
 AVR 8-bit Microcontrollers

 AVR106: C Functions for Reading and Writing to
Flash Memory

 APPLICATION NOTE

Introduction

The Atmel® AVR® devices have a feature called Self programming Program
memory. This feature enables an AVR device to reprogram the Flash
memory while executing the program. Such a feature is helpful for
applications that must self-update firmware or store parameters in Flash.

This application note provides the details about the C functions for accessing
the Flash memory.

Features

• C functions for accessing Flash memory
– Byte read
– Page read
– Byte write
– Page write

• Optional recovery on power failure
• Functions can be used with any device having Self programming

Program memory
• Example project for accessing Application Flash section for parameter

storage

Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

Table of Contents

Introduction..1

Features.. 1

1. Theory of Operation...3
1.1. Using SPM Instructions.. 3
1.2. Write Procedure..3
1.3. Addressing..3
1.4. Page Size... 4
1.5. Defining Flash Memory For Writing..4
1.6. Placing the Entire Code Inside the Boot Section..4
1.7. Placing Selected Functions Inside the Boot Section.. 5

2. Software Implementation and Usage...6
2.1. Flash Recovery...6
2.2. Descriptions of C Functions ...6
2.3. Steps for Implementing in Other Devices...10

3. Summary..11

4. Further Readings...12

5. Revision History...13

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

2

1. Theory of Operation
This section contains some basic theory around using the Self programming Program memory feature in
AVR. For a better understanding of all features concerning Self programming, refer to the device
datasheet or application note “AVR109: Self Programming”.

1.1. Using SPM Instructions
The Flash memory may be programmed using the Store Program Memory (SPM) instruction. On devices
containing the Self Programming feature the program memory is divided into two main sections: (1)
Application Flash Section and (2) Boot Flash Section.

On devices with boot block, the SPM instruction has the ability to write to the entire Flash memory, but
can only be executed from the Boot section. Executing SPM from the Application section will have no
effect. On the smaller devices that do not have a boot block, the SPM instruction can be executed from
the entire flash memory.

During Flash write to the Boot section the CPU is always halted. However, most devices may execute
code (read) from the Boot section while writing to the Application section. It is important that the code
executed while writing to the Application section do not attempt to read from the Application section. If this
happens the entire program execution may be corrupted.

The size and location of these two memory sections are depending upon device and fuse settings. Some
devices have the ability to execute the SPM instruction from the entire Flash memory space.

1.2. Write Procedure
The Flash memory is written in a page-by-page fashion. The write function is performed by storing data
for an entire page into a temporary page buffer prior to writing the Flash. Which Flash address to write to
is decided by the content of the Z-register and RAMPZ-register. A Flash page must be erased before it
can be programmed with the data stored in the temporary buffer. The functions contained in this
application note use the following procedure when writing a Flash page:

• Fill temporary page buffer
• Erase Flash page
• Write Flash page

As it is evident in this sequence there is a possibility for loss of data, if a reset or power failure should
occur immediately after a page erase. Loss of data can be avoided by taking necessary precautions in
software, involving buffering in non-volatile memory. The write functions contained in this application note
provide optional buffering when writing. These functions are further described in the firmware section.

Devices that support the read-while-write feature allows the boot loader code to be executed while
writing. In such devices, the write functions will not return until the write has completed.

1.3. Addressing
The Flash memory in AVR is divided into 16-bit words. This means that each Flash address location can
store two bytes of data. For an ATmega128, it is possible to address up to 65k words or 128k bytes of
Flash data. In some cases the Flash memory is referred to by using word addressing and in other cases
by using byte addressing, which can be confusing. All functions contained in this application note use
byte addressing. The relation between byte address and word address is as follows:

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

3

Byte address = word address • 2

A Flash page is addressed by using the byte address for the first byte in the page. The relation between
page number (ranging 0, 1, 2…) and byte address for the page is as follows:

Byte address = page number • page size (in bytes)

Example on byte addressing:

A Flash page in an ATmega128 is 256 bytes long.

Byte address 0x200 (512) will point to:
• Flash byte 0x200 (512), equal to byte 0 on page 2
• Flash page 2

When addressing a page in ATmega128, the lower byte of the address is always zero. When addressing
a word, the LSB of the address is always zero.

1.4. Page Size
The constant PAGESIZE must be defined to be equal to the Flash page size (in bytes) of the device being
used.

1.5. Defining Flash Memory For Writing
The memory range in which the functions are allowed to write is defined by the constants
ADR_LIMIT_LOW and ADR_LIMIT_HIGH. The write functions can write to addresses higher or equal to
ADR_LIMIT_LOW and lower than ADR_LIMIT_HIGH.

1.6. Placing the Entire Code Inside the Boot Section
It is necessary to include the linker options as shown in the following figure to place the entire application
code in the Boot section of Flash. The location and size of the Boot section varies with the device being
used and fuse settings. Programming the BOOTRST fuse will move the reset vector to the beginning of the
Boot section. It is also possible to move all the interrupt vectors to the Boot section. For more information,
refer to the interrupt section in the device datasheet.

Figure 1-1. Adding the Linker Script

The linker miscellaneous option should be defined with the corresponding start address of the bootloader.
The Bootloader starting word address of ATmega128 4K bootloader is 0xF000. The linker option should
be updated with the byte address Hence, equivalent byte address = 0x1E000. By including the linker
script as shown in the preceeding figure, the entire application code will be placed inside the boot section.

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

4

1.7. Placing Selected Functions Inside the Boot Section
Alternatively, it is possible to place only selected functions into defined segments of the Flash memory. In
fact, it is only the functions for writing that must be located inside the Boot section. This can be done by
defining a new Flash segment corresponding to the Boot memory space and use the attribute
BOOTLOADER SECTION to place the desired functions into this segment as shown in the following
example.

Definition of Boot segment:

The bootloader segment definition should be done at the memory settings tab in the AVR/GNU Linker
option of the project properties window as shown in the following figure. The syntax is as follows.

“.bootloader=0xF000”
Where 0xF000 is the start address of the 4K bootloader segment of ATmega128.

Figure 1-2. Definition of Boot Segment

Placing a C function into the defined segment:

#define BOOTLOADER_SECTION __attribute__ ((section(".bootloader")))
void Example_Function ()BOOTLOADER_SECTION;
void Example_Function (){

}

On defining the bootloader segment in the project properties window as shown in the above figure and
building the above C-code, it will place the example function () into the defined memory segment
“.bootloader”.

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

5

2. Software Implementation and Usage
The firmware is made for the AVR-GCC compiler with Atmel Studio 7.0.582. The functions may be ported
to other compilers, but this may require some work since several functions from the avr-gcc toolchain are
used. When using Self-programming it is essential that the functions for writing are located inside the
Boot section of the Flash memory. The procedure for placing the flash write function inside the boot
section is explained under the section Placing Selected Functions Inside the Boot Section. The remaining
functions can be placed in the application section of the flash. All other necessary configurations
concerning the firmware are done inside the file Self_programming.h.

The zip file available with this application note consists of an example project created using Atmel Studio
7.0 for the device ATmega128. In this example project, the flash write function is located in the Boot
section of Flash and remaining code placed in the application section of flash.

2.1. Flash Recovery
Defining the constant __FLASH_RECOVER enables the Flash recovery option for avoiding data loss in
case of power failure. When Flash recovery is enabled, one Flash page will serve as a recovery buffer.
The value of __FLASH_RECOVER will determine the address to the Flash page used for this purpose.
This address must be a byte address pointing to an address in the application section of a Flash page
and the write functions will not be able to write to this page. Flash recovery is carried out by calling the
function RecoverFLASH() at program startup.

When the Flash recovery option is enabled a page write will involve pre-storing of data into a dedicated
recovery page in Flash, before the actual write to a given Flash page takes place. The address for the
page to be written to is stored in EEPROM together with a status byte indicating that the Flash recovery
page contains data. This status byte will be cleared when the actual write to a given Flash page is
completed successfully. The variables in EEPROM and the Flash recovery buffer are used by the Flash
recovery function RecoverFlash() to recover data when necessary. The writing of one byte to
EEPROM takes about the same time as writing an entire page to Flash. Thus, when enabling the Flash
recovery option the total write time will increase considerably. EEPROM is used instead of Flash because
reserving a few bytes in Flash will exclude flexible usage of the entire Flash page containing these bytes.

2.2. Descriptions of C Functions

Function Arguments Return

ReadFlashByte() MyAddressType flashAdr unsigned char

ReadFlashPage() MyAddressType flashStartAdr, unsigned char *dataPage unsigned char

WriteFlashByte() MyAddressType flashAddr, unsigned char data unsigned char

WriteFlashPage() MyAddressType flashStartAdr, unsigned char *dataPage unsigned char

RecoverFlash() Void unsigned char

The datatype MyAddressType is defined in Self_programming.h. The size of this datatype depends
on the device that is being used. It can be defined as an long int when using devices with more than
64KB of Flash memory, and as an int (16 bit) using devices with 64KB or less of Flash memory. The
datatypes are actually used as __flash or __farflash pointers (consequently 16 and 24 bit). The

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

6

reason why a new datatype is defined is that integer types allow a much more flexible usage than pointer
types.

The ReadFlashByte() returns one byte located on Flash address given by the input argument
FlashAdr.

Figure 2-1. Flowchart for the ReadFlashByte() Function

ReadFlashByte()

Return byte

Read byte from
Flash address given
by input argument

The ReadFlashPage() reads one Flash page from address given by the input argument
FlashStartAdr and stores data in array given by the input argument DataPage[]. The number of
bytes stored is depending upon the Flash page size. The function returns FALSE if the input address is
not a Flash page address, else TRUE.

Figure 2-2. Flowchart for the ReadFlashPage() Function

ReadFlashPage()

Is input address a
valid page address?

Yes

Loop PAGESIZE
number of times

Read byte from Flash and
store in data array given
by input argument

Return TRUE Return FALSE

No

The WriteFlashByte() writes a byte given by the input argument Data to Flash address given by the
input argument FlashAddr. The function returns FALSE if the input address is not a valid Flash byte
address for writing, else TRUE.

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

7

Figure 2-3. Flowchart for the WriteFlashByte() Function

WriteFlashByte()

Store EEPROM interrupt
mask and disable

EEPROM interrupt. Wait
for EEPROM to complete .

Input address valid
write address?

Clear Flash recovery status
variable in EEPROM

Flash recovery
option enabled?

Erase & Write new data to
Flash recovery page

Store Flash page address
in EEPROM

Write "BUFFER FULL ID"
to Flash recovery status
variable in EEPROM

Erase & Write new data to
Flash page

Flash recovery
option enabled?

Clear Flash recovery status
variable in EEPROM

Return TRUE Return FALSE

Yes

No

Yes

No

Yes

No

Restore EEPROM
interrupt mask

Read Flash page, replace
one byte, fill Flash
temporary buffer

Read Flash page, replace
one byte, fill FLASH
temporary buffer

The WriteFlashPage() writes data from array given by the input argument DataPage[] to Flash
page address given by the input argument FlashStartAdr. The number of bytes written is depending
upon the Flash page size. The function returns FALSE if the input address is not a valid Flash page
address for writing, else TRUE.

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

8

Figure 2-4. Flowchart for the WriteFlashPage() Function

WriteFlashPage()

Store EEPROM interrupt
mask and disable

EEPROM interrupt. Wait
for EEPROM to complete .

Input address valid
write address?

Clear Flash recovery status
variable in EEPROM

Flash recovery
option enabled?

Erase & Write new data to
Flash recovery buffer

Store Flash page address
in EEPROM

Write "BUFFER FULL ID"
to Flash recovery status

variable in EEPROM

Erase & Write new data to
Flash page

Flash recovery
option enabled?

Clear Flash recovery status
variable in EEPROM

Return TRUE Return FALSE

Yes

No

Yes

No

Yes

No

Restore EEPROM
interrupt mask

Fill Flash temporary buffer

Fill Flash temporary buffer

The RecoverFlash() reads the status variable in EEPROM and restores Flash page if necessary. The
function must be called at program start-up if the Flash recovery option is enabled. The function Returns
TRUE if Flash recovery has taken place, else FALSE.

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

9

Figure 2-5. Flowchart for the RecoverFlash() Function

RecoverFlash()

Status variable ==
"BUFFER FULL ID"?

Write Flash recovery buffer
to Flash temporary buffer

Return TRUE Return FALSE

Erase & Write new data
to Flash page given by
address variable in

EEPROM

Clear Flash recovery status
variable in EEPROM

No

Yes

2.3. Steps for Implementing in Other Devices
This firmware can be reused with other AVR devices having specific bootloader segment.

The steps for reusing the code are as follows:
1. Change the following macro available in the self_programming.h file with the available boot

segment size of the devie in use.
#define BOOTSECTORSIZE 0x2000// 4096 words

2. Change the following macro available in the self_programming.h file with the location for flash
recovery buffer based on the available flash size.
#define ADR_FLASH_BUFFER 0xEF00

3. Change the flash segment definition available under the project properties window corresponding to
the boot memory space and use the attribute BOOTLOADER SECTION to place the desired
functions into this segment as shown in the Figure 1-2 Definition of Boot Segment. This figure
shows the memory segment definition for ATmega128. The Bootloader starting word address of
ATmega128 4K bootloader is 0xF000.
Similarly update the memory segment definition for the device in use.

4. Ensure that the required BOOTSZ fuse setting is programmed. For ATmega128, it should be
4096W_F000.

Implementing in Devices without dedicated Boot Section

While implementing the code for the devices which do not have dedicated boot section, ensure that the
following conditions are satisfied,

1. For the devices which do not have a dedicated boot section, use the last few pages of the flash as
boot section to place the flash write function. The flash write routine consumes approximately 550
bytes of memory. Hence, make sure that the emulated boot section is not less that 550 bytes.

2. Provide the address of the flash write function and address of the recovery flash buffer in such a
way that the actual application code is not overwritten.

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

10

3. Summary
This application note provides four different C functions for accessing the flash memory.

The following functionalities are covered in this application note.
1. Flash page write.
2. Flash page read.
3. Flash byte write.
4. Flash byte read.

The firmware places the flash write routines inside the boot section and the remaining code in the
application section of the flash memory. The firmware available with this application note performs the
above mentioned operations on ATmega128. It also explains the procedure to re-use the application code
for other devices.

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

11

4. Further Readings
• ATmega128 Datasheet
• AVR109: Using Self Programming on tinyAVR and megaAVR devices
• AVR105: Power efficient high endurance parameter storage in tinyAVR and megaAVR devices

Flash memory
• AVR108: Setup and use of the LPM Instructions on tinyAVR and megaAVR devices
• Atmel AVR116: Wear Leveling on DataFlash
• Atmel AVR947: Single-Wire Bootloader for any MCU with Self Programming Capability

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

12

http://www.atmel.com/Images/doc2467.pdf
http://www.atmel.com/devices/ATMEGA128.aspx?tab=documents
http://www.atmel.com/devices/ATMEGA128.aspx?tab=documents
http://www.atmel.com/devices/ATMEGA128.aspx?tab=documents
http://www.atmel.com/devices/ATMEGA128.aspx?tab=documents
http://www.atmel.com/devices/ATMEGA128.aspx?tab=documents
http://www.atmel.com/devices/ATMEGA128.aspx?tab=documents

5. Revision History
Doc Rev. Date Comments

2575C 3/2016 The firmware is ported to Atmel Studio 7.0 and steps to implement in other devices
is added. In addition to that we have modified the code to place the selected
function inside the boot section.

2575B 08/2006 Initial document release.

Atmel AVR106: C Functions for Reading and Writing to Flash Memory [APPLICATION NOTE]
Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

13

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-2575C-C-Functions-for-Reading-and-Writing-to-Flash-Memory_AVR106_Application Note-03/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR® and others are registered trademarks or trademarks of Atmel Corporation in
U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Theory of Operation
	1.1. Using SPM Instructions
	1.2. Write Procedure
	1.3. Addressing
	1.4. Page Size
	1.5. Defining Flash Memory For Writing
	1.6. Placing the Entire Code Inside the Boot Section
	1.7. Placing Selected Functions Inside the Boot Section

	2. Software Implementation and Usage
	2.1. Flash Recovery
	2.2. Descriptions of C Functions
	2.3. Steps for Implementing in Other Devices

	3. Summary
	4. Further Readings
	5. Revision History

