AVR°32771: USB High speed Device Mass
storage on SD/MMC card with optional AES

Features

High Speed USB for high read and write speed
Modular code simplifies maintenance and extensions
Widely supported USB MSC interface

Encrypted data for increased safety (optional)

1 Introduction

This application note is a description of a USB Mass Storage device, using High
Speed USB for communication and a SD/MMC-card for storage. By default the
code is compiled to run at the EVK1104 reference design board with the
AT32UC3A3. This document contains a high-level description of the source code
following the application note, including description of the USB and SD/MMC
stacks and performance measurements for different configurations.

EVK1104 A32UC3A3 evaluation kit

AIMEL

I

AIMEL

I 5

32-bit AVR

Microcontrollers

Application Note

Rev. 32132A-AVR32-02/10

2 Theory of Operation

2.1 Transactions

2.2 Overhead

2 AVR32771

ATMEL

In this application the AT32UC3A3 is set to communicate with two external devices,
the host computer and a storage medium. In addition to these two communication
interfaces, an AES algorithm can be utilized for encrypting the contents of the storage
medium. High-speed USB is used for the communication between the host computer
and the UC3, while a SD/MMC card is used as storage medium.

High-Speed
usB

SD/MMC
interface

AES algorithm
(optional)

All transactions, both reads and writes, are initiated by the host computer. They are
sent as USB packages conforming to the USB Mass Storage Class (USB MSC)
communication protocol. This is a standardized interface which is supported by
natively by most, if not all, modern operating systems. The UC3 decodes the USB
communication and translate it to the SD/MMC commands which are sent to the
SD/MMC storage medium. If AES is turned on, the UC3 will encrypt all data before
storing it in the storage medium. The SD/MMC-cards response, including any data
read, will then be sent back to the UC3, and relayed to the host computer over USB.

It is not possible to avoid introduction of some overhead due to the processing taking
place in the UC3, but with clever driver design and heavy DMA-use this overhead is
kept to a minimum. When relaying packages between the two busses as much as
possible of the metadata is left unchanged, while the actual data is transferred solely
by DMA. If AES is turned on, the hardware AES module in the UC3 is used for
encryption and decryption, and here as well DMA is used to move the data between
the different hardware modules.

In total, the overhead and delays imposed when moving or processing the data is
kept to a minimum. This combined with High-Speed USB allows the overall
application fully utilize fast SD/MMC-cards and give very good read and write
performance.

32132A-AVR32-02/10

AVR32771

3 Using the application

3.1 Connecting the board

32132A-AVR32-02/10

The source code of this application and the drivers and library services it depends
upon, are organized with performance, portability and ease of use in mind. This
means that most of the complexity of the system is hidden inside the different drivers
and services, simplifying application development. Those who are interested in
learning more about the software architecture and the drivers can read about this in
subsequent chapters.

Before the EVK1104 can be programmed, it needs to be connected to the computer.
A USB cable is needed for the application to function, as well as for powering the kit.
You can choose between JTAG or NEXUS interface for programming and debugging.
Lastly a SD/MMC-card is needed as storage medium for the application.

SD/MMC card

AIMEL 3

/G

ATMEL

3.2 Building the application

In order to build the mass-storage application from the console, simply navigate to the
application folder (apps/mass-storage/) and type make. This will produce an ELF file
in the build folder (build/mass-storage/atevk1104/).

3.3 Programming the application

3.3.1 First time programming

The application can be programmed to the UC3A3 flash either through the JTAG
interface, or with a bootloader. In this application note we will only consider the former
alternative. First you need to make sure your AVR-ONE or JTAGmKII is properly
configured and connected to the EVK1104. Then run the command “make program”
from the application folder. This will program the elf file of the application to the
UC3A3 flash.

The first time you are to program the application, you will need to go through some
extra steps. If parts of the flash are locked, start with running a full chip erase. Then
program in a trampoline which will jump from the reset vector to the start of the
application. The use of a trampoline is mandatory for applications that are designed
so that they can be used with bootloaders. If you are using a bootloader you do not
need to program in the trampoline. Lastly, a USB serial number has to be
programmed in. In commercial applications, this number must be unique for each
device, but for demonstration purposes, just chose a random 12 digit hex number.
Use the tool set-serial. sh found in the application folder for this task.

Example:
o Navigate to the apps folder (apps/mass-storage/)
e make program
e _/set-serial.sh 0123456789AB
¢ Navigate to the build folder (build/mass-storage/atevk1104/)

e avr32program program -evfinternal@0x80000000
trampoline.elf

o Press the EVK1104 reset button to start the application

3.4 Debugging the application

4 AVR32771

AVR32 Studio can be used to examine how the application executes or debug it.
Refer to Application Note AVR32769 to read more about how to set up AVR32 Studio
to work with an external Makefile. The Makefile can be found in the apps folder
(apps/mass-storage/).

32132A-AVR32-02/10

AVR32771

3.5 Enabling AES encryption

WARNING: The AES functionality is currently in an experimental state and for
developers use only. Reduced performance and stability is to be expected when this
function is enabled.

The default configuration of this Application Note does not include any AES support.
In order to compile in this support, some flags has to be set in the configuration file of
the application. This will enable AES encryption for all data stored in the SD/MMC
card, thus rendering it unreadable for unauthorized personnel.

Since the encryption is done on the block device level, even the filesystem is
encrypted and an encrypted card will show up as unformatted if read without
decrypting the data first. The same is the case when encryption is turned on; the
SD/MMC card needs to be reformatted with encryption turned on, and all plain data
on the card is invalidated.

3.5.1 Editing the application configuration

The mass storage applications configuration file (apps/mass-storage/config-
atevk1104.mk) contains instructions to the build system, telling it what it needs to
build and to some extent, how it should be built. Open this file for editing in your
favourite editor, and scroll down to the following lines:

Remove comment symbols to enable AES
#CONFIG_USE AES=y

#CONFIG_AES=y

#CONFIG BLKDEV AES=y

Remove the comment symbols (#), in front of the three config lines. Save and close
the file, then recompile and program the application (see section 3.3). When the
application is restarted, your need to reformat your SD/MMC card with the encrypted
filesystem, and you have an encrypted storage medium! Please note that the full
space of the SD/MMC card is used for the encrypted filesystem, and all data
previously on the card will be lost.

3.5.2 Setting the encryption key

32132A-AVR32-02/10

In this Application Note we are using a static encryption key which is hardcoded into
the application. It is set by the cipher key variable in the main() function of the
application (in apps/mass-storage/main.c). This is probably not how the
encryption key will be set in a commercial application, but since key handling is very
application specific, the simplest solution was chosen here. With the current
implementation, the application needs to be recompiled in order to change the key.
As when turning encryption on, this will require the SD/MMC card to be reformatted,
and all data previously on the card is lost.

AIMEL 5

/G

ATMEL

4 Software architecture

The software architecture used in this application note is inspired by how code is
organized in the Linux® Kernel. Linux is a huge development project which has been
able to combine rapid development cycles, a great number of developers, cutting
edge technology and support for multiple hardware architectures with good code
quality and stability. Some key points needed to achieve this are:

e Modular code
e Clean module interfaces
e Layered approach to driver development

The next sections will look into how this is reflected in the software architecture of this
application note.

4.1 Pros and cons of modular code

4.2 Module interfaces

4.3 Layered drivers

6 AVR32771

Modular code consists of clearly defined modules, where each module takes care of a
specific task or function. There is no hard line separating modular from non-modular
code, rather some design principles that can be followed to a greater or lesser extent,
of which the most important, simple module interfaces, will be discussed in the next
section.

Modular code will often require a bit more work to actually write it, but users of the
library services and drivers will certainly not notice this. Although a slight increase of
code size or reduction of performance can sometimes be seen, the benefits gained
from modular code heavily outweigh this. Increased modularity will result in increased
reusability and testability of the code, reducing maintenance and making it easier to
extend the code.

The most important part of a module is how it interacts with the rest of the system, ie.
its interface. The interface should be as simple as possible, making the module
simple to use and hiding the complexity within from the rest of the system. This
principle may make it more time consuming to develop the actual module, but this
time is regained when developing the system around the module. In addition, simple
module interfaces simplify testing of the modules and will thus assure the overall
quality of the system.

A layered driver, or stack, is a driver where the functionality is grouped into several
modules according to how close the functionality is to the actual hardware. This
approach is particularly popular in large and complex drivers, like the USB driver.

In addition to giving more modular code, with the benefits described in the previous
sections, the layered approach give drivers that are particularly easy to extend and
port. New functionality is added by writing a new top-layer, for USB this layer will
implement for instance the MSC or the HID class. Porting to new hardware is done by
writing a new bottom level layer, often referred to as HAL (Hardware Abstraction
Layer). Thus most of the code is left unchanged when adding top-level functionality or
porting to new hardware, reducing development time and risk of introducing bugs
considerably.

32132A-AVR32-02/10

4.4 Code structure

AVR32771

The source code in this application note is split into several categories and grouped
by hardware dependence. This way as much code as possible is reused between the

different architectures.

Applications]

\

Library Services]

\

Architecture dependent]

\

p
Compiler
dependent
Peripheral
drivers
\

4.4.1 File organization

At the top level, the source code is
organized in the following folders:

e apps — Applications

e arch — Architecture dependent code
e board — Board dependent code

e boot — Start-up code and trampoline
e build — Build folder

e chip — Device dependent code

e cpu— CPU dependent code

e doc — Code documentation

e drivers — Peripheral drivers

e include — Header files for drivers and
library services

e lib — Library services

e make — The central part of the build-
system

o test— Scripts for USB tests

AIMEL

/G
32132A-AVR32-02/10

CPU dependent]

\

Device dependent]

\

Board dependent]

\

ol = mass-storage |
+ & apps
+ 1 arch
+ 1 board
+ 1 boot
+ 1 build
+ 1 chip

= cpu

— doc
+- = drivers

+

include
= lib

1 make
— test

+

+

+

+

5 Driver design

5.1 Asynchronous drivers

5.2 The request structure

s AVR32771

ATMEL

The design strategy for the drivers in this application note has been to write optimal
code that is easy to use. Thus most of the complexity in the drivers is hidden from the
application itself. In order to free up system resources, all drivers have asynchronous
interfaces and depend as much as possible on DMA.

An asynchronous driver will return control to the caller just after any transfer request
has been submitted. It will not block until the transfer has been completed. This
behavior allows the caller to perform other tasks while waiting for the driver to
complete its. When the transaction as been completed, or failed for some reason, the
driver will notify the calling application about this.

Client Driver Hatrcwate
submit_requestireqg) b

Start OMA Transfer

DMA Transfer Complete

reg_doneireg?

The downsides of asynchronous drivers are more complex internal structure, slightly
more overhead and bigger flash and memory footprint. On most devices, these
disadvantages are heavily outweighed by the advantages of using DMA and enabling
multitasking in the applications.

The interface of an asynchronous driver revolves around the request structure. This is
a struct passed to the driver by the caller, containing a full description of the task the
driver should perform. When the task is completed, the struct is updated and returned
to the caller. A typical request struct will look something like this:

struct slits buf list

struct slist node node

unsigned long flags

void (*req done) (struct udc *udc,
struct usb request *req)

void *context

int status

size t bytes xfered

The above struct is the USB request struct used in this application note. It contains
the following elements:

e A list of data buffers for transmitting from or receiving into. Each buffer is a
continuous region of memory, while the list could represent a segmented
memory region.

e Alist node used for queuing the request. Read more about request queues in
the next section.

32132A-AVR32-02/10

5.3 Queuing of requests

32132A-AVR32-02/10

AVR32771

e Flags used to describe the request type and how the driver should handle it.

e A pointer to a callback function. This function is called by the driver when the
request is completed. Pointers to the driver instance and the request itself are
passed to the callback function.

e A pointer to arbitrary context data. This is typically used by the caller to
convey its own state to the callback function. The driver does not use or
modify this data.

o A status field set by the driver before calling the callback. This field will
typically say that the request was completed successfully or, if errors were
encountered, how the transfer failed.

e The last element is a count of the total number of bytes transferred. If the
transaction failed or got aborted, this field will tell the caller how much of the
submitted data that actually got transferred.

Most other requests contain the same or similar elements as the USB request
analyzed here.

When an application can continue its execution after initiating a transaction, it will
sometimes want to access the same peripheral again before the first transaction has
completed. Few peripherals support this, and blocking the second request until the
first has finished means the driver is only semi-asynchronous. The caller could handle
this itself, by waiting for the request done callback for the first request, but this
counteracts the principle of hiding the complexity inside the driver.

The solution is to enable the driver to queue up multiple requests. The caller can now
submit several requests in close sequence or even simultaneously, without having to
check if the underlying peripheral is ready or not. By utilizing a generic list framework
and queuing the list node available in the request struct, the overhead in the driver is
minimal.

AIMEL 9

/G

5.4 Moving data

5.5 The block device

10

AVR32771

ATMEL

Client Oriver Hardwatre
submit_reguestiregl) h

Start OMA Transfer

OMA Tranzfer Complete

req_donelregl)

Start OMA Tranzsfer

OMA Tranzfer Complete

red_donelregs)

A key aspect of the mass-storage application is to quickly move large amounts of
data between different peripherals. With both the USB and SD/MMC driver depending
on DMA, the actually data shoveling is already taken care of. What remains is
exchange of metadata, telling the drivers what data to find where, with as little
overhead as possible. This is achieved by utilizing the same buffer structure
throughout the system. The USB driver will simply hand over its list of buffers to the
SD/MMC driver, or vice versa. This makes for very clean and low overhead inter-
driver communication.

To further generalize the interface between the USB MSC and SD/MMC drivers, a
generic block device is utilized. The block device is a simple interface that allows
blocks of data to be read or written to addressable blocks on a underlying storage
medium.

The SD/MMC driver implements this interface, eliminating the need for the USB MSC
driver to know anything about the SD/MMC driver. By adding this extra layer to the
communication, the USB MSC driver is simplified and kept generic, making it easy to
re-use the same driver with a different storage medium.

32132A-AVR32-02/10

6 USB driver

6.1 The USB protocol

AVR32771

AT32UC3A3 is the first device in the UC3 series with High Speed USB capabilities.
With rates up to 480 Mhz, this makes it the perfect device for applications demanding
high data throughput. This chapter is intended to provide a brief overview of the USB
driver, for more through documentation, please refer to the Doxygen generated
source code documentation.

USB is a widely used standard for communication between electronic devices,
especially communication between desktop and laptop computers and devices
connected to them. The protocol includes standards for a wide variety of
communication types, including the mass storage class that are being using in this
application note. This class is used to provide a generic interface to everything from
external hard drives to SD-cards. In some situations it can make sense to use USB as
the communication protocol internally in a computer, taking advantage of the generic
interface with all its built-in functionality.

6.1.1 Compliancy to the USB standard

6.2 Driver layers

The USB protocol is no doubt one of the most complex communication protocols
supported by embedded devices. Still, devices from a vast amount of producers work
together remarkably well. An important reason for this is the thorough specification of
all elements of the protocol provided by the USB Implementers Forum, combined with
certification routines that make sure USB communication interfaces are implemented
according to the specification.

In order to ensure that this Application Note conforms to the USB standard, both the
USB High-Speed Peripheral and USB MSC tests are run on a regular basis.

The USB driver consists of several modules in a layered structure, with simple
interfaces and low interconnection between the modules.

Function Function Interface Interface
Driver Driver USB Driver Driver
C
Function Core Lib?;?y USB Host Core
UDC Library UDC Driver USB Host Controller Driver (HCD)

/

USB OTG / Transceiver Driver

6.2.1 USB Device Controller driver

32132A-AVR32-02/10

The UDC driver provides a low-level abstraction of the hardware. It is set up to handle
interrupts generated by the underlying hardware and communicates these events to
above layers. When necessary, it will call into the UDC library or function driver in
order to process data or requests from the USB host.

AIMEL 1

/G

ATMEL

6.2.2 USB Device Controller library

6.2.3 USB function driver core

6.3 Mass storage class

6.3.1 Serial number

The UDC library provides helper functions for the UDC driver. Among other things, it
will handle SETUP requests received on endpoint 0. UDC driver is set up to call the
appropriate functions in the UDC library when such a request is received.

As its name states, this is the core of the USB device driver. It keeps track of
configurations, interfaces and settings and changes them or switches between them
based on requests received from the host. Each configuration can have one or more
interfaces, and these are all active when the configuration is. In addition the interfaces
can have alternative settings that can be switched between at the host’s discretion.

The USB Mass Storage device class (USB MSC) is the protocol commonly used
when storing data in USB devices. This protocol provides the USB host with a
recognizable interface to the storage medium, making it easy for the host to use
different types of flash or hard drives without having to know anything about the
actual storage medium.

The USB MSC specifies that every device should be identified by a unique serial
number when enumerating. This number must be programmed in separately of the
application during production. See section 3.3.1 for details on this.

6.3.2 Enumeration and host side driver

When the device is connected to the host, it will be identified as a USB Mass Storage
device, enabling the host to use a generic driver for communication. A specialized
driver is not needed in order to use the device. Once the enumeration process is
completed, the device is ready for use.

6.4 Hardware design guidelines

12 AVR32771

High Speed USB communicates at 480 Mhz, which often is much higher than any
other signals in the system. The high frequency requires some care to be taken when
designing the hardware. Refer to design guidelines (available from usb.org) or
reference designs for more details.

32132A-AVR32-02/10

AVR32771

7 SD/MMC block device

The second part of the application is the SD/MMC driver stack. This stack provides a
generic asynchronous block device interface to the USB MSC protocol.

7.1 Driver organization

The driver is organized in several layers, with the hardware specific host driver at the
bottom, and a generic block device presentation at the top. In addition, a probe
engine is running on the side, probing for card events. This will typically run in a
workqueue, perhaps with a certain delay between runs. If a card has been inserted or
removed since the previous run of the probe engine, it will alert the driver, which will
take appropriate action.

Figure 7-1. SD/MMC driver organization

SD/MMC block device
A

¥
SD/MMC request interface

-]
SD/MMC slot(s) B SD/MMC probe engine

SD/MMC host driver

7.2 Cards supported

The driver should support all MMC, SD and SDHC cards, and has been successfully
tested with the following cards:

e SanDisk® Ultra Il

e SanDisk Extreme Ill, SDHC

e Kingston® SDHC

¢ Kingston Ultimate SDHC

AIMEL 13

/G
32132A-AVR32-02/10

8 Performance

ATMEL

Performance, measured as read and write speed, is a key aspect of any mass
storage application. In this chapter we will look into what affects the performance, and
what performance measurements to expect from this mass storage implementation.

8.1 USB and SD/MMC transfer speed

8.2 Overhead

8.2.1 USB and MMC protocols

The performance of a mass storage application can be limited by both the USB
protocol and the SD/MMC interface. High speed USB have a theoretical limit of
480Mbit/s, while the SD/MMC interface typically run at 33Mhz or 50Mhz, which give
132Mbit/s or 200Mbit/s with a 4-bit wide bus. Both these interfaces will experience
some overhead, but unless there is a lot of other traffic on the USB, the SD/MMC
interface will usually be the bottleneck.

There are several sources of overhead in a mass storage application based on
SD/MMC. Some are outside our control, but will be mentioned to give a better
understanding on what performance to expect from a certain system.

In order to send information over either USB or the SD/MMC protocaol, it needs to be
packaged according to these protocols. Both the packaging and the handshaking
needed to transmit a package will add to the overhead of the overall system.
Especially when transferring small batches of data, this overhead can be very large.
However, this overhead component will be seen on all mass storage applications, and
can not be controlled by the implementation.

8.2.2 USB host and SD/MMC card

There are four parties involved in either a read or write operation. All operations are
initiated by a USB host and sent to the USB device controller on the AVR32, which
dispatches these as SD/MMC requests, sent by the AVR32 SD/MMC controller to the
SD/MMC-card. Delays and overhead introduced by the USB host and SD/MMC-card
are obviously independent on the mass storage implementation. Especially the
SD/MMC-card will typically generate big delays, due to read access latency when
reading and programming latency when writing. These are by far the biggest delays in
the system, and will vary a great deal between different brands and models of
SD/MMC-cards.

The programming latency is not only long, it is also unpredictable. This is because the
SD/MMC-card may have to erase sectors before writing, or move data in order to
level wear. In an effort to average out these effects and get reproducible figures, large
amounts of data will be used when measuring write performance.

8.2.3 The mass storage application

14

AVR32771

The overhead and delays caused by the mass storage application is something that
directly depends on the implementation chosen, and are the only aspects of the
overall performance that can be controlled. Overhead can arise from handling
handshaking, buffering data, interpreting and formatting data packages. Much of the
overhead is fixed for each package of data, and will be most noticeable when
transferring small data packages.

32132A-AVR32-02/10

8.3 Results

AVR32771

Both read and write speed depends on the data package size, as well as the USB
host and the SD/MMC-card. In order to reproduce a certain result it is important to
recreate a similar environment. Package size may vary a lot between different
situations, and is largely determined by the file system used and the files stored on
the SD/MMC-card. Results here are posted for different packages sizes, and if the
package mix of a certain system is known, the average performance can be
estimated from these figures.

The benchmarks are performed with two different USB host chipsets and with Linux
and Windows operating system on the host. In Linux the speed is determined by
writing or reading large amounts of data from an unformatted card with the command
dd. In Windows the application ATTO benchmark is used to determine the speed.
This application creates a big file on a NTFS formatted card and then performs long
sequential reads and writes on that file.

The read and write speed figures given below provide information about what to

expect from a certain configuration.

8.3.1 Performance on Windows XP® host with ICH7 USB chipset

8.3.2 Performance on Windows® Server 2008 host with ICH8 USB chipset

Table 8-1. Results

SD card

4kb (read, write)

64kb (read, write)

512kb (read, write)

Kingston SDHC

2.5MB/s, 0.5MB/s

11.8MB/s, 4.9MB/s

N/A, N/A

Kingston Ultimate

3.3MB/s, 1.0MB/s

12.2MB/s, 7.5MB/s

N/A, N/A

SanDisk Extreme Il

2.8MB/s, 1.7MB/s

11.9MB/s, 8.8MB/s

N/A, N/A

Average

2.9MB/s, 1.1MB/s

12.0MB/s, 7.1MB/s

N/A, N/A

Table 4-2. Results

SD card

4kb (read, write)

64kb (read, write)

512kb (read, write)

Kingston SDHC

3.6MB/s, 0.9MB/s

13.0MB/s, 7.6MB/s

N/A, N/A

Kingston Ultimate

4.4MB/s, 1.5MB/s

13.1MB/s, 7.7MB/s

N/A, N/A

SanDisk Extreme Il

4.1MB/s, 2.2MB/s

12.8MB/s, 9.6MB/s

N/A, N/A

Average

4.0MB/s, 1.5MB/s

13.0MB/s, 8.3MB/s

N/A, N/A

8.3.3 Performance on Linux host with ICH7 USB chipset

Table 8-3. Results

SD card

4kb (read, write)

64kb (read, write)

512kb (read, write)

Kingston SDHC

3.8MB/s, 0.8MB/s

12.4MB/s, 7.7MB/s

15.0MB/s, 9.3MB/s

Kingston Ultimate

4.1MB/s, 1.4MB/s

12.7MB/s, 9.8MB/s

15.0MB/s, 12.6MB/s

SanDisk Extreme llI

3.7MB/s, 2.1MB/s

12.4MB/s, 10.6MB/s

15.0MB/s, 13.1MB/s

Average

3.9MB/s, 1.4MB/s

12.5MB/s, 9.4MB/s

15.0MB/s, 11.7MB/s

32132A-AVR32-02/10

AIMEL

/G

15

8.4 Code size

16

AVR32771

ATMEL

Compiling the application without debugging console and asserts, gives the following
code size with O2 optimization and gcc version 4.3.2:

text data bss dec hex filename
30880 192 992 32064 7d40 mass-storage.elf

32132A-AVR32-02/10

9 References

32132A-AVR32-02/10

AVR32771

. Doxygen generated source code documentation
. AVR32787: AVR32 UC3A3 High Speed USB Design Guidelines
. AVR32769: How to Compile standalone AVR32 Software Framework in AVR32

Studio V2

. EVK1104 Schematics
. Universal Serial Bus webpage (http://www.usb.org)
. SD-card overview (http://en.wikipedia.org/wiki/Secure Digital card)

AIMEL 17

/G

AIMEL

Y 7
Headquarters International
Atmel Corporation Atmel Asia Atmel Europe Atmel Japan
2325 Orchard Parkway Unit 1-5 & 16, 19/F Le Krebs 9F, Tonetsu Shinkawa Bldg.
San Jose, CA 95131 BEA Tower, Millennium City 5 8, Rue Jean-Pierre Timbaud 1-24-8 Shinkawa
USA 418 Kwun Tong Road BP 309 Chuo-ku, Tokyo 104-0033
Tel: 1(408) 441-0311 Kwun Tong, Kowloon 78054 Saint-Quentin-en- Japan
Fax: 1(408) 487-2600 Hong Kong Yvelines Cedex Tel: (81) 3-3523-3551
Tel: (852) 2245-6100 France Fax: (81) 3-3523-7581
Fax: (852) 2722-1369 Tel: (33) 1-30-60-70-00

Fax: (33) 1-30-60-71-11

Product Contact

Web Site Technical Support Sales Contact
www.atmel.com Avr32 @atmel.com www.atmel.com/contacts

Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

©2010 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, AVR Studio® and others
are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or
trademarks of Microsoft Corporation in the U.S. and or other countries. Other terms and product names may be trademarks of others.

32132A-AVR32-02/10

	1 Introduction
	2 Theory of Operation
	2.1 Transactions
	2.2 Overhead

	3 Using the application
	3.1 Connecting the board
	3.2 Building the application
	3.3 Programming the application
	3.4 Debugging the application
	3.5 Enabling AES encryption

	4 Software architecture
	4.1 Pros and cons of modular code
	4.2 Module interfaces
	4.3 Layered drivers
	4.4 Code structure

	5 Driver design
	5.1 Asynchronous drivers
	5.2 The request structure
	5.3 Queuing of requests
	5.4 Moving data
	5.5 The block device

	6 USB driver
	6.1 The USB protocol
	6.2 Driver layers
	6.3 Mass storage class
	6.4 Hardware design guidelines

	7 SD/MMC block device
	7.1 Driver organization
	7.2 Cards supported

	8 Performance
	8.1 USB and SD/MMC transfer speed
	8.2 Overhead
	8.3 Results
	8.4 Code size

	9 References

