 26 6 6 2 6	Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380	161. 66 766 62 166 16		Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			
Tel: 905-695-1980			Fax: 44-118-921-5820
Fax: 905-695-2078			