
Application Note AC430

SmartFusion2 I2C Reference Design using Multiple
Masters and Multiple Slaves - Libero SoC v11.7

Table of Contents

Purpose
SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) device contains two Philips
inter-integrated circuit (I2C) peripherals available in the microcontroller subsystem (MSS). In addition, a
number of I2C peripherals can be implemented in the FPGA fabric using CoreI2C IP. This application
note describes the I2C transaction types (Write, Read, and Write-Read) with a reference design, which
implements multiple Masters and Slaves using the SmartFusion2 Security Evaluation Kit.

Introduction
I2C is a two-wire serial bus interface that provides data transfer between several devices. The MSS has
two identical I2C peripherals that perform serial-to-parallel data conversion originating from the serial
devices, and parallel-to-serial conversion of data from the ARM® Cortex®-M3 processor. The Cortex-M3
embedded processor controls the I2C peripherals through the advanced peripheral bus (APB) interface.

Purpose . 1
Introduction . 1
References . 2

Design Requirements . 3

Features . 3
I2C Transaction Types . 3

Write Transaction .3
Read Transaction .4
Write-Read Transaction .5

Implementation on SmartFusion2 Device . 5
Design Description . 6
Hardware Implementation . 7
Software Implementation . 11

Firmware Drivers . 12
Application Program Interface (APIs) . 12

Running the Design . 13
Setting Up the Hardware . 13
Windows Application . 15
Running the GUI . 16
Use Cases . 19

Conclusion . 19

Appendix A: Design Files . 20

Appendix B: Updating Firmware Catalog For Latest Drivers . 21

Appendix C: Updating eNVM Memory Content File Path . 23

List of Changes . 28
February 2016 1

© 2016 Microsemi Corporation

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
The I2C peripherals in the SmartFusion2 SoC FPGA device support I2C, system management bus
(SMBus), and power management bus (PMBus) data transfers, which conform to the I2C v2.1
specifications and support the SMBus v2.0 and PMBus v1.1 specifications. The I2C peripherals can
operate as either a Master or a Slave, and can be configured independently. When operating in Master
mode, the I2C peripherals generate the serial clock and data to the Slave device that needs to be
accessed. The I2C peripheral generates the serial clock by dividing MSS clock which is controlled by a
software. The I2C peripherals use a 7-bit addressing format and run up to 400 kbps (Fast mode) data
rates. Faster rates can be achieved depending on the external load. For more details about I2C
peripherals, see the UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

If the system requires more than two I2C peripherals, additional I2C peripherals have to be implemented
in the FPGA fabric. Microsemi provides CoreI2C IP to fulfill the design requirement. CoreI2C is available
in the Libero® System-on-Chip (SoC) IP catalog.

This application note describes the I2C transaction types with a reference design which implements two
Masters and two Slaves using the SmartFusion2 Security Evaluation Kit. MSS I2C0 and CoreI2C_0 are
configured as I2C MASTER1 and I2C MASTER2. The MSS I2C1 and CoreI2C_1 are configured as I2C
SLAVE1 and I2C SLAVE2 as shown in Figure 1. The reference design package has a graphical user
interface (GUI) that runs on a host PC to communicate with the SmartFusion2 Security Evaluation Kit
board. The GUI allows the user to select the Master and Slave combinations, serial clock, Slave
addresses, number of bytes to read, and the I2C transaction types. To communicate between the
Masters and Slaves, MSS I2C0 SDA, MSS I2C1 SDA, CoreI2C_0 SDA, and CoreI2C_1 SDA are
connected together, and MSS I2C0 SCL, MSS I2C1 SCL, CoreI2C_0 SCL, and CoreI2C_1 SCL are
connected together on the SmartFusion2 Security Evaluation Kit board.

Note: SDA: Serial data access and SCL: Serial clock line.

References
The following documents are referenced in this document. The references complement and help in
understanding the relevant Microsemi SmartFusion2 FPGA device flows and features.

• UG0331: SmartFusion2 Microcontroller Subsystem User Guide

• SmartFusion2 System Builder User Guide

• SmartFusion2 MSS I2C Configuration Guide

• SmartFusion2 MSS MMUART Configuration Guide

• UG0445: IGLOO2 FPGA and SmartFusion2 SoC FPGA Fabric User Guide

• UG0594: M2S090TS-EVAL-KIT SmartFusion2 Security Evaluation Kit User Guide

Figure 1 • I2C Bus with Multiple Masters and Slaves

I2C MASTER 1
(MSS I2C0)

I2C MASTER 2
(CoreI2C_0)

I2C SLAVE 1
(MSS I2C1)

I2C SLAVE 2
(CoreI2C_1)

SDA

SCL

3.3 V
2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135152
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135155
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134793
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

Design Requirements
Design Requirements
Table 1 lists the design requirements.

Features
The following features are implemented in the reference design.

• Write, Read, and Write-Read I2C transaction types

• Two I2C Masters (MSS I2C and CoreI2C)

• Two I2C Slaves (MSS I2C and CoreI2C)

• Error detection

• Timeout

I2C Transaction Types
The MSS I2C and CoreI2C drivers are designed to handle the following three types of I2C transactions:

• Write Transaction

• Read Transaction

• Write-Read Transaction

Write Transaction
The Master I2C device initiates a Write transaction by sending a START bit when the bus is free. It
continuously monitors the SDA line to determine the bus status. The START bit is followed by the 7-bit
serial address of the target Slave device followed by the read/write bit indicating the direction of the
transaction. The Slave acknowledges the receipt of its Slave address with an acknowledge bit. The
Master sends one byte of data at a time to the Slave must acknowledge the receipt of each byte for the
next byte to be sent. The Master sends a STOP bit to complete the transaction. Figure 2 on page 4
shows the I2C write transaction.

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

SmartFusion2 Security Evaluation Kit:

• FlashPro4 programmer (provided along
with the kit)

Rev D or later

Desktop or Laptop Any 64-bit Windows Operating System

Flying leads To connect all I2C SDA and SCL lines together (See Figure 14)

Software Requirements

Libero® System-on-Chip (SoC) v11.7

Microsoft .NET Framework 4 Client Profile –
3

http://www.microsoft.com/en-in/download/details.aspx?id=24872

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
The Slave can abort the transaction by sending a non-acknowledge bit instead of an acknowledge bit. If
the application programmer chooses not to send a STOP bit at the end of the transaction, the next
transaction to begin with a repeated START bit.

Read Transaction
The Master I2C device initiates a Read transaction by sending a START bit when the bus is free. The
START bit is followed by the 7-bit serial address of the target Slave device followed by the read/write bit
indicating the direction of the transaction. The Slave acknowledges the receipt of its Slave address with
an acknowledge bit. The Slave sends one byte of data at a time to the Master. The Master must
acknowledge the receipt of each byte for the next byte to be sent. The Master sends a non-acknowledge
bit following the last byte it wishes to read. The Master sends a STOP bit to complete the transaction.

If the application programmer chooses not to send a STOP bit at the end of the transaction, the next
transaction to begin with a repeated START bit.

Figure 2 • I2C Write Transaction

START Bit

S AW A A PAddress Byte 0 Byte n

R/W Bit STOP Bit

Acknowledgement BitSerial Address of Target I2C Device

Data Written

Master to Slave Slave to Master

Figure 3 • I2C Read Transaction

START Bit

S AR A A PAddress Byte 0 Byte n

R/W Bit STOP Bit

Acknowledgement Bit Non-Acknowledgement BitSerial Address of Target I2C Device

Data Read

Master to Slave Slave to Master
4

Implementation on SmartFusion2 Device
Write-Read Transaction
The Write-Read transaction is a combination of a write transaction immediately followed by a read
transaction. There is no STOP bit between the write and read phases of a Write-Read transaction. A
repeated START bit is sent between the write and read phases.

The Write-Read transaction is typically used to send a command or offset in the write transaction
specifying the logical data to be transferred during the read phase. Figure 4 shows the I2C Write-Read
transaction.

If the application programmer chooses not to send a STOP bit at the end of the transaction, the next
transaction to begin with a repeated START bit.

Implementation on SmartFusion2 Device
The I2C transaction types (Write, Read, and Write-Read) have been implemented and validated using
the SmartFusion2 Security Evaluation Kit board. This section describes the following:

• Design Description

• Hardware Implementation

• Software Implementation

• Running the Design

Figure 4 • I2C Write-Read Transaction

Rpeated
START Bit

Write Phase Read Phase

Sr AR A A PAddress Rd Byte 0 Rd Byte n

R/W Bit STOP BitData Read

Master to Slave Slave to Master

START Bit

S AW A AAddress Wr Byte 0 Wr Byte n

R/W Bit Data Written
5

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
Design Description
The design consists of MSS, CoreAPB3 IP, and CoreI2C IP. Figure 5 shows the block diagram of the
design.

MSS is configured to use I2C_0, I2C_1, MMUART_1, fabric interface interrupt controller (FIIC), and a
fabric interface controller (FIC_0). FIIC is configured to use fabric to MSS interrupt and FIC_0 is
configured to use APB3 Master interface. CoreI2C_0 and CoreI2C_1 are connected to FIC_0 through a
CoreAPB3 bridge and interrupt lines are connected to FIIC. For more information about MSS (ARM
Cortex-M3, Cache controller, NVIC, AHB bus matrix, FIC, FIIC, I2C, and MMUART),
see the UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

The application code runs on the Cortex-M3 processor interfaces with the host PC through MMUART_1,
and initiates the I2C transactions.

Figure 5 • Top-Level Block Diagram of Design

SmartFusion2

MSS

Cache
Controller

S D IC

ARM Cortex-M3
S D I

FIC_0

eSRAM

AHB Bus Matrix

I2C_1

eNVM

MMUART_1

I2C_0

FIIC

APB_1APB_0

NVIC

CoreAPB3

CoreI2C_0 CoreI2C_1

FPGA FABRIC

HOST PC

M
S

S
_I

N
T

_
F

2
M

[0
]

M
S

S
_

IN
T

_
F

2M
[1

]

6

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

Hardware Implementation
Hardware Implementation
The System Builder is used to implement the hardware. Figure 6 shows the top-level SmartDesign of the
reference design.

Figure 7 shows the connections of MSS and IPs when the System Builder generated components are
opened as SmartDesign.

Figure 6 • Top-Level SmartDesign

Figure 7 • System Builder Opened as SmartDesign
7

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
Configuring System Builder
This section describes how to configure device features and build a complete system using the System
Builder graphical design wizard in the Libero SoC software. For more information about how to launch
the System Builder wizard, see the SmartFusion2 System Builder User Guide.

The following steps describe how to configure the system builder for the reference design:

1. The System Builder window is displayed with Device Features page by default. Click Next, the
System Builder - Peripherals page is displayed. Drag two instances of CoreI2C and drop on to
the MSS FIC_0 - MSS Master Subsystem. Figure 8 shows the Peripherals page.

2. Configure two instances of CoreI2C by clicking Configure as shown in Figure 9.

Figure 8 • System Builder - Peripherals Page

Figure 9 • CoreI2C Configure Icon
8

http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_1.pdf

Hardware Implementation
Use settings as shown in the Figure 10.

3. The design uses MMUART and I2C MSS peripherals. Select MM_UART_1, MSS_I2C_0,
MSS_I2C_1 and uncheck all other peripherals (see Figure 8).

4. Click Next. Figure 11 on page 10 shows the System Builder- Clock Settings tab. Configure the
System and Subsystem clocks in the Clocks page as listed in Table 2.

Figure 10 • CoreI2C Configurator

Table 2 • System and Subsystem Clocks

Clock Name Frequency in MHz

System Clock On-chip 25 MHz/50 MHz RC oscillator

M3_CLK 96

APB_0_CLK 24

APB_1_CLK 24

FIC_0_CLK 24
9

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
Figure 11 shows the Clocks Configuration dialog.

5. Click Next to go to the System Builder – Microcontroller page. Retain the default values.

6. Click Next to go to the System Builder – SECDED page. Retain the default values.

7. Click Next to go to the System Builder – Security page. Retain the default values.

8. Click Next to go to the System Builder – Interrupts page. Check Lock check-boxes, as shown
in Figure 12.

Figure 11 • System and Subsystem Clocks Configuration

Figure 12 • CoreI2C Interrupts
10

Software Implementation
9. Click Next and Finish to generate the design. Figure 13 shows the Memory Map page with
CoreI2C memory map.

Software Implementation
The software design performs the I2C transaction types (Write, Read, and Write-Read) on receiving
commands from user through GUI. All I2C buffer (Master/Slave transmit/receive buffer) sizes are 1024
bytes. An I2C Master (MSS I2C Master/CoreI2C Master) writes up to 1024 bytes of data to an I2C Slave
(MSS I2C Slave/CoreI2C Slave). The data received by the Slave is written to the Slave transmit buffer
and overwrites some or all of the default contents. The default contents of MSS I2C Slave is <<---MSS
Slave Tx data ------->> and CoreI2C Slave is <<---COREI2C Slave Tx data --->>. During the read
operation, the I2C Master reads the content from the Slave transmit buffer and displays it on the GUI. The
I2C Master writes up to 1024 bytes of data to the Slave, and reads it back in the same operation, while
performing the Write-Read transaction. It uses a repeated START bit between the write and read phases.
Software design also performs the error detection and time out features.

The software design performs the following operations:

• Initialization of UART

• Initialization of MSS I2C Master and CoreI2C Master with its I2C serial address

– MSS I2C Master serial address - 0x20

– CoreI2C Master serial address - 0x30

• Initialization of MSS I2C Slave and CoreI2C Slave with its I2C serial address

– MSS I2C Slave serial address - 0x21

– CoreI2C Slave serial address - 0x31

• Performing the following I2C transactions based on the command from the GUI:

– MSS I2C Master Perform Master Transmit - MSS I2C Slave Receive

– MSS I2C Master Perform Master Receive - MSS I2C Slave Transmit

– MSS I2C Master Perform Write-Read (MSS I2C Slave) operation

– MSS I2C Master Perform Master Transmit - CoreI2C Slave Receive

– MSS I2C Master Perform Master Receive - CoreI2C Slave Transmit

– MSS I2C Master Perform Write-Read (CoreI2C Slave) operation

– CoreI2C Master Perform Master Transmit - MSS I2C Slave Receive

– CoreI2C Master Perform Master Receive - MSS I2C Slave Transmit

– CoreI2C Master Perform Write-Read (MSS I2C Slave) operation

– CoreI2C Master Perform Master Transmit - CoreI2C Slave Receive

– CoreI2C Master Perform Master Receive - CoreI2C Slave Transmit

– CoreI2C Master Perform Write-Read (CoreI2C Slave) operation

Figure 13 • CoreI2C Memory Map
11

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
Firmware Drivers
The following firmware drivers are used in this application:

• MSS MMUART driver: To communicate with GUI on the host PC

• MSS I2C driver

• CoreI2C driver

For more information about the description of driver APIs and usage, see the respective driver user
guide. See the "Appendix B: Updating Firmware Catalog For Latest Drivers" section on page 21 to
update the drivers for latest version.

Application Program Interface (APIs)
Table 3 lists the APIs that are implemented in the software design.

If the design is re-generating, the eNVM memory content file path to be updated. See the "Appendix C:
Updating eNVM Memory Content File Path" section on page 23 to update the eNVM memory client in
SmartDesign flow.

Table 3 • APIs for I2C Transaction Types

API Description

UART_Polled_Rx Receives data. It receives the contents of the UART receiver FIFO. It
returns when the full content of the UART’s receive FIFO has been
transferred to the receive data buffer.

mss_read_transaction MSS I2C Master perform Read transaction

mss_write_transaction MSS I2C Master perform Write transaction

mss_write_read_transaction MSS I2C Master perform Write-Read transaction

mss_slave_write_handler Stores the received data in Slave transmit buffer

corei2c_read_transaction CoreI2C Master perform read transaction

corei2c_write_transaction CoreI2C Master perform write transaction

corei2c_write_read_transaction CoreI2C Master perform write-read transaction

corei2c_slave_write_handler Stores the received data in Slave transmit buffer

SysTick_Handler Service the I2C timeout functionality

FabricIrq0_IRQHandler CoreI2C 0 Fabric Interrupt handler

FabricIrq1_IRQHandler CoreI2C 1 Fabric Interrupt handler
12

Running the Design
Running the Design
The reference design runs on the SmartFusion2 Security Evaluation Kit board. For more information
about the SmartFusion2 Security Evaluation Kit board, see the SmartFusion2 Security Evaluation Kit.

Setting-up the Hardware
The following steps describe how to setup the hardware:

1. Connect the jumpers on the SmartFusion2 Security Evaluation Kit board as listed in Table 4.

CAUTION: Ensure that power supply switch SW7 is switched off while connecting the jumpers on the
SmartFusion2 Security Evaluation kit.

2. Connect the Power supply to the J6 connector.

3. Switch on the power supply switch SW7.

4. Connect the FlashPro4 programmer to the J5 connector (JTAG Programming Header) of the
SmartFusion2 Security Evaluation Kit board.

5. Connect the host PC USB port to the SmartFusion2 Security Evaluation Kit board’s J18 (FTDI)
USB connector using the USB mini-B cable. Ensure that the USB to UART bridge drivers are
automatically detected. This can be verified in the Device Manager of the host PC.

6. If the USB to UART bridge drivers are not installed, download and install the drivers from
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip.

7. Program the SmartFusion2 Security Evaluation Kit board with the generated or provided *.stp file
(see "Appendix A: Design Files" section on page 20) using FlashPro4.

8. Switch OFF the power supply switch SW7.

9. Connect the I2C header pins and general purpose input-output (GPIO) header pins together using
flying leads as listed in Table 5.

Table 4 • SmartFusion2 Security Evaluation Kit Jumper Settings

Jumper Pin (From) Pin (To) Comments

J3 1 2 Default

J8 1 2 Default

Table 5 • I2C SDA and SCL Connections

I2C Signal Name I2C Header - H1 GPIO Header - J1

SCL 6, 10 55, 57

SDA 7, 11 60, 62
13

http://www.microsemi.com/index.php?option=com_content&view=article&id=2355&catid=1663&Itemid=3402
www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
Figure 14 shows the I2C SDA and SCL connection using flying leads connectors. The wires are joined
together to connect all the SDA lines and SCL lines.

10. Switch ON the power supply switch, SW7.

Figure 14 • I2C SDA and SCL Connections
14

Running the Design
Windows Application
The reference design provides a windows GUI, M2S_I2C.exe that runs on the host PC to communicate
with the SmartFusion2 Security Evaluation Kit board. The UART protocol is used as communication
protocol between the host PC and SmartFusion2 Security Evaluation Kit board. Figure 15 shows the
initial screen of the GUI.

The M2S_I2C GUI consists of the following:

• Configurations: Consists of Frequency (serial clock), MSS I2C Slave address, and CoreI2C
Slave address.

– Frequency: Select a serial clock from the drop-down menu and click Set.

– MSS I2C Slave Address (Hex): Enter (2-digit Hexadecimal) Slave address as per the I2C
specification and click Set. Click Get to view the already assigned Slave address.

– CoreI2C Slave Address (Hex): Enter (2-digit Hexadecimal) Slave address as per the I2C
specification and click Set. Click Get to view the already assigned Slave address.

• Master: Select the following I2C Masters:

– MSS I2C

– CoreI2C

• Slave: Enter the Slave address of the I2C Slave peripheral.

• No.of Bytes to Read (Deci): Enter the number of bytes to be read.

• Buttons:

– Connect: Connects or disconnects the serial port communication between the host PC and
the SmartFusion2 Security Evaluation Kit board

– Write: Starts the Write transaction

– Read: Starts the Read transaction

– Write-Read: Starts the Write-Read transaction

– Exit: Exits the application

Figure 15 • M2S_I2C GUI
15

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
• Write/Read Data (ASCII):

– Write Data: Enter up to 1024 characters as write data during the write or Write-Read
transaction.

– Read Data: Displays received data during the read or write-read transaction.

– Clear: Clears the text box.

– Save: Saves the content as a text file.

– Character Count (Deci): Displays the numbers of characters in the text box.

Running the GUI
The following steps describe how to run the GUI:

1. Launch the GUI. The default location is:
<download_folder>\m2s_ac430_liberov11p7_df\M2S_I2C_DF \Windows_Utility\M2S_I2C.exe

2. Click Connect and wait for few seconds to connect the proper FDTI COM port. The connection
status along with the COM Port and Baud rate is highlighted in Figure 16. Figure 16 shows the
connection status.

Figure 16 • M2S_I2C Connection Status
16

Running the Design
If the board is not connected, or programmed with incorrect .stp file, the GUI shows an error message
as shown in Figure 17.

The following steps describe each I2C transaction types (Write, Read, and Write-Read). All possible use
cases are listed in Table 6 on page 19.

• Write:

– Select a Master from the Master section

– Enter a Slave address in the Slave section

– Enter the write data

– Click Write

• Read:

– Select a Master from the Master section

– Enter a Slave address in the Slave section

– Enter the number of bytes to be read

– Click Read

• Write-Read:

– Select a Master from the Master section

– Enter a Slave address in the Slave section

– Enter the write data

– Enter the number of bytes to be read

– Click Write-read

Figure 17 • Connection Status - Error Message
17

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
Figure 18 shows the Read transaction type. The MSS I2C Master reads from CoreI2C Slave. Write/Read
Data section shows the default CoreI2C Slave read data.

3. Read or write error occurs due to the non-availability of the selected Slave or due to connection
problem. To validate error detection, one of the I2C Slaves SDA line must be removed from the
SmartFusion2 Security Evaluation Kit board. Remove either I2C Header - H1 (7) or GPIO Header
- J1 (62) pin and perform an I2C transaction. Figure 19 shows the read error message when the
MSS I2C Master tries to read from the CoreI2C Slave.

4. Connect the removed flying lead to GND and perform an I2C transaction to test the time out.
Figure 19 shows the time out message when the MSS I2C Master tries to read from the CoreI2C
Slave.

Figure 18 • Read Transaction Type

Figure 19 • Read Error
18

Conclusion
Use Cases
Table 6 lists the use cases.

Conclusion
This application note describes the I2C transaction types (Write, Read, and Write-Read) with a reference
design, which implements multiple Masters and Slaves using the SmartFusion2 Security Evaluation Kit.

Figure 20 • Read Time Out

Table 6 • Use Cases

I2C Master I2C Slave I2C Transaction Type

MSS I2C Master MSS I2C Slave Write

Read

Write-Read

CoreI2C Slave Write

Read

Write-Read

CoreI2C Master MSS I2C Slave Write

Read

Write-Read

CoreI2C Slave Write

Read

Write-Read
19

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
Appendix A: Design Files
The design files can be downloaded from the Microsemi SoC Products Group website:

http://soc.microsemi.com/download/rsc/?f=m2s_ac430_liberov11p7_df.

The design file consists of Libero SoC Verilog project, SoftConsole software project, and programming

files (*.stp) for SmartFusion2 Security Evaluation Kit board. See the Readme.txt file included in

the design file for the directory structure and description.
20

https://www.microchip.com/en-us/application-notes/ac430

Appendix B: Updating Firmware Catalog For Latest Drivers
Appendix B: Updating Firmware Catalog For Latest Drivers
The following steps describe how to update firmware catalog for latest drivers.

1. Expand Handoff Design for Firmware Development in the Design Flow tab as shown in
Figure 21. Right-click Configure Firmware Cores and click Open Interactively.

2. DESIGN_FIRMWARE tab displays MSS peripherals and CoreI2C drivers. Click Download all
firmware as shown in Figure 22.

Figure 21 • Invoking Configure Firmware Cores

Figure 22 • Download All Firmware
21

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
Log - Messages window shows the firmware update status as shown in Figure 23.

Figure 23 • Download All Firmware
22

Appendix C: Updating eNVM Memory Content File Path
Appendix C: Updating eNVM Memory Content File Path
Libero stores the eNVM Memory Content file path as absolute path where it is developed. When
re-generating the design, the Memory window in the System Builder displays an error message as
shown in Figure 24.

The following steps describe how to update eNVM memory content file path in SmartDesign flow:

1. Expand I2C_Multi_Master_Slave_top in the Design Hierarchy tab as shown in Figure 25.
Right-click I2C_Multi_Master_Slave and then click Open as SmartDesign.

Figure 24 • Memory File Path Error

Figure 25 • System Builder Opens as SmartDesign
23

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
I2C_Multi_Master_Slave is opened as SmartDesign as shown in Figure 26.

2. Double-click I2C_Multi_Master_Slave_MSS_0 instance. I2C_Multi_Master_Slave_MSS is
opened, as shown in Figure 27.

Figure 26 • I2C_Multi_Master_Slave SmartDesign

Figure 27 • MSS Component
24

Appendix C: Updating eNVM Memory Content File Path
3. Double-click eNVM. The eNVM Configurator window is opened as shown in Figure 28.

4. Select Data Storage under Available Client Types tab (see Figure 28) and then click Add to
System. This opens Add Data Storage Client window, as shown in Figure 29.

Figure 28 • eNVM Configurator

Figure 29 • Add Data Storage Client Window
25

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
5. Enter a client name and click Memory file Browse.

6. Enter the following in the Open File dialog box and then click Open:

– Look in:
<download_folder>\m2s_ac430_liberov11p7_df\M2S_I2C_DF\Libero_Project\I2C_Multi_Mas
ter_Slave\SoftConsole\I2C_Multi_Master_Slave_MSS_CM3\I2C_Multi_Master_Slave_MSS_
CM3_app\Release

– Files type: Intel-Hex Files (*.hex, *.ihx)

– File name: I2C_Multi_Master_Slave_MSS_CM3_app.hex

7. Click Ok in the Add Data Storage Client window (see Figure 30).

8. Click Ok to close the eNVM Configurator.

9. Generate the following SmartDesigns by clicking SmartDesign > Generate Component or
by clicking the Generate Component icon on the SmartDesign toolbar.

– I2C_Multi_Master_Slave_MSS

– I2C_Multi_Master_Slave

– I2C_Multi_Master_Slave_top

Figure 30 • Add Data Storage Client Window
26

Appendix C: Updating eNVM Memory Content File Path
10. Click the Generate Bitstream in the Design Flow tab (highlighted in Figure 31) or select Design
> Generate Bitstream to synthesize the design, run layout using the I/O constraints and generate
the programming file (bitstream file).

The design implementation tools run in batch mode. Successful completion of a design step is indicated
by a green check mark next to the Implement Design in the Design Flow tab.

If the design implementation tools run without updating System Builder component (without updating
eNVM client), Generate Bitstream fails with an error message as shown in Figure 32.

To generate Bitstream, eNVM memory content to be updated. See “Updating eNVM Memory Content”
section in AC426: Implementing Production Release Mode Programming for SmartFusion2 Application
Note.

Figure 31 • Generate Bitstream Icon

Figure 32 • Log Window
27

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134308
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134308

SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
List of Changes
The following table shows important changes made in this document for each revision.

Revision* Changes Page

Revision 4
(February 2016)

Updated the document for Libero SoC v11.7 software release (SAR 76663). NA

Revision 3
(September 2015)

Updated the document for Libero SoC v11.6 software release (SAR 71268). NA

Revision 2

(February 2015)

Updated the document for Libero SoC v11.5 software release (SAR 62801). NA

Revision 1
(October 2014)

Initial release. NA

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
28

51900298-4/02.16

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; Enterprise Storage and
Communication solutions, security technologies and scalable anti-tamper products; Ethernet
Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800
employees globally. Learn more at www.microsemi.com.

© 2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 I2C Reference Design using Multiple Masters and Multiple Slaves - Libero SoC v11.7
	Purpose
	Introduction
	References
	Design Requirements
	Features
	I2C Transaction Types
	Write Transaction
	Read Transaction
	Write-Read Transaction

	Implementation on SmartFusion2 Device
	Design Description
	Hardware Implementation
	Software Implementation
	Firmware Drivers
	Application Program Interface (APIs)

	Running the Design
	Setting-up the Hardware
	Windows Application
	Running the GUI
	Use Cases

	Conclusion
	Appendix A: Design Files
	Appendix B: Updating Firmware Catalog For Latest Drivers
	Appendix C: Updating eNVM Memory Content File Path
	List of Changes

