Altmel

SMART ARM-based Microprocessor

Getting Started with the SAMA5D2 Audio
Subsystem

APPLICATION NOTE

Introduction

This application note describes the audio peripherals embedded in the
Atmel® | SMART SAMA5D2 series of microprocessors. The document
demonstrates the peripheral configuration using code examples running on
the SAMA5D2 Xplained Ultra board.

Reference Documents

Title Atmel Lit. No.

Datasheet SAMA5D2 Series 11267
Datasheet

Software Package SAMA5D2 Software N/A
Package

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

Table of Contents

INEFOAUCTION. ... 1
1. Introduction to SAMAS5D2 Audio Peripherals............cccocciiiiiiiiiiiiiienennananns 3
2. Digital Audio Phase Locked LOOP (AUIO PLL)..........ciiiiiiiiiiiiiiee e 4
2.1, Code EXample - AUAIO PLL........ooiiiiiiiii et 5
3. Pulse Density Modulation Interface Controller (PDMIC)................cccoo, 7
3.1, Code EXamPIle - PDIMIC.........oouiiiiiiieitit ettt sttt ettt 8
4. Audio Class D Amplifier (CLASSD).......cuiiiiiiiiiiieiee e 11
o B O N1 B N (01 (T q oTo] =1 (o] USSP PPN 12
4.2, CLASSD EQUANIZET.......cciiteeeee ettt e ettt e e e et e e e e e e e aaba e e e e e e satbaeeeeesansnneeaeeeannees 12
4.3. CLASSD De-emphasis Filter...........cooiiiiiiiiiie et 12
4.4, CLASSD AENUATON.eeiiitiie ettt et e st e e sab e e et b e e e aabe e e sbeeeennbeeeaae 12
4.5, CLASSD PWM STAQE. .. ciituteiuiieeitieeeittee e sieee sttt e e sttt e e stee e st e e e snteeesneeeassseeeanteeesneeeesnseeeaseeennee 13
4.6. COAE EXAMPIES.......oiiiiiiiiiiiee ettt e et e e e et e e e e e e e b e e e e e e e abaeeaaeeabaaaeaeeaannees 15
5. Inter-IC Sound Controller (I2SC)........cuo i 18
LT R A B o -1 41 TS PRT 18
LT S T O 1V o T LY SR 18
5.3. 12SC Supported Sample Rates and Data Formats...........cceviviiiiiiiiiiiiiieec e 19
L T S O @1 o Tt Q=T =Y = (o USRS 20
LR T @70 To [=T 40T o] L= PSPPSRSO 21
6. Synchronous Serial Controller (SSC)......coiiiiiiiiiiiee e 26
B.1. SSC ClOCK DIVIAET.......eiieiiiiiiee ettt e et e e e e ettt e e e e s ntbeeeeeeaanseeeaaeeannseaaaeeannees 26
Lo S S O I = 0 S 1411 1 (= PSPPSR 27
LT TS S T O (=T o7 =Y 1Y = S 27
6.4. SSC Frame FOMMAL.........oooiiiiieiiee ettt ettt et e et e e e et e e s nee e e nnteeeaneeeeeneeeennneeas 28
6.5, £00E EXAMPIES.ottt e e naee 30
7. Differences Between [2SC and SSC..........cccuiiiiiiiiiiiii e 33
T =AY o] T 1] (o] Y2 34

Atmel

Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE]
Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

2

1. Introduction to SAMAS5D2 Audio Peripherals

The SAMA5D?2 series of microprocessors embeds a wide set of peripherals targeting audio-intensive
applications. This includes the following peripherals:

1. Digital Audio Phase Locked Loop (Audio PLL)

2. Pulse Density Modulation Interface Controller (PDMIC)
3. Digital Audio Class-D Amplifier (CLASSD)

4. Inter-IC Sound Controller (I12SC)

5. Synchronous Serial Controller (SSC)

The following sections describe each peripheral.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE]
Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

3

Digital Audio Phase Locked Loop (Audio PLL)

The SAMASD2 series includes a high-resolution fractional-N digital PLL designed for low jitter operation.
The PLL takes the reference clock signal from the main crystal oscillator and generates high frequency

audio core clock output.

Figure 2-1. Audio PLL Block Diagram

PMC_AUDIO_PLLO.RESETN
CKGR_MOR.MOSCXTEN
|

I
PMC_AUDIO_PLLO.PLLEN
1 1

XIN[}— Main pLL |AUDIOCORECLK ON/OFF AUDIOPLLELK PCKx
Crystal DPM +1l PMC
. CORE /(QDPMC+1} GCLK
XOUT[J—Oscillator
T 1 |
I PMC_AUDIO_PLL1.FRACR PMC_AUIDIO_PLLO.QDPMC
CKGR_MOR.MOSCXTBY | PMC_AUDIO_PLLO.PMCEN

PMC_AUDIO_PLLO.ND

ON/OFF

] /DIIV }—— rapaubio} -~ AUDIOPINCLK D

Audio Clock Output

[
PMC_AUDIO_PLL1.DIV PMC_AUDIO_PLLO.PADEN
PMC_AUDIO_PLL1QDAUDIO

AUDIO PLL

The high frequency audio core clock output is split internally into two signal paths each having individual
divider and clock gating networks. The output from one signal path is fed to the power manager (PMC)
which is then used as the base clock (GCLK — Generic Clock) for audio peripherals like PDMIC, Class-D
and 12SC. This output is the AUDIOPLLCK in the block diagram.

The output from other signal path is fed to the audio clock output pin (CLK_AUDIO) which can be used as
a master clock for external components like an external audio codec chip. This output is the
AUDIOPINCLK in the block diagram.

The Audio PLL is designed to generate an internal audio core clock frequency in the range of 620 MHz
(min) to 700 MHz (max). Refer to Electrical Characteristics section in the SAMA5D2 Datasheet. This
frequency is controlled by the user-configurable parameters ND and FRACR, as shown in the equation
below:

FRACR
f audiocorectock = fref(ND +1+ T)

fofis the reference input clock frequency from the main crystal oscillator which should be minimum 12
MHz and maximum 24 MHz. The fractional part in the above equation plays a key role in high resolution
frequency adjustment. The maximum frequency resolution achievable is 2.8610Hz. This means that, for
each increment in the FRACR value, the audio core clock output, typically in the 620-700 MHz range, is
incremented by 2.8610Hz.

The AUDIOPLLCK path has a divider which is controlled by the user-configurable parameter QDPMC.
The output frequency from the AUDIOPLLCK path is given by the equation below.

faudiocoreclock

faudiopllck = W

The AUDIOPINCLK path has a divider which is controlled by the user-configurable parameters DIV and
QDAUDIO. The output frequency is given by the equation below.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 4

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

2.1.

f audiocoreclock

f audiopinctk = (DIV*QDAUDIO)

The DIV and QDAUDIO parameters should be configured in such a way that f,,giopincik is in the range 8
MHz (min) to 48 MHz (max).

The Audio PLL output can be varied during runtime by adjusting the FRACR and ND values. The high
FRACR resolution allows very fine and smooth frequency adjustments without audible artefacts. As an
example, in a network application, it is possible to adjust FRACR so that the local audio clock frequency
tracks a distant master clock in the network. On the contrary, when making large changes to the output
frequency (e.g., when changing ND) it is good practice to first mute the relevant audio signals of the
system and then let the PLL settle to the new frequency to avoid any undesirable noise. In any case, the
settling time of the PLL to reach a new frequency value is maximum 100 ps. Refer to the Electrical
Characteristics section in the SAMASD2 datasheet.

Code Example - Audio PLL

The following code snippet specifies the steps to configure and enable the Audio PLL module.
Requirements:

fref = 12 MHz

faudiopiick = 12.288 MHz

faudiopincik = 12.288 MHz

620 MHz < faygiocoreciock < 700 MHz

The values for ND, FRACR, QDPMC, QDAUDIO and DIV that meet the above requirements can be
calculated by a trial and error approach or by using code routines. For simplicity, a trial and error
approach is used with the following results: ND = 54, FRACR = 1241514, QDPMC = 53, QDAUDIO = 27
and DIV = 2, which meet the above requirements. Procedural calculation routines are available as part of
SAMAS5D2 Linux BSP. Specifically, the Linux clock driver available at https://github.com/linux4sam/linux-
at91/tree/master/drivers/clk/at91 can be taken as reference.

With the above calculated Audio PLL parameters, the audio core clock is as follows:

faudiocoreciock = 12000000 * (54 + 1 + (1241514 / 2°22)) = 663.552 MHz and the Audio PLL clock fed to
PMC will be,

faudiopiick = 663.552 MHz / (53 + 1) = 12.288 MHz and the audio pin clock fed to CLK_AUDIO pin will be,
faudiopincik = 663.552 MHz / (2 * 27) = 12.288 MHz.
Code Snippet:

/* Disable Audio PLL */
PMC—>PMC_AUDIO_PLLO = 0;

/* Set Audio PLL in active state */
PMC->PMC_AUDIO PLLO = PMC AUDIO PLLO RESETN;

/* Set Audio PLL parameters — Numbers calculated in trial and error for
above spec */
PMC—>PMC_AUDIO_PLLO | = PMC_AUDIO_PLLO_ND (54) | PMC_AUDIO_PLLO_QDPMC (53);

PMC->PMC_AUDIO PLL1 = PMC_AUDIO PLL1 FRACR(1241514)
| PMC_AUDIO PLL1 DIV (2)

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 5

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

https://github.com/linux4sam/linux-at91/tree/master/drivers/clk/at91
https://github.com/linux4sam/linux-at91/tree/master/drivers/clk/at91

| PMC AUDIO PLL1 QDAUDIO (27) ;

/* Enable Audio PLL */
PMC->PMC_AUDIO PLLO |= PMC AUDIO PLLO PLLEN | PMC AUDIO PLLO PADEN |
PMC_AUDIO PLLO_PMCEN;

/* Wait for startup time until PLL is stabilized */
delay us(100);

The above code snippet has a delay loop of 100 microseconds, which is the maximum startup time for the
Audio PLL module. The code has the PADEN bit set, which makes the AUDIOPINCLK signal available in
the CLK_AUDIO pin.

To use AUDIOPLLCK as the clock source for an audio peripheral, it has to be enabled in the power
manager. For example, the following line of code enables AUDIOPLLCK as clock source for the PDMIC
peripheral.

PMC->PMC_PCR = PMC_PCR_PID(ID PDMIC)
| PMC_PCR_GCKCSS_AUDIO CLK
| PMC_PCR_CMD
| PMC_PCR_EN
| PMC_PCR_GCKEN;

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 6
Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

Pulse Density Modulation Interface Controller (PDMIC)

The PDMIC peripheral is a mono PDM decoder module that decodes an incoming PDM sample stream.
The PDMIC module takes either the system clock (MCK) or the generic clock (e.g., Audio PLL PMC
output) as its clock source. It then generates the PDM clock in the PDMIC_CLK pin to be fed to the
connected PDM microphone and samples the data from the PDMIC_DAT pin. The PDM data is sampled
on the rising edge of the PDMIC_CLK signal.

The module can output either a 16-bit or a 32-bit signed result to the result register (PDMIC_CDR -
PDMIC Converted Data Register) which can be transferred to the main memory either by CPU or by DMA
controller. It embeds a FIFO buffer to store up to 4 converted results.

The PDMIC module incorporates a DSP engine containing a decimation filter, a droop compensation filter,
a sixth-order low-pass filter, a first order high-pass filter and an offset and gain compensation stage, as
shown in the block diagram below.

Figure 3-1. PDMIC DSP Block Diagram

sincc_b hpf_b
._byp pI_byp 16 or 32

bits
data0
signed I
— |32

3 M 24 24 32 right shift 16 LsBs
1_\ — =TT S~
— - /\ |' l 2 signed |

7
| s2es \ [Tl To[]
right shift data [—
SINC Filter Droop Compensation Low Pass Filter High Pass Filter Decimation
Decimation
offset * 28 | scale shift

gain

The overall decimation ratio of the DSP engine is either 64 or 128, which is configurable. This means, to
sample an audio signal with a sample rate of 48 kHz, the clock frequency to be given to the microphone
over the PDMIC_CLK pin should be (48000 * 128) = 6.144 MHz if an oversampling ratio of 128 is used, or
should be (48000 * 64) = 3.072 MHz if an oversampling ratio of 64 is used.

For a more detailed description of the individual components of the DSP engine, refer to "Digital Signal
Processing (Digital Filter)", in Section "Pulse Density Modulation Interface Controller (PDMIC)" of the
SAMASD2 device datasheet.

The digital output after all the decimation and filter stages is fed to an offset and gain compensation stage
which follows the equation below.

3 (din + (offset* 28))*dgain

out 2(scale + shift + 8)

Where:

* d, is the output from the filter stages (signed 24-bit) and input to the offset and gain compensation
stage.

* doyutis the final output which will be placed in the PDMIC_CDR register.

+ offsetis a signed 16-bit integer which is multiplied by 28 to have the same weight as d,.

* dgain is an unsigned 15-bit integer which is set to 0 after reset. The user must configure this
parameter to a non-zero value to get a valid result. The output after dg,;, multiplication of dj, (with
offset added) can be more than 32 bits in size. Only 32 MSB bits will be used for the next scaling
and shifting stage.

« scale and shift are unsigned 4-bit integers each. The multiplication result will be shifted right by
(scale + shift + 8) bits.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 7

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

When the 32-bit result mode is selected, the scaling and shifting stage division is not performed and the
32-bit multiplication result (32-bit MSBs) is placed in the result register. When the 16-bit result mode is
selected, the scaling and shifting stage division is performed. The result is then saturated to be within
+(2'5 - 1) and the 16 LSBs of this saturation operation are placed in the result register.

3.1. Code Example - PDMIC
The following code example demonstrates the steps to record mono audio data using a PDMIC interface
at a 48-kHz sample rate for 10 seconds with a sample size being signed 16-bit. A PDM microphone is
connected to the PDMIC interface through 1/0 pins PB26 (PDMIC_DAT) and PB27 (PDMIC_CLK). The
converted data is stored in a buffer in the DDR memory on the SAMAS5D2 Xplained board.
3.1.1. Audio PLL Initialization
The code snippet given below initializes the Audio PLL to output AUDIOPLLCK at a frequency of 98.304
MHz with a 12-MHz reference input clock frequency.
/* Disable Audio PLL */
PMC->PMC_AUDIO PLLO = 0;
/* Set Audio PLL in active state */
PMC->PMC_AUDIO PLLO = PMC_AUDIO PLLO RESETN;
/* Set Audio PLL parameters — Numbers calculated in trial and error for
above spec */
PMC->PMC_AUDIO PLLO |= PMC AUDIO PLLO ND(56) | PMC AUDIO PLLO QDPMC (6) ;
PMC->PMC_AUDIO PLLl1 = PMC_AUDIO PLL1 FRACR (1442840);
/* Enable Audio PLL */
PMC->PMC_AUDIO PLLO |= PMC _AUDIO PLLO PLLEN | PMC AUDIO PLLO PMCEN;
/* Wait for startup time until PLL is stabilized */
delay us(100);
A frequency value of 98.304 MHz is chosen because the same frequency can be used to source the
PDMIC interface as well as the CLASSD interface which will be discussed in the next chapter.
3.1.2. PDMIC /O Pin Initialization
P10 pins PB26 and PB27 with their peripheral function D will be assigned to the PDMIC interface. The
code snippet given below will initialize the I/O pins accordingly.
/* Set PORTB mask register bit 26 */
PIOA->PIO IO GROUP[1].PIO MSKR = (lu << 26);
/* Enable peripheral function D and set I/0O pin as input */
PIOA->PIO IO GROUP[1].PIO CFGR = PIO CFGR FUNC PERIPH D |
PIO CFGR DIR INPUT;
/* Set PORTB mask register bit 27 */
PIOA->PIO IO GROUP[1].PIO MSKR = (lu << 27);
/* Enable peripheral function D and set I/O pin as output */
PIOA->PIO IO GROUP[1].PIO CFGR = PIO CFGR FUNC PERIPH D |
PIO CFGR DIR OUTPUT;
tmel Getting Started with the udio Subsystem
me Atmel Getting S d with the SAMA5D2 Audio Sub [APPLICATION NOTE] 8

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

3.1.3.

3.1.4.

Atmel

PDMIC XDMAC Channel Initialization

A DMA channel from the XDMAC module is configured to transfer the converted data from the PDMIC
interface to the main memory buffer. The code snippet given below configures the XDMAC channel 0 in a
single block — Single Micro Block mode with micro block length equal to 10*48000 (48-kHz sample rate
for 10 seconds).

/* Enable peripheral clock for XDMACO */
PMC->PMC_PCERO = (lu << ID XDMACO);

/* Read the interrupt status register to clear the interrupt flags */
temp = XDMACO->XDMAC CHID[O].XDMAC CIS;

/* Set source address as PDMIC CDR register */
XDMACO->XDMAC CHID[0].XDMAC CSA = (uint32 t)&PDMIC->PDMIC CDR;

/* Set destination address as starting address of audio buffer */
XDMACO->XDMAC CHID[0].XDMAC CDA = (uint32 t)audio data;

/* Set micro block length */
XDMACO->XDMAC CHID[O] .XDMAC CUBC = 10*48000;

/* Set DMA channel parameters */
XDMACO->XDMAC CHID[O] .XDMAC CC =
XDMAC CC_TYPE PER TRAN

| XDMAC_ CC_MBSIZE SINGLE

XDMAC_CC_DSYNC_PER2MEM
| XDMAC CC CSIZE CHK 1
| XDMAC CC_DWIDTH HALFWORD
| XDMAC CC_SIF AHB IF1
| XDMAC CC_DIF AHB IF0
| XDMAC CC_SAM FIXED AM
| XDMAC_CC_DAM INCREMENTED AM
| XDMAC CC_PERID(50) ;

/* Set all registers related to descriptor to 0 */
XDMACO->XDMAC CHID[O] .XDMAC CNDC = 0;
XDMACO->XDMAC CHID[O] .XDMAC CBC = O;
XDMACO->XDMAC CHID[O] .XDMAC CDS MSP = O0;
XDMACO->XDMAC CHID[O] .XDMAC CSUS = 0;
XDMACO->XDMAC CHID[O] .XDMAC CDUS = 0;

The DMA channel source address is set to the PDMIC_CDR result data register, and the destination
address is set to the start of the buffer. Here, "audio_data" is an array of type signed 16-bit integer and of
size 10*48000. The transfer size is set to half-word with a fixed source address and a destination address
incrementing for each transfer.

No descriptors are used for the transfer, so the XDMAC registers related to the descriptor configuration
are setto 0.

PDMIC Initialization
The following code snippet initializes the PDMIC interface with its clock source set to Audio PLL through
PMC’s GCLK source.

/* Enable Audio PLL as source for PDMIC through GCLK */
PMC->PMC_PCR = PMC_PCR_PID(ID PDMIC)

| PMC_PCR_GCKCSS_AUDIO CLK

| PMC_PCR_CMD

| PMC PCR_GCKDIV (7)

Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 9
Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

| PMC_PCR _EN
| PMC_PCR_GCKEN;

/* Wait until GCLK is ready */
while (! (PMC->PMC_SR & PMC_SR_GCKRDY));

/* Perform software reset of PDMIC peripheral */
PDMIC->PDMIC CR = PDMIC CR SWRST;

/* Select GCLK as clock source and set perscaler */
PDMIC->PDMIC MR = (lu << 4) | PDMIC MR PRESCAL(1);

/* Set oversampling ratio to 64 */
PDMIC->PDMIC DSPRO = PDMIC DSPRO_OSR(1) ;

/* Set DGAIN to 1 */
PDMIC->PDMIC DSPR1 = PDMIC DSPR1 DGAIN (1) ;

/* Enable PDMIC */
PDMIC—>PDMIC_CR = PDMIC_CR_ENPDM;

/* Enable DMA channel */
XDMACO —>XDMAC_GE = XDMAC_GE_ENO ;

/* Wait until DMA transfer is done */
while (! (XDMACO->XDMAC CHID[0].XDMAC CIS & XDMAC CIS BIS));

The Audio PLL clock output of 98.304 MHz is fed to the PDMIC module after prescaling it down to 12.288
MHz using the GCLK controller in PMC (GCKDIV is set to 7 so the GCLK division factor is 8).

The PDMIC module is configured with an oversampling ratio of 64 with unity gain and then enabled. Once
enabled, the PDMIC generates the PDM clock and then starts to convert audio data.

The XDMAC channel is also enabled which starts transferring the converted result from PDMIC to the
buffer in the main memory. The XDMAC channel block interrupt flag (BIS) is set once the specified
number of micro block length data are transferred to the main memory and the CPU comes out of the last
while loop in the above code snippet.

The overall gain of the PDMIC module can be configured by modifying the DGAIN and SCALE
parameters which follow the equation below (assuming offset and shift are zero).

2(scale +8)
i — *
Gain (dB) = 20 log(dgain)
AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 10

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

Audio Class D Amplifier (CLASSD)

The Audio Class D Amplifier (CLASSD) is a digital input, Pulse Width Modulated (PWM) output stereo
Class D amplifier. It features a high quality interpolation filter embedding a digitally-controlled gain, an
equalizer and a de-emphasis filter.

The CLASSD takes 16-bit signed data with most common audio sample rates at its input and generates
PWM output that can drive either:

* High-impedance single-ended or differential output loads (Audio DAC application), or

+ External MOSFETs through an integrated non-overlapping circuit (Class D power amplifier

application)

The DSP section of the CLASSD has been designed to run at two clock frequencies (DSPCLK - 12.288
MHz and 11.289 MHz) and supports input sampling rates as listed below:
8 kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz and 96 kHz.

The CLASSD peripheral has an internal fixed divide by 8 prescaler before the DSP section, so the
generic clock frequency from the power manager (PMC) to the CLASSD should be 8 times the desired
DSP clock. For example, if DSPCLK is 12.288 MHz, the GCLK should be (12.288 MHz * 8) = 98.304
MHz. The Audio PLL has to be configured to generate the GCLK clock accordingly.

The following figure shows the CLASSD amplifier block diagram.

Figure 4-1. CLASSD Block Diagram

GCLK

CLASSD
/8
DSP Clock (DSPCLK)
—>| |CLASSD_LO

@ | non- > [JcLassD_L1
wigger LoATA — | PYM || overlap > [JcLassD

12
event 0

DMA > []cLAssD_L3

Atte-
nuator

PIO

Equalization
Interpolation

—>|_|CLASSD_RO

F—| non- —[]cLASSD_R1
RDATA signal 1 [PWM 1 foverlap I [JcLassD_R2
2

routing 0 —[|cLASSD_R3

PWMTYP

SWAP | EQCFG | FRAME ATTL NON_OVERLAP

MONO CLKSEL ATTR NOVRVAL

: LMUTE
Bridge |[€—> MONOMODE

RMUTE

User Interface + Control Logic

Peripheral Clock

Bus Clock

The CLASSD has an interpolator, an equalizer, a de-emphasis filter, an attenuator and a PWM stage. The
following sections give a brief description of each DSP component. Refer to the SAMA5D2 datasheet
section "Audio Class D Amplifier (CLASSD)" for more descriptive information about each DSP
components of the CLASSD module.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 11

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

4.1. CLASSD Interpolator
The CLASSD interpolator embeds three filters with different frequency responses. One of the three filters
is used for a given DSPCLK and input sample rate. Refer to Table 4-1 for the filter type for a given
DSPCLK and sample rate.
Interpolation is performed with a combination of Infinite Impulse Response (IIR) and Cascaded Integrator-
Comb (CIC) filters. Given an input configuration, the filter’s coefficients are automatically redefined to
optimize the filter’s transfer function in order to optimize the audio bandwidth.
4.2, CLASSD Equalizer
The CLASSD offers 12 programmable equalization filters as listed below.
1. Bass boost +12 dB
2. Bass boost +6 dB
3. Basscut-12dB
4. Basscut-6dB
5. Medium boost +3 dB
6. Medium boost +8 dB
7. Medium cut -3 dB
8. Medium cut -8 dB
9. Treble boost +12 dB
10. Treble boost +6 dB
11. Treble cut-12 dB
12. Treble cut -6 dB
A zero-cross detection system is used to modify the equalizer on-the-fly with minimum disturbance of the
output signal.
4.3. CLASSD De-emphasis Filter
The CLASSD includes a de-emphasis filter to attenuate the high frequency components. This filter can
only be used with input sample rates 32 kHz, 44.1 kHz and 48 kHz.
4.4. CLASSD Attenuator
The CLASSD features a digital attenuator with an attenuation range of 0—77 dB and a step size of 1 dB.
When a greater than 77 dB attenuation is programmed, the attenuator mutes the channel. Attenuation
can be done individually for both right and left channels.
The following table shows the allowed settings for input sample rates, DSPCLK and filter support for each
available sample rate.
AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 12

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

Table 4-1. DSPCLK and Sample Rates with Respective Filter Types

Sample Rate (fs) Filter Type / DSPCLK De-emphasis | Attenuator
12.288 MHz | 11.2896 MHz Filter
2]

8 kHz

16 kHz 2 -
32 kHz 2 -
48 kHz 1 -
96 kHz 3 -
22.05 kHz - 1
441 kHz = 1
88.2 kHz - 3

Y
Y
Y
Y
Y
Y
Y
Y

Z < z2 z < < z z
< < < < < < =< <

Note:

1. The "Filter Type / DSPCLK" column in the above table without a numerical entry implies an
unavailable CLASSD setting. Such configuration will raise the Configuration Error (CFGERR) flag.

2. Y — DSP component supported.
N — DSP component not supported.

4. For the attenuator, a minimum attenuation of 1dB should be configured to avoid saturation in the
PWM stage.

w

4.5. CLASSD PWM Stage
The CLASSD Pulse Width Modulator (PWM) generates fixed-frequency PWM outputs. The following table
shows the PWM frequency generated for different sample rates and conditions.
Table 4-2. PWM Frequencies for Different Sample Rates
Sample Rate (fs) PWM Frequency Calculation PWM Frequency
44 1 kHz 16 * s 705.6 kHz
48 kHz 768 kHz
8 kHz
Adapted 16x 768 kHz
16 kHz
Interpolation
24 kHz
96 kHz
22.05 kHz 705.6 kHz
88.2 kHz
Depending on the NON_OVERLAP bit value in mode register (CLASSD_MR), the CLASSD can:
* Work as a DAC, loaded by a medium-to-high resistive load (1 kQ to 100 kQ) — Single ended or
differential resistive loads (NON_OVERLAP = 0), or
AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 13

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

* Work as a CLASS D power amplifier driving external power stage — Full or Half MOSFET H-bridges
(NON_OVERLAP =1)

When driving an external power stage (NON_OVERLAP = 1), the CLASSD generates the signals to
control complementary MOSFET pairs (PMOS and NMOS) with a non-overlapping delay between the
NMOS and PMOS controls to avoid short-circuit current. The non-overlapping delay can be adjusted in
the CLASSD_MR.NOVRVAL field.

For each NON_OVERLAP bit value, the PWM stage can generate a single-ended or differential output
depending on the PWMTYP bit available in mode register.

For a single-ended output (CLASSD_MR.PWMTYP = 0), the PWM acts only on the falling edge of the
PWM waveform (trailing edge PWM). For a differential output (CLASSD_MR.PWMTYP = 1), both the
rising and the falling edges of the PWM waveform are modulated (symmetric PWM).

The following figures show the modulated PWM output waveforms when PWMTYP = 0 and when
PWMTYP = 1 respectively.

Figure 4-2. Output Waveform Modulation for PWMTYP =0

PWM
outputA
VDD -
CLASSD L0
0’ N
;:ll"""'time
1/fPWM

Figure 4-3. Output Waveform Modulation for PWMTYP = 1 (Only left channel pins shown)

PWM
outputs A

VDD {-1-

CLASSD_LO

0 -
VDD -

CLASSD_L2

0

VDD -

CLASSD_LO
-CLASSD_L2

0

-VDD -

To summarize the CLASSD outputs for the left channel:

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 14

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

1. When NON_OVERLAP = 0, in Single-ended mode (PWMTYP = 0), only one PWM output signal is
generated per channel (LO for the left channel) and it covers both positive and negative sides of the
analog output.

2. When NON_OVERLAP = 0, in Differential mode (PWMTYP = 1), two PWM outputs are generated
per channel (LO and L2 for the left channel) where one PWM output covers the positive half and
another PWM output covers the negative half of the analog output.

3. When NON_OVERLAP = 1, in Single-ended mode (PWMTYP = 0), two PWM outputs are
generated per channel (LO and L1 for the left channel) to drive a single PMOS-NMOS
complementary pair. These two PWM outputs are exactly the same, with a small delay between
them during the level transition (edges) to avoid short-circuit. The output from the PMOS-NMOS
complementary pair is now a single PWM signal covering both the positive and negative sides of
the analog output.

4. When NON_OVERLAP = 1, in Differential mode (PWMTYP = 1), four PWM outputs are generated
per channel (LO, L1, L2 and L3) to drive two PMOS-NMOS complementary pairs. The first two
PWM outputs (LO and L1) are used to drive the upper PMOS-NMOS complementary pair and the
next two PWM outputs (L2 and L3) are used to drive the lower PMOS-NMOS complementary pair.
The effective PWM signal from the upper complementary pair covers the positive side of the analog
output and the effective PWM signal from the lower complementary pair covers the negative side of
the analog output. Individual delay is applied to the PWM inputs of each complementary pair just
like in case 3 above, to avoid short-circuit.

The table below lists the combinations of the possible PWM modulations with the corresponding I/O pins.
Table 4-3. CLASSD Signal and Pin Assignment for Different Modulation Settings

/0 Pin & CLASSD External MOS Driver Direct Load (NON_OVERLAP = 0)
Peripheral | Signal (NON_OVERLAP = 1)

Function

Full H-Bridge Half H-Bridge Differential Load |Single-Ended
(PWMTYP = 1) (PWMTYP = 0) (PWMTYP =1) Load (PWMTYP
=0)
PA28 - F CLASSD _LO | left pos_pmos left_pmos left_pos
PA29 - F CLASSD_L1 left_pos_nmos left_nmos unused unused
PA30 - F CLASSD_L2 | left_neg_pmos unused left_neg unused
PA31 - F CLASSD L3 left neg_nmos unused unused unused
PB1-F CLASSD_RO right_pos_pmos right_pmos right_pos right
PB2-F CLASSD_R1 right_pos_nmos right_nmos unused unused
PB3-F CLASSD_R2 | right_neg_pmos unused right_neg unused
PB4 - F CLASSD_R3 right neg nmos unused unused unused

4.6. Code Examples
The following code example demonstrates the steps to playback audio data from a buffer using the
CLASSD interface at a 48-kHz sample rate with a stereo sample size signed 16 bits. The Audio PLL
initialization is the same as in Code Example - Audio PLL.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 15

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

4.6.1.

4.6.2.

CLASSD I/0 Pin Initialization

P10 pins PA28, PA29, PA30, PA31 (for the left channel) and PB1, PB2, PB3, PB4 (for the right channel)
with peripheral function F will be assigned to the CLASSD interface. The code snippet given below will
initialize the I/O pins accordingly.

/* Set PORTA mask register bits 28, 29, 30 & 31 */
PIOA->PIO IO GROUP[0].PIO MSKR = (OxF << 28);

/* Enable peripheral function F and set I/O pins as output */
PIOA->PIO IO GROUP[0].PIO CFGR = PIO CFGR _FUNC PERIPH F |
PIO_CFGR_DIR OUTPUT;

/* Set PORTB mask register bits 1, 2, 3 & 4 */
PIOA->PIO IO GROUP[1].PIO MSKR = (0xF << 1);

/* Enable peripheral function F and set I/0 pins as output */
PIOA->PIO IO GROUP[1].PIO CFGR = PIO CFGR_FUNC_PERIPH F |
PTIO_CFGR DIR OUTPUT;

XDMAC Channel Initialization

A DMA channel from the XDMAC module is configured to transfer the audio samples from the main
memory buffer to the CLASSD data register. The code snippet below configures the XDMAC channel 0 in
a single block — Single Micro Block mode with micro block length equal to the size of the buffer in bytes,
divided by 4. The division factor is set to 4 because the buffer is arranged as an array of 16-bit signed
integers with alternating left channel and right channel data. Array index 0 is the left channel data of
sample 0, and array index 1 is the right channel data of sample 0, and so on. So, each successive four
bytes in the array amounts to one audio sample.

/* Enable peripheral clock for XDMACO */
PMC->PMC_PCERO = (lu << ID XDMACO) ;

/* Read the interrupt status register to clear the interrupt flags */
temp = XDMACO->XDMAC CHID[O].XDMAC CIS;

/* Set source address as starting address of audio buffer */
XDMACO->XDMAC CHID[0].XDMAC CSA = (uint32 t)audio data;

/* Set destination address as CLASSD THR register */
XDMACO->XDMAC CHID[O] .XDMAC CDA = (uint32 t)&CLASSD->CLASSD THR;

/* Set micro block length */
XDMACO->XDMAC_CHID[0] .XDMAC CUBC = sizeof (audio data)/4;

/* Set DMA channel parameters */
XDMACO->XDMAC CHID[O] .XDMAC CC = XDMAC CC TYPE PER TRAN
| XDMAC CC MBSIZE SINGLE
| XDMAC CC_DSYNC MEM2PER
| XDMAC CC CSIZE CHK 1
| XDMAC CC_DWIDTH WORD
| XDMAC CC_SIF AHB IFO
| XDMAC CC_DIF AHB IF1
| XDMAC CC_SAM INCREMENTED AM
| XDMAC CC_DAM FIXED AM
| XDMAC_CC_PERID(47);

/* Set all registers related to descriptor to 0 */
XDMACO—>XDMAC_CHID[O].XDMAC_CNDC = 0;
XDMACO->XDMAC CHID[O] .XDMAC CBC = O;

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 16

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

4.6.3.

XDMACO->XDMAC CHID[O] .XDMAC CDS MSP = O0;
XDMACO->XDMAC CHID[O] .XDMAC CSUS = 0;
XDMACO->XDMAC CHID[O] .XDMAC CDUS = 0;

The DMA channel source address is set to the start of the buffer and the destination address is set to the
CLASSD transmit holding register. The transfer size is set to one word (one audio sample per transfer)
with source address incrementing and destination address fixed for each transfer.

No descriptors are used for the transfer, so the XDMAC registers related to the descriptor configuration
are set to 0.

CLASSD Initialization
The following code snippet initializes the CLASSD interface with its clock source set to Audio PLL through
PMC’s GCLK source.

/* Enable Audio PLL as source for CLASSD through GCLK */
PMC->PMC PCR = PMC PCR PID(ID CLASSD)

| PMC_PCR_GCKCSS_AUDIO CLK

| PMC PCR _CMD

| PMC_PCR _EN

| PMC_PCR_GCKEN;

/* Wait until GCLK is ready */
while (! (PMC->PMC SR & PMC SR GCKRDY)) ;

/* Perform software reset of CLASSD peripheral */
CLASSD->CLASSD _CR = CLASSD CR SWRST;

/* Configure CLASSD parameters */
CLASSD->CLASSD MR = CLASSD MR LEN

| CLASSD MR REN

| CLASSD MR _PWMTYP

| CLASSD MR NON OVERLAP

| CLASSD MR NOVRVAL 20NS;

CLASSD->CLASSD INTPMR = CLASSD INTPMR DSPCLKFREQ 12M288
| CLASSD INTPMR FRAME FRAME 48K
| CLASSD INTPMR ATTL (10)
| CLASSD INTPMR ATTR(10);

/* Enable DMA channel */
XDMACO—>XDMAC_GE = XDMAC_GE_ENO;

/* Wait until DMA transfer is done */
While(!(XDMACO—>XDMAC_CHID[O].XDMAC_CIS & XDMAC_CIS_BIS));

The Audio PLL clock output of 98.304 MHz is fed to the CLASSD module using the GCLK controller in
PMC. The CLASSD has an internal fixed divide by 8 prescaler which provides the 12.288 MHz clock to
the DSP engine of the CLASSD module.

The CLASSD module is configured in Non-overlap mode with PWMTYP=1 and a non-overlap delay of 20
ns. The interpolator is configured for 12.288 MHz and a sample rate of 48 kHz. The attenuation for the left
and right channels are set to -10dB.

The XDMAC channel is enabled, which starts the audio sample transfers from the buffer to the CLASSD
transmit holding register, one audio sample (with both left and right channel data) at a time. The XDMAC
channel block interrupt flag (BIS) will be set once the specified number of micro block length data are
transferred and the CPU will come out of the last while loop in the above code snippet.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 17

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

5.1.

5.2.

Inter-IC Sound Controller (12SC)

The Inter-IC Sound Controller (12SC) is an 12S bus specification-compliant 5-wire, bidirectional,
synchronous digital audio interface that can communicate with external I12S devices like audio codecs.

The 12SC signals are:

* 128Dl - 12S Data Input line

* 12SDO - 12S Data Output line

* 128WS - 125 Word Select line

* 12SCK - 12S Bit Clock line

* 12S8MCK - 12S Master Clock line

I12S Frame
The figure below depicts a standard 12S bus frame structure.

Figure 5-1. 12S Frame Structure

Serial clock 12SCK | | | | | | | | | | | | | | | HI | | | | | |

Word Select 2SWS |\

pazsonzsoo Y s 1 \ee Jouse |

=

Left Channel

I12S transfers data synchronously based on the bit clock (I2SCK). Data bits are set up on the falling edge
of the bit clock and sampled on the rising edge of the bit clock. The word select line (I2SWS) is used to
identify which audio channel (left or right) the current data bits correspond to. Typically, the word select
line is held low when transmitting left channel data, and held high when transmitting right channel data.

Right Channel

As per the 12S protocol, data bits are left-justified with the MSB transmitted first, starting one bit clock
period after the transition in the word select line.

An 12S bus typically includes one more clock line called the master clock line. The frequency of the
master clock signal is a 2X integer multiple of the audio sample rate fs, for example 256*fs. This master
clock signal will be used by the external audio codec device to time its internal circuitry.

12SC Modes

The 12SC supports Master, Slave and Controller modes with an integrated transmitter, a receiver and a
clock generator that can be enabled separately. Data transfer can be done either through the CPU or
through the DMA controller with a single DMA channel for both audio channels (left and right channels).

In Master and Controller modes, the 12SC provides the master clock, the serial clock and the word select
signal. I2SMCK, 12SCK, and 12SWS pins are outputs.

In Controller mode, the 12SC receiver and transmitter are disabled. Only the clocks are enabled and used
by an external receiver and/or transmitter.

In Slave mode, the 12SC receives the serial clock and the word select from an external master. I2SCK
and I2SWS pins are inputs.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 18

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

5.3.

The mode is selected by writing the MODE field in the 12SC_MR register. Since the MODE field changes
the direction of the I2SWS and I12SCK pins, the 12SC_MR must be written when the 12SC is stopped.

The 12SC supports a Loop-back mode which loops back the signal from transmitter to receiver. Writing
a’1’ to the 12SC_MR.LOORP bit internally connects 12SDO to 12SDI, so that the transmitted data is also
received.

12SC Supported Sample Rates and Data Formats

I12SC supports a wide range of audio sample rates including 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz
and 192 kHz.

In Master mode, the 12SC can generate a 32*fs to 1024*fs master clock (I2SMCK) that provides an over-
sampling clock to an external audio codec or a digital signal processor (DSP).

It supports multiple data formats that include 32-bit, 24-bit, 20-bit, 18-bit, 16-bit and 8-bit mono and stereo
formats. 16-bit and 8-bit compact stereo formats are supported with left and right channel samples
packed in the same word to reduce data transfers.

The slot length in an 12S frame can be defined as the number of bits occupied per channel, which
includes both the actual data bits and the unused pad bits (zeros). The slot length in 12SC is configurable
using the bit field DATALENGTH in mode register (I2SC_MR). The table below shows the possible values
for the DATALENGTH field and their corresponding slot lengths.

Table 5-1. 12SC DATALENGTH Settings and Corresponding Slot Length

12SC_MR.DATALENGTH Word Length Slot Length

(useful data) (useful data + pad bits)

0 32 bits 32
1 24 bits
20 bits
18 bits
16 bits

32 if 12SC_MR.IWS =0
24 if 12SC_MR.IWS = 1

16
16 bits compact stereo

8 bits

N o o~ W DN

8 bits compact stereo

The data words are right-justified in the receive holding register (12SC_RHR) and the transmit holding
register (I2SC_THR). The I2SC_RHR and 12SC_THR registers are used for data reception and
transmission respectively.

For the 16-bit compact stereo data format, the left sample uses bits 15:0 and the right sample uses bits
31:16 of the same data word. For the 8-bit compact stereo data format, the left sample uses bits 7:0 and
the right sample uses bits 15:8 of the same data word.

The 12SC supports mono audio format where only the left channel is used. When the Transmit Mono bit
(TXMONO) in I2SC_MR is set, data written to the left channel is duplicated to the right output channel.

When the Receive Mono bit (RXMONO) in I12SC_MR is set, data received from the left channel is
duplicated to the right channel.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 19

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

5.4.

12SC Clock Generator

The 12SC integrates a clock generator that generates the master clock (I2SMCK) and the bit clock
(I2SCK) in Master mode and in Controller mode.

The following figure shows the block diagram of the 12SC internal clock generator.

Figure 5-2. 12SC Clock Generator
MATRIX.CCFG_I2SCLKSEL.CLKSELx

12SWS i 1 word clock
_in ———>

12SC
12SC_CR.CKEN/CKDIS 12SC MR.IMCKMODE
@ - 12SC_MR.IMCKDIV
Peripheral - '
Clock ~ —>|0) ! Selected Clock Clock Clock : |\L D
i ivi 0 12SMCK
Generic y ! Enable Divider ! l/
Clock !
: Clock f
1 12SC_MR.IMCKMODE ¥ Divider le—— 12SC_MR.IMCKFS!
H 01 12SC_MR.DATALENGTH
H master 12SC '
E 12SCK_in <«—
i 0 ECnlgg:(e . internal
i 12SCK_in ~ —> 1J i bit clock
i - slave V] :
H 1 J |
E Clock “E_ 12SC_MR.DATALENGTH
! 12SC_MR.MODE 125C_CR.CKEN/CKDIS Divider : _MR.
g 4|: >—o—|:| 12SWS
E N 12SWS_in, <+——
| O] ! internal
.

The input to the 12SC clock generator can be either the peripheral clock (MCK) or the generic clock
(GCLK) from the power manager (PMC) which is selected by the bit CLKSELXx in matrix special function
register SFR_I2SCLKSEL. The X’ in CLKSELXx stands for the 12SC instance number. SAMA5D2 device
has a maximum of two I12SC instances. One CLKSEL bit per instance is available. In Master mode, if the
peripheral clock frequency is higher than 96 MHz, the GCLK clock from PMC must be selected as 12SC
input clock.

The 12SC master clock (I2SMCK) is derived from the selected clock. It has a master clock gate and a
master clock divider in its path. The master clock gate enables/disables the I2SMCK that is controlled by
register bits 12SC_CR.CKEN/CKDIS and I12SC_MR.IMCKMODE as shown in the figure. The master clock
divider follows the master clock gate which prescales the input clock by the division factor
(12SC_MR.IMCKDIV +1).

Assuming the 12SC master clock is 256*fs and the audio sample rate is 44.1 kHz, the I2SMCK obtained is
11.2896 MHz. The selected clock can be an integer multiple of I2SMCK. Assuming the selected clock is 4
times 12SMCK, the master clock division factor IMCKDIV should be 3. The power manager should be
configured to generate a peripheral clock or the generic clock which is 4 * 11.2896 MHz = 45.1584 MHz.

If the 12SC master clock is disabled (IMCKMODE = 0), the selected clock is taken as the 12SC bit clock
(I2SCK). The 12SC bit clock path has a bit clock gate circuit which is controlled by the 12SC_CR.CKEN/
CKDIS bits.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 20

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

If the 12SC master clock is enabled (IMCKMODE = 1), the clock output from the master clock gate is
taken as the I12S bit clock with a bit clock divider included in the path. The bit clock divider is controlled by
two parameters, namely 12SC_MR.IMCKFS and 12SC_MR.DATALENGTH, and its division factor is equal
to (I2SC_MR.IMCKFS + 1).

Basically the bit clock is defined by the following equation:
Bit Clock = fs * no. of channels * no. of bits per channel

Number of bits per channel is the slot length. For above example, fs = 44.1kHz, master clock = 256*fs,
number of channels = 2, slot length = 16.

Bit clock = 44100 * 2 * 16 = 1.411200 MHz.

The bit clock divider should be configured to have a division factor of 32 (= 45.1584 MHz / 1.4112 MHz).
This means that 12SC_MR.IMCKFS should be set to 31.

Note that the bit clock division factor is always equal to (fs * 2 * 16) regardless of the slot length. This
means that even if the slot length is 32, the bit clock division factor is 1.411200 MHz for a sample rate of
44.1 kHz.

The word select clock signal is derived from the bit clock signal and it has the word select clock divider in
its path. The division factor of this clock divider is controlled by the DATALENGTH field such that the word
select frequency is the same as the audio sample rate fs.

In Slave mode, the I2SCK pin acts as an input and the bit clock is derived from this clock.

5.5. Code Examples
This section provides two code examples: one to demonstrate 12SC in Master mode and another in Slave
mode. Both examples demonstrate the steps to play back a 48 kHz stereo 16-bit PCM audio with an
I2SCO module and an external audio DAC IC (AD1934 from Analog Devices).
5.5.1. 12SC Master Mode Code Example
This code example configures the 12SCO0 in Master mode to generate the master clock, the bit clock and
the LR clock, and to transmit the data to AD1934 DAC.
The 12.288 MHz master clock is generated from the 12SC module and fed to the MCLKI pin of AD1934.
The AD1934 is configured with a sample rate set to 48 kHz and accepts the LR clock and bit clock from
the external master (12SC). The word width of AD1934 is always 32 bits and is left-justified with MSB first.
It is configured to accept audio data in 12S frame format. Following are the register settings for the
AD1934, configured using the SPI interface:
* PLL and Clock Control 0 --> 0x98
+ DAC Control 2 --> 0x18
Other registers of AD1934 are left to their default reset values.
The audio PLL output is used to clock the 12SC0 module through the GCLK interface. The steps given in
section Audio PLL Initialization can be used for this example.
The following sections provide the code snippet to configure the 12SC 1/O pins, the DMA channel and the
12SC peripheral.
Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE]
me 21

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

5.5.1.1.

5.5.1.2.

12SC 1/0 Pin Initialization

PIO pins PC1 (I12SCK), PC2 (I2SMCK), PC3 (12SWS) and PC5 (12SDO) with peripheral function E will be
assigned to the 12SCO0 interface. The code snippet given below will initialize the I/O pins accordingly.

/* Set PORTC mask register bits 1, 2, 3 & 5 */
PIOA->PIO_IO GROUP[2].PIO MSKR = (0x17 << 1);

/* Enable peripheral function E and set I/O pins as output */
PIOA->PIO IO GROUP[2].PIO CFGR = PIO CFGR FUNC PERIPH E |
PIO_CFGR_DIR OUTPUT;

XDMAC Channel Initialization

A DMA channel from the XDMAC module is configured to transfer the audio data from an array in the
main memory to the Transmit Holding Register (THR) of 12SC. The code snippet below configures the
XDMAC channel 0 in a single block — Single Micro Block mode with micro block length equal to the total
number of audio samples * 2 (for 2 channels).

The data transfer is done one channel sample (16 bits) at a time.

/* Enable peripheral clock for XDMAC1 */
PMC->PMC_PCERO = (lu << ID XDMAC1);

/* Read the interrupt status register to clear the interrupt flags */
temp = XDMAC1—>XDMAC_CHID[O].XDMAC_CIS;

/* Set source address as starting address of audio buffer */
XDMAC1->XDMAC CHID[O] .XDMAC CSA = (uint32 t)audio_samples;

/* Set destination address as I2SC THR register’s 16 MSB bits */
XDMAC1->XDMAC CHID[O].XDMAC CDA = ((uint32 t)&I2SC0->I2SC THR) + 2;

/* Set micro block length */
XDMAC1->XDMAC CHID[0] .XDMAC CUBC = sizeof (audio samples)/2;

/* Set DMA channel parameters */
XDMAC1—>XDMAC_CHID[O].XDMAC_CC = XDMAC CC TYPE PER TRAN
|
XDMAC CC MBSIZE SINGLE
| XDMAC CC_DSYNC MEM2PER
| XDMAC_CC_CSTIZE CHK 1
| XDMAC_CC_DWIDTH HALFWORD
| XDMAC_CC_SIF AHB IF0
| XDMAC_CC_DIF_AHB IF1
| XDMAC CC_SAM INCREMENTED AM
| XDMAC_CC_DAM FIXED AM
| XDMAC_CC_PERTID(31);

/* Set all registers related to descriptor to 0 */
XDMAC1—>XDMAC_CHID[O].XDMAC_CNDC = 0;
XDMAC1->XDMAC CHID[O] .XDMAC CBC = O;
XDMAC1->XDMAC CHIDI[O] .XDMAC CDS MSP = 0;
XDMAC1->XDMAC CHID[O] .XDMAC CSUS = 0;
XDMAC1—>XDMAC_CHID] Og

.XDMAC_CDUS

The DMA channel source address is set to the start of the audio sample array, and the destination
address is set to the start of 16 MSB of the THR register. This is because we need to send the 16-bit
audio sample first in the MSB part of the 12SC 32-bit word. "audio_samples" is an array of the type
"signed 16-bit integer". Transfer size is set to half word with source address incrementing and destination
address fixed for each transfer.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 22

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

5.5.1.3.

No descriptors are used for the transfer, so the XDMAC registers related to the descriptor configuration
are set to 0.

Note that the XDMAC1 controller is used instead of the XDMACO controller as described in previous
chapters because the 12SCO peripheral is connected to the APB1 bridge, whose DMA transactions are
handled by the XDMAC1 controller.

12SC Initialization
The following code snippet initializes the 12SCO0 interface.

/* Enable Audio PLL as source for I2SCO through GCLK */
PMC->PMC PCR = PMC_PCR_PID(ID_IZSCO)

| PMC_PCR_GCKCSS_AUDIO CLK

| PMC_PCR_GCKDIV (1)

| PMC_PCR_CMD

| PMC_PCR _EN

| PMC_PCR_GCKEN;

/* Wait until GCLK is ready */
while (! (PMC->PMC SR & PMC_SR _GCKRDY)) ;

/* Select GCLK as clock source for I2SCO in SFR module */
SFR—>SFR_IZSCLKSEL = SFR_IZSCLKSEL_CLKSELO;

/* Perform software reset of I2SCO peripheral */
T2SC0->I2SC_CR = I2SC CR SWRST;

/* Configure I2SCO parameters */
I2SC0->I2SC_MR = I2SC_MR MODE_ MASTER
| I2SC_MR_DATALENGTH 32 BITS
| I2SC_MR _FORMAT I2S
| (3u << 16)
| I2SC_MR IMCKFS (31)
| I25C_MR IMCKMODE;

/* Enable I2SCO master clock and transmitter */
I2SC0->I2SC CR = I2SC CR CKEN | I2SC_CR TXEN;

/* Wait until transmitter is enabled */
while (! (I28C0->I2SC_SR & I2SC_SR_TXEN)) ;

/* Enable DMA channel */
XDMAC1->XDMAC GE = XDMAC_GE_ENO;

/* Wait until DMA transfer is done */
While(!(XDMAC1—>XDMAC_CHID[O].XDMAC_CIS & XDMAC_CIS_BIS));

12SCO0 is used for this example, which is configured in Master mode to generate the master clock, the bit
clock and the LR clock with one LR clock period containing 64-bit clocks. AD1934 should be configured to
accept all these clocks along with the data. Data is sent as a 32-bit word with original 16-bit audio data
placed in 16 MSB bits and 16 LSB bits left to 0.

98.304 MHz output from Audio PLL is divided by 2 by the GCLK controller and this GCLK output (49.152
MHz) is selected as the clock source for the 12SC0 module in Special Function Register
(SFR_I2SCLKSEL).

The master clock divider in 12SCO is enabled with the master clock division factor set to 4, which
generates (49.152 / 4) = 12.288 MHz in the I2SCMCK pin.

The bit clock division factor is calculated as (49.152MHz / (48000 * 2 * 16)) = 32, so IMCKFS is set to 31.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 23

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

The master clock and the 12SCO0 transmitter are enabled along with the DMA channel to start the transfer.

5.5.2. 12SC Slave Mode Code Example
This code example configures the 12SCO0 in Slave mode, which accepts the bit clock and the LR clock and
transmits the data to AD1934 DAC.
The 12.288 MHz master clock is generated from the Audio PLL as in section Code Example - Audio PLL.
The generated 12.288 MHz signal from the CLK_AUDIO pin is fed to the MCLKI pin of AD1934. The
AD1934 is configured to generate the bit clock and LR clock with a sample rate set to 48 kHz. The word
width of AD1934 is always 32 bits and is configured to accept audio data in 12S frame format and left-
justified with MSB first. Following are the register settings for the AD1934, which is configured using the
SPI interface.
* PLL and Clock Control 0 --> 0x98
« DAC Control 1 --> 0x70
« DAC Control 2 --> 0x18
Other registers of AD1934 are left to their default reset values.
The same Audio PLL initialization steps given in section "Code Example - Audio PLL" can be used for this
example.
The following sections provide the code snippet to configure the 12SC 1/O pins, the DMA channel and the
I12SC peripheral.
5.5.2.1. 12SC /O Pin Initialization
P10 pins PC1 (I12SCK), PC3 (I12SWS) and PC5 (12SDO) with peripheral function E will be assigned to the
I12SCO interface. The code snippet given below will initialize the 1/0 pins accordingly.
/* Set PORTC mask register bits 1 & 3 */
PIOA->PIO IO GROUP[2].PIO MSKR = (0x5 << 1);
/* Enable peripheral function E and set I/0O pins as output */
PIOA->PIO IO GROUP[2].PIO CFGR = PIO CFGR FUNC PERIPH E |
PIO CFGR DIR INPUT;
/* Set PORTC mask register bit 5 */
PIOA->PIO IO GROUP[2].PIO MSKR = (0x1 << 5);
/* Enable peripheral function E and set I/0 pins as output */
PIOA->PIO IO GROUP[2].PIO CFGR = PIO CFGR FUNC PERIPH E |
PIO CFGR DIR OUTPUT;
5.5.2.2. XDMAC Channel Initialization
The DMA channel initialization is same as in section [2SC |/O Pin Initialization.
5.5.2.3. 12SC Initialization
The following code snippet initializes the 12SCO0 interface.
/* Enable system clock for I2SCO */
PMC->PMC_PCR = PMC_PCR PID(ID I2SCO)
| PMC PCR CMD
| PMC PCR EN;
/* Perform software reset of I2SCO peripheral */
I2SCO0->I2SC CR = I2SC CR_SWRST;
/* Configure I2SCO parameters */
I2SC0->I2SC MR = I2SC MR MODE SLAVE
AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 24

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

| I2SC_MR DATALENGTH 32 BITS
| I2SC_MR _FORMAT I2S;

/* Enable I2SCO transmitter */
I25C0->I2SC_CR = I2SC_CR_TXEN;

/* Wait until transmitter is enabled */
while (! (I2SC0->I2SC SR & I2SC_SR _TXEN)) ;

/* Enable DMA channel */
XDMAC1 —>XDMAC_GE = XDMAC_GE_ENO ;

/* Wait until DMA transfer is done */
while (! (XDMAC1->XDMAC CHID[0].XDMAC CIS & XDMAC CIS BIS));

I12SCO0 is used for this example, which is configured in Slave mode to accept the bit clock and the LR
clock with one LR clock period containing 64 bit clocks. A 12.288-MHz signal generated using Audio PLL
is fed through the CLK_AUDIO pin as the master clock for AD1934. AD1934 is configured to generate the
bit clock and the LR clock and received data samples from the 12SCO slave. Data is sent as 32-bit word
with original 16-bit audio data placed in 16 MSB bits and 16 LSB bits left to 0.

12SCO0 is not clocked from the Audio PLL clock in this case and it is sufficient to clock it with the default
power manager system clock.

The 12SCO0 transmitter is enabled along with the DMA channel to start the transfer.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 25
Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

6. Synchronous Serial Controller (SSC)
The Synchronous Serial Controller (SSC) is a synchronous communication link that supports several
serial protocols generally used in audio and telecom applications like 12S, Short Frame Sync, Long Frame
Sync.

SSC contains an independent transmitter and a receiver with a common clock divider. The figure below
shows the block diagram of the SSC module.

Figure 6-1. SSC Block Diagram

Transmitter Clock Output
TK
Controller
Peripheral TK In
put
Clock Clock Transmit Clock | TX clock Frame Sync TF
Divider RX clock Controller Controller
—>
TXEN
-] TX Start
B _ | |[RXStart| Start . D?ta” D
- 1 ITF Selector Transmit Shift Register |—> ontroter
X
APB Transmit Holding Transmit Sync
— Register Holding Register
User
Interface
Receiver Clock Output
€ > Controller RK
RK Input —
P Receive Clock |RX Clock Frame Sync
Controller Controller RF
TX Clock ——>
RXEN s
v RX Start
;)é Start| Start Data RD
RCOR Selector Receive Shift Register |‘— Controller
—
YV - - -
Receive Holding Receive Sync
Interrupt Control Register Holding Register

To Interrupt Controller

The transmitter and the receiver consist of three pins each. One data pin (TD for transmitter and RD for
receiver), one clock pin (TK for transmitter and RK for receiver) and one frame sync pin (TF for
transmitter and RF for receiver).

6.1. SSC Clock Divider

The SSC has an internal clock divider which takes the peripheral clock (MCK from PMC) as its input and
divides the clock with a fixed divide by 2 divider followed by a configurable divider with a maximum
division factor of 4095 (12-bit divider).

The overall division factor of the clock divider is 8190. Each level of the divided clock has a duration of the
peripheral clock period multiplied by DIV. This ensures a 50% duty cycle for the divided clock regardless
of whether the DIV value is even or odd.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 26
Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

The divided clock can be input to both the transmitter and the receiver blocks.

Note: There is a limitation for the bit clock frequency when SSC is operated in Slave mode. When SSC
is operated in Slave mode, MCK frequency > (6 * bit clock frequency). For an MCK frequency of 166 MHz
(maximum for SAMA5D2), the maximum bit clock frequency can be ~27.666 MHz.

6.2. SSC Transmitter
The SSC transmitter block is designed with three main parts, namely the transmit clock controller, the
start selector and the transmit shift register.
The transmitter block is fed with three different clock sources as listed below, one of which will be
selected by the transmit clock controller as the transmitter clock:

1. Clock from the TK pin (TK pin is input).

2. Clock from the SSC clock divider.

3. Clock from the receiver block.

The start selector controls when a transmit frame has to be started in the transmitter block. The frame
start event is configurable and can be one of the events below.

1. Start frame with transmitter enabled (TXEN). This is a Continuous mode operation where the
transmission starts as soon as the data is written to the transmitter data register (SSC_THR),
provided TXEN is set.

2. Start frame on event trigger from the receiver’s start selector (RX Start).

3. Start frame on TF event. The TF event can be low level / high level / any level change / rising
edge / falling edge / any edge in the TF pin.

The transmit shift register is used to transmit the serial data. An SSC frame can have sync bits sent
before the actual data is sent on the TD pin. Two registers are used for this purpose, namely SSC_THR
(to hold the actual data) and SSC_TSHR (to hold the sync bits). If configured and enabled, the sync bits
are sent first, followed by the actual data. The sync bits can be either a fixed logic level for a given
number of bit cycles, or a bit pattern written in SSC_TSHR.

6.3. SSC Receiver
The SSC receiver block is designed with three main parts, namely the receive clock controller, the start
selector and the receive shift register.
The receiver block is fed with three different clock sources as listed below, one of which will be selected
by the receive clock controller as the receiver clock.

1. Clock from the RK pin (RK pin is input).

2. Clock from the SSC clock divider.

3. Clock from the transmitter block.

The start selector controls when a receive frame has to be started in the receiver block. The frame start
event is configurable and can be one of the events below.

1. Start frame with receiver enabled (RXEN). This is a Continuous mode operation where data is
received immediately after the end of the transfer of the previous data, provided RXEN is set.

2. Start frame on event trigger from the transmitter’s start selector (TX Start).

3. Start frame on RF event. The RF event can be low level / high level / any level change / rising
edge / falling edge / any edge.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 27

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

6.4.

4. Start frame on compare match of incoming bit pattern with bit pattern in SSC_RCOR register.

The receive shift register is used to receive the serial data. An SSC frame can have sync bits received
before the actual data is received on the RD pin. Two registers are used for this purpose, namely
SSC_RHR (to hold the actual data) and SSC_RSHR (to hold the sync bits). If configured and enabled,
the sync bits are received first, followed by the actual data. The sync bits can be either a fixed logic level
for a given number of bit cycles or can be a bit pattern.

SSC Frame Format

The data framing format of both the transmitter and the receiver are programmable through the
Transmitter Frame Mode Register (SSC_TFMR) and the Receiver Frame Mode Register (SSC_RFMR).
In either case, the user can independently select the following parameters:

« Event that starts the data transfer (START)
» Delay, in number of bit periods, between the start event and the first data bit (STTDLY)
+ Length of the data (DATLEN)
* Number of data to be transferred for each start event (DATNB)
* Length of synchronization transferred for each start event (FSLEN)
* Bit sense: most significant bit first (MSBF)
MSBF = 1 : MSB sent first
MSBF = 0 : LSB sent first

Additionally, the transmitter can be used to transfer synchronization and select the level driven on the TD
pin while not in data transfer operation. This is done respectively by the Frame Sync Data Enable
(FSDEN) and by the Data Default Value (DATDEF) bits in SSC_TFMR.

The figure below shows the frame format of an SSC frame.

Figure 6-2. SSC Frame Format

Start Start
PERIOD

—

TRRF®

FSLEN :
|

™ > Sync Data < Default Data > Data > Default > Sync Data ><
(fFSDEN=1) Rrom SSC_TSHR From DATDEF| From SSC_THR From SSC_THR |From DATDEF !

Default

™ > Default Data > Data >

Atmel

(If FSDEN = 0) From|DATDEF From SSC_THR From SSC_THR From|DATDEF
|
RD > Sync Data < Ignored Data > Data > Ignored > Sync Data >|<
To SSC_RSHR To SSC_RHR To SSC_RHR f
STTDLY DATLEN DATLEN
DATNB

Note: 1. Example of input on falling edge of TF/RF.

As SSC frame start is triggered by the start event generated by the start selector and starts transmitting/
receiving the sync data on the TD/RD pins. The sync pulse and the sync data are available on the bus for
FSLEN bit cycles. The sync data will be the configured value of SSC_TSHR if FSDEN = 1 or will be the
configured default level (value of DATDEF bit) if FSDEN = 0.

Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 28
Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

In transmitter with FSDEN = 1, once the FSLEN bit cycles are passed, the configured default logic level is
sent on the TD line for (STTDLY — FSLEN) bit cycles if STTDLY > FSLEN. If STTDLY < FSLEN, the
remaining sync data will not be sent but the actual data will be sent, so such configuration should be
avoided.

In receiver with FSDEN = 1, once the FSLEN bit cycles are passed, the RD line will not be sampled for
(STTDLY — FSLEN) bit cycles if STTDLY > FSLEN. If STTDLY < FSLEN, the remaining sync data will be
sampled as actual data, so such configuration should be avoided.

Once the STTDLY bit cycles are passed, the actual data transmission/reception starts. The data length
for each word can be defined in the DATLEN field and the number of words in each frame can be defined
in the DATNB field. The sync pulse can be generated periodically every (2 * (PERIOD + 1)) bit cycles.

If the frame size PERIOD > (STTDLY + (DATNB * DATLEN)), then for the remaining bit cycles:

* In the transmitter, the default logic level defined by DATDEF will be sent on the TD pin.
* Inreceiver, the RD bits will be ignored.

The table below shows the bit fields and registers used to construct an SSC frame with their maximum
lengths.

Table 6-1. SSC Transfer Parameters with Respective Bit Lengths

Transmitter Register | Receiver Register Length Comment

(no. of bits)

DATLEN Upto 32 Size of a word
SSC_RFMR

SSC_TFMR DATNB Upto 16 Number of words in a frame
MSBF - Most Significant Bit First
FSLEN Up to 256 Size of sync data register
- DATDEF Oor1 Data default value ended
- FSDEN - Enable send SSC_TSHR
SSC_TCMR SSC_RCMR PERIOD Upto 512 Frame size

STTDLY Up to 255 Size of transmit start delay

Note that from the above table, up to 256 bits can be allotted for FSLEN. However, the FSLEN is just 4
bits in SSC_TFMR / SSC_RFMR. The 4-bit FSLEN is used along with a 4-bit field FSLEN_EXT in the
same register so that the total FSLEN slot can accommodate 256 bits. The pulse length is calculated as:

FSLEN + (FSLEN_EXT * 16) + 1 clock cycle

When FSDEN is set to 1, the frame synchronization data from SSC_TSHR is sent for FSLEN cycles.
However, SSC_TSHR is only 32 bits in length, so a synchronization data of more than 32 bits is sent in
the following order:

1. SSC_TSHR (32-bit)
2. DATDEF (32-bit)
3. SSC_THR (32-bit)
4. Repeat SSC_THR until 256 bits is reached.
AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 29

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

6.5. Code Examples
The code example given in this section demonstrates the steps to play back a 48-kHz stereo 16-bit PCM
audio using the SSC interface and an external audio DAC IC (AD1934 from Analog Devices).
The 12.288 MHz master clock is generated from the Audio PLL as in section Code Example - Audio PLL.
The generated 12.288 MHz signal from the CLK_AUDIO pin is fed to the MCLKI pin of AD1934. The
AD1934 is configured to generate the bit clock and the LR clock with a sample rate set to 48 kHz. The
word width of AD1934 is always 32 bits and is configured to accept audio data in 12S frame format and
left-justified with MSB first. Following are the register settings for the AD1934, which is configured using
the SPI interface.
* PLL and Clock Control 0 --> 0x98
+ DAC Control 1 --> 0x70
+ DAC Control 2 --> 0x18
The other AD1934 registers are left to their default reset values.
The following sections provide the code snippet to configure the SSC /O pins, the DMA channel and the
SSC peripheral.
6.5.1. SSC I/O Pin Initialization
P10 pins PA14 (TK), PA15 (TF) and PA16 (TD) with their peripheral function B will be assigned to the
SSC1’s transmitter interface. The code snippet below will initialize the 1/0 pins accordingly.
/* Set PORTA mask register bit 14 & 15 */
PIOA->PIO IO GROUP[0].PIO MSKR = (3u << 14);
/* Enable peripheral function B and set I/0 pin as input */
PIOA->PIO IO GROUP[0].PIO CFGR = PIO CFGR FUNC PERIPH B |
PIO CFGR DIR INPUT;
/* Set PORTA mask register bits 16 */
PIOA->PIO IO GROUP[0].PIO MSKR = (lu << 16);
/* Enable peripheral function B and set I/0 pins as output */
PIOA->PIO IO GROUP[0].PIO CFGR = PIO CFGR FUNC PERIPH B |
PIO CFGR DIR OUTPUT;
6.5.2. SSC XDMAC Channel Initialization
A DMA channel from the XDMAC module is configured to transfer the audio data from an array in main
memory to the Transmit Holding Register (THR) of SSC. The code snippet given below configures the
XDMAC channel 0 in a single block — Single Micro Block mode with micro block length equal to total
number of audio samples * 2 (for 2 channels).
Data transfer is done one channel sample (16-bit) at a time.
/* Enable peripheral clock for XDMACO */
PMC->PMC_PCERO = (lu << ID XDMACO) ;
/* Read the interrupt status register to clear the interrupt flags */
temp = XDMACO->XDMAC CHID[0].XDMAC CIS;
/* Set source address as starting address of audio buffer */
XDMACO->XDMAC CHID[O] .XDMAC CSA = (uint32 t)audio_samples;
Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE]
me .

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

6.5.3.

Atmel

/* Set destination address as SSC_THR register’s 16 MSB bits */
XDMACO->XDMAC_CHID[0].XDMAC CDA = ((uint32 t)&SSC1->SSC_THR) + 2;

/* Set micro block length */
XDMACO->XDMAC CHID[O] .XDMAC CUBC = sizeof (audio_ samples) /2;

/* Set DMA channel parameters */
XDMACO->XDMAC CHID[O] .XDMAC CC = XDMAC CC TYPE PER TRAN
| XDMAC cc MBSIZE SINGLE
| XDMAC CC DSYNC MEMZPER
| XDMAC CC CSIZE CHK 1
| XDMAC CC DWIDTH HALFWORD
| XDMAC CC SIF AHB IFO
| XDMAC CC DIF AHB IF1
| XDMAC CC SAM INCREMENTED AM
| XDMAC CC DAM FIXED AM
| XDMAC CC_PERID(23);

/* Set all registers related to descriptor to 0 */
XDMACO—>XDMAC_CHID[] .XDMAC CNDC = 0;
XDMACO->XDMAC CHID[O] .XDMAC CBC = O;
XDMACO->XDMAC_CHIDI[O] .XDMAC CDS MSP = 0;
XDMACO->XDMAC CHID[O] .XDMAC CSUS = 0;
XDMACO—>XDMAC_CHID] Og

[0
[0
[0
[0] .XDMAC_CDUS

The DMA channel source address is set to the start of the audio sample array and the destination

address is set to the start of 16 MSB of the THR register. This is because we need to send the 16-bit

audio sample first in the MSB part of the SSC 32-bit word. "audio_samples" is an array of type signed 16-
bit integer. The transfer size is set to half word with source address incrementing and destination address

fixed for each transfer.

No descriptors are used for the transfer, so the XDMAC registers related to the descriptor configuration

are set to 0.

SSC Initialization
The following code snippet initializes the SSC interface.

/* Enable peripheral clock for SSC1 */

PMC->PMC_PCR = PMC_PCR_PID(ID SSCl) | PMC_PCR CMD | PMC_PCR _EN;
/* Perform software reset of SSCl peripheral */

SSC1->SSC_CR = SSC_CR_SWRST;

/* Configure SSC1l parameters */
SSCl—>SSC_TCMR = SSC _TCMR CKS TK
| SSC TCMR __STTDLY (1)
| SSC_TCMR_START TF FALLING;

SSC1->SSC_TFMR = SSC_TFMR_DATLEN (31)
T SSC TFMR MSBF
| SSC_TFMR_DATNB (1) ;

/* Enable SSCl transmitter */
SSC1->SSC_CR = SSC_CR_TXEN;

/* Enable DMA channel */
XDMACO—>XDMAC_GE = XDMAC_GE_ENO;

/* Wait until DMA transfer is done */
While(!(XDMACO—>XDMAC_CHID[O].XDMAC_CIS & XDMAC_CIS_BIS));

Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE]
Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

SSC1 is used for this example. The TK and TF pins are configured as inputs which accept the bit clock
and the LR clock respectively from the AD1934 module. Data is sent as 32-bit word with the original 16-
bit audio data placed in the 16 MSB bits and the 16 LSB bits left to 0.

SSC is configured to have a frame of two words and to start a frame on the falling edge of the TF pin but
one bit clock delayed (STTDLY = 1) to comply with the 12S frame format.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 32
Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

7. Differences Between 12SC and SSC

Though SSC and 12SC are synchronous serial links commonly used for digital audio communication,
there are differences between the two peripherals based on their implementation and configurability.
Users can choose SSC or 12SC for the application based on peripheral’s capability, the connected
device’s requirements and the 1/O pin availability.

1. 12SC only supports the 12S protocol, whereas SSC is a highly configurable peripheral which
supports the 12S protocol among others. For example, the data transfer delay is fixed to 1 bit clock
cycle in I2SC, whereas in SSC it is configurable. This helps to interface SAMA5D2 with different
types of codec devices that use different frame formats than the standard 12S frame format.

2. The I12SC in SAMA5D2 can be used only with a single slave or a single master. It does not support
the TDM feature which is used to interface with multiple 12S devices. SSC can be configured to
interface with multiple 12S devices in a single bus.

3. The I2SC has an internal clock divider for master clock output using a dedicated master clock pin
(I2SCMCK), and can be clocked with Audio PLL output using the GCLK interface. But SSC cannot
be clocked with the GCLK interface; it is only clocked by the system clock (MCK). To clock the SSC
module with Audio PLL clock, the system clock should also be clocked with Audio PLL. This
drawback is taken care of in the SAMAS5D2 product, where a dedicated pin is given to Audio PLL
(CLK_AUDIO) to output the master clock frequency required for the audio devices connected to
SSC. The SSC can sample the data based on TK/RK pins (timed based on CLK_AUDIO) while still
clocked by the MCK clock.

4. SSC may be prone to channel swapping issues in cases where data transfer to Transmit Holding
Register (THR) through DMA is triggered by the falling/rising edge of the TF/RF signal due to delay
in DMA transfer. This issue may not be faced in 12SC since the data transfer through DMA is
always triggered by TXRDY/RXRDY signals.

AtmeL Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 33

Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

8. Revision History
Table 8-1. Revision History

A 13-July-16 | First release

Atmel Atmel Getting Started with the SAMA5D2 Audio Subsystem [APPLICATION NOTE] 34
Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

/Itmel_ Enabling Unlimited Possibilities® numa

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-44079A-Getting Started with the SAMA5D2 Audio Subsystem_Application Note-07/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, test and others are registered trademarks or trademarks of Atmel Corporation in U.S.
and other countries. ARM® is a registered trademark of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Introduction to SAMA5D2 Audio Peripherals
	2. Digital Audio Phase Locked Loop (Audio PLL)
	2.1. Code Example - Audio PLL

	3. Pulse Density Modulation Interface Controller (PDMIC)
	3.1. Code Example - PDMIC
	3.1.1. Audio PLL Initialization
	3.1.2. PDMIC I/O Pin Initialization
	3.1.3. PDMIC XDMAC Channel Initialization
	3.1.4. PDMIC Initialization

	4. Audio Class D Amplifier (CLASSD)
	4.1. CLASSD Interpolator
	4.2. CLASSD Equalizer
	4.3. CLASSD De-emphasis Filter
	4.4. CLASSD Attenuator
	4.5. CLASSD PWM Stage
	4.6. Code Examples
	4.6.1. CLASSD I/O Pin Initialization
	4.6.2. XDMAC Channel Initialization
	4.6.3. CLASSD Initialization

	5. Inter-IC Sound Controller (I2SC)
	5.1. I2S Frame
	5.2. I2SC Modes
	5.3. I2SC Supported Sample Rates and Data Formats
	5.4. I2SC Clock Generator
	5.5. Code Examples
	5.5.1. I2SC Master Mode Code Example
	5.5.1.1. I2SC I/O Pin Initialization
	5.5.1.2. XDMAC Channel Initialization
	5.5.1.3. I2SC Initialization

	5.5.2. I2SC Slave Mode Code Example
	5.5.2.1. I2SC I/O Pin Initialization
	5.5.2.2. XDMAC Channel Initialization
	5.5.2.3. I2SC Initialization

	6. Synchronous Serial Controller (SSC)
	6.1. SSC Clock Divider
	6.2. SSC Transmitter
	6.3. SSC Receiver
	6.4. SSC Frame Format
	6.5. Code Examples
	6.5.1. SSC I/O Pin Initialization
	6.5.2. SSC XDMAC Channel Initialization
	6.5.3. SSC Initialization

	7. Differences Between I2SC and SSC
	8. Revision History

