
AN1302
An I2C™ Bootloader for the PIC16F1XXX Enhanced Core
INTRODUCTION

The new PIC16F1XXX enhanced core microcontroller
has the ability to write its own program memory under
software control. This allows the microcontroller to
make modifications in the program Flash memory. This
application note explains the implementation of a
bootloader using I2C™ as a communication channel.

BOOTLOADER CONCEPT

The bootloader allows a processor to change its
firmware without any physical intervention to the device
itself. There is no need for a hardware programmer
when using the bootloader. The firmware is
downloaded from a host system by means of a
communication channel, usually through a USB or a
serial port. This bootloader implementation uses a
standard I2C bus as a communication channel between
the microcontroller and the host system.

In general, when using a bootloader, the code is
transferred from a host device. Typically, this is
comprised of a PC computer using a RS-232 serial
cable or a USB port. Any other device can act as a host
device.

The target device needs bootloader firmware. This is
basically a software that accepts commands and data
from a host device and reads/erases/writes data to the
Flash program memory. This firmware is typically
located on the lower part of the program memory. The
bootloader code is started by default at system Reset.
It then checks if there is any application code loaded
and jumps into application code if any is found.
Alternatively, a button can be used to instruct the
bootloader to stay in bootloader code even if a firmware
is already present. This is useful when reading the
application firmware or in case of an application
firmware update.

BOOTLOADER REQUIREMENTS

The bootloader makes it unnecessary for any physical
intervention with a hardware programmer. The target
device must have some form of data connection with
the host. In this application note, I2C communication is
used. If the device uses the I2C port to communicate
with other devices on the bus, then no additional
connection is needed.

The bootloader will require the lower side of the
program memory reserved for the bootloader firmware
(see Figure 1). The rest of the program memory can be
used by application. No RAM memory needs to be
reserved, since it is used in different contexts and not
at the same time.

FIGURE 1: FLASH MEMORY MAP

Author: Cristian Toma
Microchip Technology Inc.
 2009 Microchip Technology Inc. DS01302A-page 1

AN1302
BASIC OPERATION

The basic functionality of a bootloader is to receive,
interpret and execute a set of commands known both
by the host software and the target firmware. The
command set can be more or less complex than shown
in the application note, but it must generally support
commands to read, erase and write the Flash memory.
Additionally, it must support a command to jump from
the bootloader code to the application code. This
command is typically issued at the end of a
program/verify cycle. The application code might
require a command to exit the application code and
enter the bootloader code.

ERASING PROGRAM MEMORY

The program memory can be erased under software
control only in rows of instructions. A row consists of 32
instruction words of program memory. Please note that
the address must be aligned to a 32-word boundary
(EEADRL <4:0> = 0 0 0 0).

Because the erase sequence can modify existing data,
the special unlock sequence is needed. The unlock
sequence consists in consecutive write values 0x55,
0xAA to the EECON2 register.

UPDATING PROGRAM MEMORY

Before writing to the program memory, an erase
operation should be performed. The program memory
is written in blocks. A block consists of 8 words of
program memory data with sequential address, aligned
to an 8-word boundary (EEADRL <2:0> = 0 0 0). If
smaller blocks of memory need to be modified, then a
read-modify-erase program approach should be used,
as the program memory can only be written in 8-word
blocks.

An erase operation sets the value of 0x3FFF to all
erased locations. This corresponds to an all-ones in
binary.

BOOTLOADER COMMANDS

The bootloader firmware used in this design supports a
set of commands used to read, erase and write to the
Flash memory of the target device. The commands are
shown in Table 1.

TABLE 1: BOOTLOADER COMMANDS

Command Name Read/Write Description

0x01 Set/Get
Address
Pointer

R/W Sets/Reads the Address Pointer. Data is written/read in two bytes format,
MSB first.

0x02 Download
data to

internal buffer

-/W 8 words of data are downloaded from the host into an internal buffer.
Data is downloaded MSB first starting from the lower address. This
command is usually followed by a Write command (0x05).

0x03 Read Flash
command

R/- Reads 8 words from the Flash memory starting with the address
specified by the Address Pointer. The Address Pointer is automatically
incremented by 8 words upon a read.

0x04 Erase Flash
command

R/- Erases a row of 32 words starting with the address specified by the
Address Pointer. The Address Pointer must be aligned to a 32-word
boundary (0x0000, 0x0020, 0x0040, 0x0060……). The Address Pointer
is automatically advanced by 32 words. This command uses clock
stretching and returns a dummy 0x00 byte after command completion.

0x05 Write Flash
command

R/- The data that is stored into the buffer is written into the Flash memory at
the address pointed to by the Address Pointer. The Address Pointer is
automatically incremented by 8 words upon a successful write. This
command uses clock stretching and returns a dummy 0x00 byte after
command completion.

0x06 Jump to
application

code

R/- Usually used after a successful firmware download. The application
resets itself and jumps to the application segment. This command uses
clock stretching and returns a dummy 0x00 byte after command
completion.
DS01302A-page 2  2009 Microchip Technology Inc.

AN1302
BOOTLOADER FIRMWARE

As mentioned before, the bootloader firmware resides
in the lower part of the Flash memory. The firmware
receives, interprets and executes a set of I2C com-
mands (the complete list of commands is described in
Table 1). In order to respond to the I2C commands, the
firmware must access the Flash memory. For some
commands that involve operations with the internal
Flash memory that takes time to complete the opera-
tion. These commands are implemented as I2C Read
command. They will return a dummy 0x00 byte after
the operation has completed. During this time, the
slave will clock stretch the I2C bus by pulling the SCL
line low to signal the master device that the operation
has not completed. The download of data to the inter-
nal buffer does not need any response from the target
system, thus the command is implemented as a normal
I2C Write command.

The structure of the I2C commands is described in the
following. These are implemented as the target being
an I2C slave device.

General configuration of an I2C write operation (see
Table 2):

1. Send a "Start" condition to the slave device

2. Send the device address with the R/W bit low
(even address). If the sent address matches the
slave device address, then the slave device
sends an ACK signal.

3. Send the internal register number you want to
write to.

4. Send data. Depending on the command used,
the master can send multiple data bytes. Please
note that the master device can send a multiple
number of bytes.

5. Send a "Stop" condition.

TABLE 2: I2C WRITE COMMAND

General configuration of an I2C read operation (see
Table 3):

1. Send a “Start” condition.

2. Send the device address with the R/W bit low
(even address). Notice that the slave sends an
Acknowledge signal if the address matches.

3. Send the bootloader command number you
want to read from.

4. Send a “Restart” condition.

5. Send the device address again. This time with
the R/W bit high (odd address).

6. Read a number of bytes from the slave device.
If data is not yet available, the slave will use
clock stretching (pull SCL line low).

7. Send a “Stop” condition

TABLE 3: I2C READ COMMAND

The bootloader code must exit after completing the
download of the new firmware. This is typically imple-
mented using a Reset instruction. The decision to go to
bootloader code or application code is based on a boot-
loader flag placed in the Flash memory. The location of
this flag is at the highest address of Flash memory for
the target device. In the current implementation using
the PIC16F1937, this location is 0x1FFF. Other devices
might have more or less available Flash program mem-
ory and the last available Flash memory location will
vary accordingly. Following an Erase command, the
data at address 0x1FFF is 0x3FFF. After a successful
code download and verify, the data contained at this
address will be changed to a special value (0x55), indi-
cating that an application is loaded. When the applica-
tion code needs to jump to the bootloader code it will
write an all-zeros value to the bootloader flag address.
When writing an all-zeros value to a Flash memory
location there is no need for a previous erase opera-
tion. An erase operation sets the Flash memory loca-
tion to an all-ones value. The special value can be
either contained in the application hex file or written by
the bootloader upon a successful code update.

Alternatively, any means of code-present flags can be
used, such as flags in EEPROM memory or any other
address in the Flash memory.

The full source code of the bootloader is available with
this application note. The firmware runs on the F1 Eval-
uation Platform containing a PIC16F1937. Three demo
applications are provided along with this application
note. These are relatively simple and are provided with
the purpose of demonstrating firmware upload. The
first two applications are just "Hello world" kind of firm-
ware. The third application showcases the use of inter-
rupt forwarding.

Start Address Register Data (nbytes) Stop

Start Address Register Restart Address Data
(nbytes)

Stop
 2009 Microchip Technology Inc. DS01302A-page 3

AN1302
FIRMWARE FUNCTION
DESCRIPTIONS

Among the functions of the bootloader firmware, some
of them are more important:

do_i2c_tasks: This function services all the I2C
related events. The event decoding is based on the
SSPIF flag and the SSPSTAT register.

flash_memory read: This function takes a 16-bit
value as a address parameter and returns the data
read from Flash memory at the specified location.

flash_memory_write: This function has two param-
eters. The first one is a 16-bit value as an Address
Pointer. Please note that the address must be properly
aligned to an 8 word boundary. The second parameter
is a pointer to buffer containing the data being written.
It does not return any value (void).

flash_memory_erase: Performs an erase operation
starting with the address specified as a parameter. 32
instruction words are erased in a row and the specified
address must be aligned to a 32 word boundary.

service_isr: This function performs the interrupt for-
warding feature. It is implemented as a GOTO instruc-
tion. For more information see the following section.

INTERRUPT FORWARDING

The PIC16F1XXX enhanced core has the interrupt vec-
tor at 0x0004. This address is located in the area where
the bootloader firmware is located. To maintain the
interrupt functionality it is required that the Interrupt
Service Routine (ISR) be relocated at a different
address, in the application segment. In the bootloader
code, at the interrupt vector location (0x0004), a GOTO
instruction is present. The Interrupt Service Routine is
contained in the application code. The application code
is shifted by 0x200, leaving room for the bootloader in
the lower part of the Flash memory. It will also contain
the Interrupt Service Routine at 0x0204. The boot-
loader code will contain a "GOTO 0x0204" instruction.
When an interrupt occurs, the program counter (PC)
jumps to 0x0004 in the bootloader segment. At this
address, the "GOTO 0x0204" instruction will cause the
PC to jump to 0x0204 in the application segment,
where the Interrupt Service Routine is located (see
Figure 1). Please notice that the PIC16F1XXX
enhanced core features Automatic Context Saving.

The interrupt latency will be increased by the GOTO
instruction execution time. See the example demo
application(s) for more details.

MULTIPROCESSOR SYSTEM

Since the proposed bootloader uses a standard I2C
protocol, the target microcontroller can be interfaced
with a larger microcontroller having more processing
power (such as a main processor in a multiprocessor
system). Several such devices can be connected in
parallel on the I2C bus, each slave device having its
own address (see Figure 2).

FIGURE 2: MULTIPLE SLAVE DEVICES
CONNECTED TO THE SAME
BUS
DS01302A-page 4  2009 Microchip Technology Inc.

AN1302
PC SIDE SOFTWARE

The bootloader presented here uses an I2C bus as a
communication channel. The main use for such a boot-
loader is in a multiprocessor system where the main
processor can update the firmware of several proces-
sors in the same system.

We can, however, use PC software if we use a device
that will act as a master I2C device controlled by PC
software. We used the PICkit™ Serial analyzer
configured as I2C master device.

The software is written using Visual C# 2008, Express
Edition. The PC software has the primary function of
importing the hex file, splitting it into smaller packets
and sending the data to the bootloaded device. Read-
ing back program data from the device is also possible.
When designing the firmware for the main processor in
a multiprocessor system, the above software can serve
as a starting point.

FIGURE 3: PC HOST APPLICATION
WINDOW

To upload a new hex file to the device you must first
open the hex file. This can be done using the Import
Hex command found in the File menu (see Figure 3).
You will notice that the content of the currently loaded
file is displayed in the lower side of the window. Once
the new firmware is loaded, it is ready to be sent to the
target device. This is done by using the Program com-
mand under the Bootloader menu. The programming
operation will consist in a full erase followed by a firm-
ware download. The erase-only operation is available
in the same menu. The firmware can also be read from
the target device using the Read command in the Boot-
loader menu. The program memory data can be saved
into a hex file using the Export Hex command in the File
menu. After a successful firmware download operation,
switching to the application code is done using the Run
firmware command in the Bootloader menu.

CONCLUSION

Using a bootloader is a very efficient way to allow
firmware upgrades in the field. Products can be easily
upgraded to support new features. Fixing code bugs is
also easier.

The bootloader code occupies the lower part of the
program memory between 0x0000 and 0x01FF (512
bytes). The bootloader features interrupt forwarding to
allow applications to use interrupts.

When using I2C communication, multiple bootloaded
devices can be connected on the same bus, each
device having it's own address.
 2009 Microchip Technology Inc. DS01302A-page 5

AN1302
NOTES:
DS01302A-page 6  2009 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
 2009 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01302A-page 7

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01302A-page 8  2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

03/26/09

	Introduction
	Bootloader concept
	Bootloader requirements
	FIGURE 1: Flash Memory Map

	Basic operation
	Erasing Program Memory
	Updating Program Memory
	Bootloader Commands
	TABLE 1: Bootloader Commands

	Bootloader Firmware
	TABLE 2: I2C Write command
	TABLE 3: I2C Read Command

	Firmware Function Descriptions
	Interrupt Forwarding
	Multiprocessor system
	FIGURE 2: Multiple Slave Devices Connected to the Same Bus

	PC Side Software
	FIGURE 3: PC Host Application Window

	Conclusion
	Trademarks
	Worldwide Sales

