
 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 1

Introduction
This application note explains the various features of SERCOM USART in PIC32C and SAM family of devices that
are powered by Arm® Cortex®-M, such as SAM D, SAM E, SAM L, PIC32CK, PIC32CM, PIC32CX, and PIC32CZ, and
its configurations with example codes and corresponding outputs.

The examples discussed in this document uses two SAM D21 Curiosity Nano Evaluation Kits and two SAM E70
Xplained Ultra Evaluation Kits.

Note: The same configuration and steps can be easily replicated for other Arm families as shown in SERCOM
Implementation in SAM D Microcontrollers.

www.microchip.com
Product Page Links

 SERCOM USART on Microchip Cortex Devices (SAM and
PIC32C)

 AN5807

https://microchip.com


 AN5807

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 2

Table of Contents
Introduction...........................................................................................................................................................................1

1. Introduction to Serial Communication Interfaces ....................................................................................................3

1.1. USART.................................................................................................................................................................. 3
1.2. I2C.........................................................................................................................................................................3
1.3. SPI........................................................................................................................................................................ 3
1.4. LIN........................................................................................................................................................................3
1.5. LON...................................................................................................................................................................... 3

2. SERCOM Implementation in SAM D Microcontrollers.............................................................................................. 4

2.1. Overview............................................................................................................................................................. 4
2.2. Features.............................................................................................................................................................. 4
2.3. Block Diagram.................................................................................................................................................... 4
2.4. Clocks...................................................................................................................................................................5

3. USART Implementation in SAM E70 Microcontroller................................................................................................ 6

3.1. Overview............................................................................................................................................................. 6
3.2. Features.............................................................................................................................................................. 6
3.3. Block Diagram.................................................................................................................................................... 6
3.4. Clocks...................................................................................................................................................................7

4. Hardware and Software Requirements......................................................................................................................8

5. Application Demonstration........................................................................................................................................10

5.1. Creating the Project.........................................................................................................................................10
5.2. Basic Configuration..........................................................................................................................................13
5.3. Fractional Baud Configuration....................................................................................................................... 30
5.4. Hardware Handshaking Configuration......................................................................................................... 36
5.5. SOF Detection and Wakeup Configuration...................................................................................................45

6. References................................................................................................................................................................... 50

7. Revision History...........................................................................................................................................................51

7.1. Revision A - February 2025............................................................................................................................. 51

Microchip Information....................................................................................................................................................... 52

Trademarks.................................................................................................................................................................. 52
Legal Notice..................................................................................................................................................................52
Microchip Devices Code Protection Feature............................................................................................................52

Product Page Links............................................................................................................................................................. 53



 AN5807
Introduction to Serial Communication Interfaces

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 3

1. Introduction to Serial Communication Interfaces
The serial communication interface plays a key role in exchanging data between several
microcontrollers and other devices in an embedded system. The exchange of data can be half-
duplex or full-duplex, depending on the serial module specification. The data rate and connections
of the serial module differ from each other. USART, I2C, SPI, LIN, and LON are the common serial
modules used in embedded systems.

1.1 USART
The Universal Synchronous/Asynchronous Receiver/Transmitter (USART) is an integral
communication module embedded within microcontrollers to facilitate serial data exchange. This
versatile component can manage both synchronous and asynchronous serial protocols, transmitting
data sequentially, bit by bit.

USARTs offer a high degree of configurability, allowing for an array of data frame structures, baud
rates, and modes of operation. It is a full-duplex in operation. This adaptability renders them
highly suitable for interfacing with various devices, including sensors, computers, and additional
microcontrollers.

1.2 I2C
I2C is a two-wire protocol. I2C is a multi-host bus that provides arbitration and collision detection.
It is half-duplex in communication. Different transfer rates are available depending on the speed
mode. The I2C speed rate is higher than the USART, but less than the SPI. I2C is mainly preferred
in embedded applications where a limited number of pins are available for communication and
several devices must be connected in a single bus.

1.3 SPI
SPI is a synchronous serial bus using four physical lines for its communication. It is a full-duplex in
operation. SPI supports higher data rates. The SPI can operate with a single host device and one or
more client devices, each with separate chip select lines.

1.4 LIN
The Local Interconnect Network (LIN) mode facilitates connectivity between the Host node and the
Client node on a LIN bus. The LIN is a serial communication protocol designed to effectively manage
the control of mechatronic nodes within distributed automotive systems. LIN offers a cost-effective
solution for bus communication in scenarios where the higher bandwidth and flexibility of CAN are
not necessary.

1.5 LON
The Local Operating Network (LON) mode facilitates integration with the LON infrastructure. This
mode encompasses the comprehensive OSI (Open Systems Interconnection) model, addressing
all seven layers from the physical connections, including wired, power line, radio frequency, and
Internet Protocol, to the application layer, and the intermediate layers. Engineered from the ground
up to serve as a robust platform for control communications, the LON mode allows for the
efficient exchange of Physical Protocol Data Unit (PPDU) frames, requiring minimal microprocessor
involvement.



 AN5807
SERCOM Implementation in SAM D Microcontrollers

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 4

2. SERCOM Implementation in SAM D Microcontrollers
Generally, the microcontroller will have separate serial communication modules with different
pinouts for each module. Separate dedicated peripherals and user registers will be available for
each module. For example, USART will be a separate peripheral with dedicated pins for its function
and I2C will be a separate peripheral with its dedicated pins.

In SAM D microcontrollers, all serial peripherals are integrated into a single module, functioning
as a serial communication interface (SERCOM). A SERCOM module can be configured as USART,
I2C, or SPI selectable by the user. Each SERCOM will be assigned four pads from PAD0 to PAD3.
The functionality of each pad is configurable depending on the SERCOM mode used. Unused pads
can be used for other purposes and the SERCOM module will not control them unless they are
configured to be used by the SERCOM module, for example, SERCOM0 can be configured as USART
mode with PAD0 as the transmit pad and PAD1 as the receive pad. Other unused pads (PAD2 and
PAD3) can be used as GPIO pins or assigned to some other peripherals. The assignment of SERCOM
functionality for different pads is highly flexible, making the SERCOM module more advantageous
than the typical serial communication peripheral implementation.

Notes: These configurations can also be implemented in the following device families:
• SAM L family of microcontrollers
• SAM C family of microcontrollers
• SAM D family of microcontrollers
• SAM D5X/E5X family of microcontrollers
• PIC32CK family of microcontrollers
• PIC32CM family of microcontrollers
• PIC32CX family of microcontrollers
• PIC32CZ family of microcontrollers

2.1 Overview
The serial communication interface (SERCOM) can be configured to support three different modes:
I2C, SPI, and USART. Once configured and enabled, all SERCOM resources are dedicated to the
selected mode. The SERCOM serial engine consists of a transmitter and receiver, baud-rate
generator and address-matching functionality. It can be configured to use the internal generic clock
or an external clock, making operation in all sleep modes possible.

2.2 Features
The following are key features of the module:

• The combined interface is configurable as one of the following:
– I2C – Two-wire serial interface (SMBus compatible)
– SPI – Serial Peripheral Interface
– USART – Universal Synchronous/Asynchronous Receiver/Transmitter

• Single transmit buffer and double receive buffers
• Baud Rate Generator (BRG)
• Address match or mask logic
• Operational in all sleep modes
• Can be used with DMA (not supported in the SAM D20 MCUs)

2.3 Block Diagram
The following figure illustrates the block diagram of the SERCOM module.



 AN5807
SERCOM Implementation in SAM D Microcontrollers

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 5

Figure 2-1. SERCOM Block Diagram

2.4 Clocks
The SERCOM module requiress the following clocks for its operation:

• SERCOM bus clock
• SERCOM CORE generic clock
• SERCOM SLOW generic clock

By default, the SERCOM bus clock (CLK_SERCOMx_APB) is disabled but can be enabled and
disabled in the Power Manager (PM) module. Two generic clocks are used by the SERCOM
module: GCLK_SERCOMx_CORE and GCLK_SERCOMx_SLOW. The core clock (GCLK_SERCOMx_CORE)
is required to clock the SERCOM while operating as a host, while the slow clock
(GCLK_SERCOMx_SLOW) is only required for certain functions like I2C timeouts.



 AN5807
USART Implementation in SAM E70 Microcontroller

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 6

3. USART Implementation in SAM E70 Microcontroller
3.1 Overview

The Universal Synchronous Asynchronous Receiver Transceiver (USART) offers a comprehensive
full-duplex synchronous or asynchronous serial connection. Its data frame configuration is highly
customizable, including data length, parity, and stop-bit options to ensure compatibility with a broad
range of standards. The receiver is equipped with detection capabilities for parity errors, framing
errors, and overrun errors. Additionally, a receiver timeout feature is included to manage variable-
length frames effectively, while a transmitter timeguard is in place to facilitate communication with
slower remote devices.

The USART is designed with three diagnostic test modes: Remote Loopback, Local Loopback, and
Automatic Echo. It supports various operational modes to interface with RS485, LIN, LON, and
SPI buses. This includes compatibility with ISO7816 T = 0 or T = 1 smart card protocols, infrared
transceivers, and modem port connections. The hardware handshaking capability, utilizing RTS and
CTS lines, allows for out-of-band flow control.

In addition, the USART is compatible with Direct Memory Access (DMA) Controller connections,
facilitating efficient data transfers to the transmitter and from the receiver. The DMA Controller
offers advanced buffer management, which operates without requiring processor intervention.

3.2 Features
The following are key features of the USART module:

• RS485 with Driver Control Signal
• SPI Mode
• LIN Mode
• LON Mode
• Register Write Protection

3.3 Block Diagram
The following figure illustrates the block diagram of the USART module:

Figure 3-1. USART Block Diagram



 AN5807
USART Implementation in SAM E70 Microcontroller

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 7

3.4 Clocks
The USART is not continuously clocked; instead, it provides the option to select internal clocks from
various sources, including the Slow Clock (SLCK), Main Clock (MAINCK), any available Phase-Locked
Loop (PLL) clock, and the Host Clock (MCK). This selection is achieved through the configuration of
the Programmable Clock (PMC) Control Status Register's (PMC_PCKx) Clock Source Selection (CSS)
field.

Additionally, the frequency of these clock sources can be adjusted by setting the PMC_PCKx
Prescaler (PRES). Each programmable clock output (PCKx) can be activated or deactivated by
writing a '1' to the corresponding Power Management Controller System Clock Enable Register
(PMC_SCER.PCKx) or System Clock Disable Register (PMC_SCDR.PCKx). The operational status of
these internal clocks is reflected in the PMC System Clock Status Register (PMC_SCSR.PCKx). The
PMC Status Register (PMC_SR. PCKRDYx) flag is used to indicate the readiness of the programmable
internal clock after being set in the Programmable Clock Registers. For USART operations, PCK4 is
designated.

The Power Management Controller (PMC) governs the clocking of embedded peripherals through
the PMC Peripheral Control Register (PMC_PCR). This register enables users to manage the
activation and deactivation of various peripheral clocks, including the Peripheral Clocks (periph_clk
[PID]), which are distributed to each peripheral and derived from the Host Clock (MCK), and
the Generic Clocks (GCLK[PID]), specifically allocated to I2SC0 and I2SC1. These clocks function
independently from the core and bus clocks (HCLK, MCK, and periph_clk [PID]) and are generated
through the selection and division of sources, such as SLCK, MAINCK, UPLLCKDIV, PLLACK, and MCK.
To configure a peripheral's clocks, the PMC_PCR.CMD must be set to '1', and the PMC_PCR.PID must
be assigned the index of the targeted peripheral. It is imperative that all other configuration fields
are accurately defined for proper setup.



 AN5807
Hardware and Software Requirements

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 8

4. Hardware and Software Requirements
The application demonstration needs two SAM D21 Curiosity Nano Evaluation Kits and two SAM
E70 Xplained Ultra Evaluation Kits. One kit will be Host/Transmitter, and the other kit will be Client/
Receiver.

The following software and hardware tools are used for this application:

• MPLAB® X IDE v6.20
• MPLAB Code Configurator Plugin v5.5.1
• MPLAB XC32 Compiler v4.45
• csp v3.20.0
• SAM D21 Curiosity Nano Evaluation Kit
• SAM E70 Xplained Ultra Evaluation Kit

Figure 4-1. SAM D21 Curiosity Nano Evaluation Kit

The SAM D21 Curiosity Nano Evaluation Kit is equipped with a USB port, DEBUG USB. For debugging
using the embedded debugger EDBG, the DEBUG USB port must be connected.

Figure 4-2. SAM E70 Xplained Ultra Evaluation Kit

https://www.microchip.com/en-us/tools-resources/develop/mplab-x-ide
https://www.microchip.com/en-us/tools-resources/configure/mplab-code-configurator
https://www.microchip.com/en-us/tools-resources/develop/mplab-xc-compilers
https://github.com/Microchip-MPLAB-Harmony/csp
https://www.microchip.com/en-us/development-tool/dm320119
https://www.microchip.com/en-us/development-tool/dm320113


 AN5807
Hardware and Software Requirements

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 9

The SAM E70 Xplained Ultra Evaluation Kit features two USB ports: DEBUG USB and TARGET USB.
For debugging using the embedded debugger (EDBG), the DEBUG USB port must be connected.

If the driver installation is proper, the EDBG will be listed in the Device manager as shown in the
following figure.

Note: The latest versions of the above listed tools can also be used to create the application.

Figure 4-3. Successful EDBG Driver Installation

Note: Search for Device Manager in the search bar of the computer to verify the microchip tools
and ports are identified.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 10

5. Application Demonstration
This chapter demonstrates the various features of the SERCOM USART module of the SAM D21
Curiosity Nano Evaluation Kit and SAM E70 Xplained Ultra Evaluation Kit with different example
codes.

The following configurations are implemented in the subsequent sections:

• Basic configuration.
• Fraction Baud configuration.
• Hardware Handshaking configuration.
• SOF detection and wakeup configuration (not available in the SAM E70 devices).

5.1 Creating the Project
Two projects are required for implementing the functionalities: one for host/transmitter and the
other for client/receiver.

To create an MPLAB Harmony v3-based project, follow these steps:
1. From the Start menu, launch MPLAB® X IDE.
2. On the File menu, select New Project or click on the New Project icon.

Figure 5-1. New Project in MPLAB X IDE v6.20

3. In the New Project window, in the left Navigation bar, under Steps click Choose Project.
4. In the Choose Project property page:

a. For categories, select Microchip Embedded.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 11

b. For projects, select Application Project(s).

Figure 5-2. Choose Project

5. Click Next.
6. In the left Navigation bar, click Select Device.
7. In the Select Device property page, in the Device box, type or select the device

ATSAMD21G17D for the SAM D21 Curiosity Nano Evaluation Kit.
Note: For the SAM E70 Xplained Ultra Evaluation Kit, select the device ATSAME70Q21B.

Figure 5-3. Device Selection

8. Click Next.
9. In the left Navigation bar, click Select Compiler.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 12

10. In the Select Compiler property page, under Compiler Toolchains, click and expand XC32 list of
options, and then select XC32 (v4.45).

Figure 5-4. XC32 Compiler Selection

11. Click Next.
12. In the left Navigation bar, click Select Project Name and Folder.
13. In the Select Project Name and Folder property page, enter the Project Name and Project

Location.

Figure 5-5. Project Name and Folder Settings

14. Click Finish. Then, MPLAB Code Configurator Window will be displayed. It comprises of Project
Resources, Device Resources, Project Graph, and Configuration options.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 13

Figure 5-6. MPLAB Code Configurator Window

Note: The procedural steps mentioned in the section Creating the Project can be used to create a
project on the SAM E70 Xplained Ultra Evaluation Kit with the changes mentioned in Step 6.

5.2 Basic Configuration

5.2.1 SAM D21 Curiosity Nano Evaluation Kit
Two SAM D21 Curiosity Nano Evaluation Kits are connected to each other by the SERCOM USART
lines (TxD, RxD) and it is connected to the PC terminal through the EDBG port.

Note: Click here to access the source code for this application configuration. Alternatively, it is also
available in the GitHub reference_apps repository.

Figure 5-7. Block Diagram (SAM D21 Curiosity Nano Evaluation Kit)

https://github.com/Microchip-MPLAB-Harmony/reference_apps/releases/latest/download/sam_d21_cnano_usart_basic.zip
https://github.com/Microchip-MPLAB-Harmony/reference_apps


 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 14

To add and configure MPLAB Harmony components using MCC, follow these steps:

1. To create the project, refer to Creating the Project.
2. In the MCC window, click Project Graph.
3. Under Device Resources, click and expand the list of options Harmony > Peripherals > SERCOM.

Figure 5-8. Device Resources

4. Click SERCOM1 and SERCOM5.
5. Observe that the SERCOM1 and SERCOM5 Peripheral Library blocks are added in the Project

Graph window.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 15

Figure 5-9. SERCOM1 and SERCOM5 Added in the Project Graph Window

6. From the Plugins drop-down list, select Pin Configuration and then click Pin Settings (see
Figure 5-12).

Figure 5-10. Select the Plugin

7. From the Order drop-down list, select Ports to build configurations according to the application
as shown below.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 16

Figure 5-11. Pin Settings

8. Configure the following pins PA16, PA17, PA18, PA19, PA22, and PB22 as SERCOM1_PAD0,
SERCOM1_PAD1, SERCOM1_PAD2, SERCOM1_PAD3, SERCOM5_PAD0, and SERCOM5_PAD2,
respectively.

Figure 5-12. Pin Configuration



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 17

9. In the Project Graph window, in the left Navigation bar, select SERCOM5 Peripheral Library
and in the right Configuration Options property page, configure it as showin below to print the
data on the Serial Console at 9600 baud rate.

Figure 5-13. Altering the PAD and Baud Rate in SERCOM5

10. Select SERCOM1 Peripheral Library and in the right Configuration Options property page,
configure it as shown below to print the data on the Serial Console at 9600 baud rate.

Figure 5-14. Altering the PAD and Baud Rate in SERCOM1

11. After configuring the peripherals, as shown in the following figure, click Generate under Project
Resources.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 18

Figure 5-15. Generation of Code

Note: SERCOM5 is connected to EDBG USART lines through which the SAM D21 Curiosity Nano
Evaluation Kit will communicate with the PC terminal application.

12. The main.c file will be generated and the logic of the application can be implemented.

5.2.1.1 Application Logic
To develop and run the application, follow these steps:

1. Open the main.c file of the project located in the ource files folder. Add the following code
outside the main() function:
#define RX_BUFFER_SIZE 1

volatile bool SERCOM_1_readStatus = false;
volatile bool SERCOM_1_writeStatus = false;

volatile bool SERCOM_5_readStatus = false;
volatile bool SERCOM_5_writeStatus = false;

void SERCOM_1_WriteCallback(uintptr_t context)
{
    SERCOM_1_writeStatus = true;
}

void SERCOM_1_ReadCallback(uintptr_t context)
{
    SERCOM_1_readStatus = true;
}

void SERCOM_5_WriteCallback(uintptr_t context)
{
    SERCOM_5_writeStatus = true;
}

void SERCOM_5_ReadCallback(uintptr_t context)
{
    SERCOM_5_readStatus = true;
} 

2. In the following code example, the read callback and write callback are declared. These functions
set the pointer to a client function to be called when the given USART’s write or read event
occurs. These callbacks describe the pointer to the function to be called when the write or read
event has completed. By setting this to NULL, it can be disabled.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 19

Figure 5-16. Event Handlers

3. In Figure 5-17, SYS_Initialize (NULL) initializes the modules, such as ports, clock,
SERCOM USART, Nested Vector Interrupt Controller (NVIC), and Non-Volatile Memory Controller
(NVMCTRL). Also, the callback register functions for read and write operations are declared.

4. Inside the main() function, add the following code:
/* Initialize all modules */
    SYS_Initialize ( NULL );
    
    // Extension SERCOM Read and Write Callback 
    SERCOM1_USART_ReadCallbackRegister(SERCOM_1_ReadCallback, 0);
    SERCOM1_USART_WriteCallbackRegister(SERCOM_1_WriteCallback, 0);
    
    // EDBG SERCOM Read and Write Callback 
    SERCOM5_USART_ReadCallbackRegister(SERCOM_5_ReadCallback, 0);
    SERCOM5_USART_WriteCallbackRegister(SERCOM_5_WriteCallback, 0);
    
    uint8_t rxBuffer; 



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 20

Figure 5-17. Initialization of Modules

5. Start the implementation with a read request for SERCOM1 (for Extension) and SERCOM5 (for
EDBG).
// Read request for Extension 
    SERCOM1_USART_Read(&rxBuffer, RX_BUFFER_SIZE);
    
// Read request for EDBG
    SERCOM5_USART_Read(&rxBuffer, RX_BUFFER_SIZE); 

Figure 5-18. Read Requests

6. In Figure 5-19, if the Extension is ready to read (Rx) the data (i.e., SERCOM_1_readStatus ==
true), then it transmits the received data to EDBG. And, if the Extension is ready to write (Tx)
the data (i.e., SERCOM_1_writeStatus == true), then EDBG will start a read (Rx) request.
Similarly, vice versa if the EDBG is ready to read (Rx) or if the EDBG is ready to write (Tx). Add the
following code inside the while loop:
if(SERCOM_1_readStatus == true)
        {
            SERCOM_1_readStatus = false;  
            
            //Transmit received bytes from EDBG
            SERCOM5_USART_Write(&rxBuffer, RX_BUFFER_SIZE);
        } 
if(SERCOM_5_writeStatus == true)
        {
            SERCOM_5_writeStatus = false;
            SERCOM1_USART_Read(&rxBuffer, RX_BUFFER_SIZE);
        }
        
if(SERCOM_5_readStatus == true)
        {
            SERCOM_5_readStatus = false; 
            
            //Transmit received bytes from Extension
            SERCOM1_USART_Write(&rxBuffer, RX_BUFFER_SIZE);
        }
        
if(SERCOM_1_writeStatus == true)
        {
            SERCOM_1_writeStatus = false;



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 21

            SERCOM5_USART_Read(&rxBuffer, RX_BUFFER_SIZE);
        } 

Figure 5-19. Implementing the Basic Configuration

Figure 5-20. Host Side



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 22

Figure 5-21. Client Side

5.2.2 SAM E70 Xplained Ultra Evaluation Kit
Two SAM E70 Xplained Ultra Evaluation Kits are interconnected by SERCOM USART lines (TxD,
RxD) through the EXT1 connector, and connected to the PC terminal through the EDBG port. The
following figure illustrates the block diagram.

Note: Click here to access the source code for this application configuration. Alternatively, it is also
available in the GitHub reference_apps repository.

Figure 5-22. Block Diagram - SAM E70 Xplained Ultra Evaluation Kit

To add and configure the MPLAB Harmony components using the MCC, follow these steps:

https://github.com/Microchip-MPLAB-Harmony/reference_apps/releases/latest/download/sam_e70_xult_usart_basic.zip
https://github.com/Microchip-MPLAB-Harmony/reference_apps


 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 23

1. To create the project, see Creating the Project.
2. In the MCC window, click Project Graph.
3. Under Device Resources, click and expand the list of options Harmony > Peripherals > USART.

Figure 5-23. Device Resources

4. Click USART0 and USART1.
5. Observe that the USART0 and USART1 Peripheral Library blocks are added in the Project Graph

window.

Figure 5-24. Addition of USART0 and USART1 Modules

6. From the Plugins drop-down list, select Pin Configuration, and then click Pin Settings (see
Figure 5-26).



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 24

Figure 5-25. Select the Plugin

7. From the Order drop-down list, select Ports. Build configurations according to the application as
shown below.
Configure the following pins PA21, PB0, PB1, and PB4 as USART1_RXD1, USART0_RXD0,
USART0_TXD0, and USART1_TXD1, respectively.

Figure 5-26. Pin Configuration

8. In the Project Graph window, in the left Navigation bar, select USART0 Peripheral Library and
in the right Configuration Options property page, configure it as shown below to print the data
on the Serial Console at 9600 baud rate.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 25

Figure 5-27. Altering the Baud Rate for USART0

9. Select USART1 Peripheral Library and in the right Configuration Options property page,
configure it as follows to print the data on the Serial Console at 9600 baud rate.

Figure 5-28. Altering the Baud Rate for USART1

10. After configuring the peripherals, as shown in the following figure, click Generate under Project
Resources.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 26

Figure 5-29. Generation of Code

Note: USART1 is connected to EDBG USART lines through which the SAM E70 Xplained Ultra
Evaluation Kit will communicate to the PC terminal application.

11. The main.c file will be generated and the logic of the application can be implemented.

5.2.2.1 Application Logic
To develop and run the application, follow these steps:

1. Open the main.c file of the project located in the source files folder. Add the following code
outside the main() function:
#define RX_BUFFER_SIZE 1
bool USART1_writeStatus = false;
bool USART1_readStatus = false;

bool USART0_writeStatus = false;
bool USART0_readStatus = false;

void USART1_WriteEventHandler ( uintptr_t context )
{
    USART1_writeStatus = true;
}

void USART0_WriteEventHandler ( uintptr_t context )
{
    USART0_writeStatus = true;
}

void USART1_ReadEventHandler (uintptr_t context)
{
    USART1_readStatus = true;
}

void USART0_ReadEventHandler (uintptr_t context)
{
    USART0_readStatus = true;
} 

2. In the following figure, the read and write event handlers are declared same as the callback
registers seen in the SAM D21 Curiosity Nano Evaluation Kit.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 27

Figure 5-30. Event Handlers

3. Add the following code inside the main() function:
/* Initialize all modules */
    SYS_Initialize ( NULL );
    
    // EDBG SERCOM Read and Write Callback
    USART1_WriteCallbackRegister(USART1_WriteEventHandler, (uintptr_t)NULL);
    USART1_ReadCallbackRegister(USART1_ReadEventHandler, (uintptr_t)NULL);
    
    // Extension SERCOM Read and Write Callback
    USART0_WriteCallbackRegister(USART0_WriteEventHandler, (uintptr_t)NULL);
    USART0_ReadCallbackRegister(USART0_ReadEventHandler, (uintptr_t)NULL);
    
    uint8_t rxBuffer; 

4. In the following code examples, SYS_Initialize (NULL) initializes the modules like clock,
Nested Vector Interrupt Controller (NVIC), Embedded Flash Controller (EFC), Parallel In/Out
Controller (PIO), and USART. Also, the callback register functions for read and write operations
are declared.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 28

Figure 5-31. Initialization of Modules

5. Add the following code after the initialization of modules:
// Read request for EDBG
    USART1_Read(&rxBuffer, RX_BUFFER_SIZE);
    
// Read request for Extension
    USART0_Read(&rxBuffer, RX_BUFFER_SIZE); 

6. Start the implementation with a read request for USART0 (for Extension) and USART1 (for EDBG).

Figure 5-32. Read Requests

7. Add the following code inside the while loop:
if(USART0_readStatus == true)
        {
            USART0_readStatus = false;
            
            //Transmit received bytes from EDBG
            USART1_Write(&rxBuffer, RX_BUFFER_SIZE);
        }
        
        if(USART1_writeStatus == true)
        {
            USART1_writeStatus = false;
            USART0_Read(&rxBuffer, RX_BUFFER_SIZE);
        }
        
        if(USART1_readStatus == true)
        {
            USART1_readStatus = false;
            //Transmit received bytes from Extension
            USART0_Write(&rxBuffer, RX_BUFFER_SIZE);
        }
        if(USART0_writeStatus == true)
        {
            USART0_writeStatus = false;
            USART1_Read(&rxBuffer, RX_BUFFER_SIZE);
        } 

8. In the following figure, if the Extension is ready to read (Rx) the data (i.e., USART0_readStatus
== true), then it transmits the received data to EDBG, and if the Extension is ready to write
(Tx) the data (i.e., USART1_writeStatus == true), then EDBG will start a read (Rx) request.
Similarly, vice versa if the EDBG is ready to read (Rx) or if the EDBG is ready to write (Tx).



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 29

Figure 5-33. Implementation of Basic Configuration

Figure 5-34. Host Side



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 30

Figure 5-35. Client Side

5.3 Fractional Baud Configuration
This section is similar to the Basic configuration except for the baud rate configuration between the
two SAM D21 Curiosity Nano Evaluation Kits and two SAM E70 Xplained Ultra Evaluation Kits.

The Communication baud rate between the PC terminal and a board (the SAM D21 Curiosity Nano
Evaluation Kit or the SAM E70 Xplained Ultra Evaluation Kit) will be arithmetic baud rate. In contrast,
the communication between the two boards (the SAM D21 Curiosity Nano Evaluation Kit or the SAM
E70 Xplained Ultra Evaluation Kit) is fractional baud rate.

5.3.1 SAM D21 Curiosity Nano Evaluation Kit
Two SAM D21 Curiosity Nano Evaluation Kit are connected to each other by SERCOM USART lines
(TxD and RxD), and connected to the PC terminal through EDBG port.

Note: Click here to access the source code for this application configuration. Alternatively, it is also
available in the GitHub reference_apps repository.

https://github.com/Microchip-MPLAB-Harmony/reference_apps/releases/latest/download/sam_d21_cnano_usart_fractional_baud.zip
https://github.com/Microchip-MPLAB-Harmony/reference_apps


 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 31

Figure 5-36. Block Diagram (SAM D21 Curiosity Nano Evaluation Kit)

The fractional baud equation must be used to calculate the baud value:

fbaud = fref /S(BAUD+(FP/8))

Where,

fbaud – fractional baud frequency

fref – SERCOM generic clock frequency

S – Number of samples per bit

BAUD – BAUD value

FP – fractional part of baud value

From the Fractional baud equation,

BAUD + FP/8 = fref / (fbaud x S)

= 8000000 / (11000 x 16)

= 45.454

Here the integer part corresponds to the BAUD value and the decimal part corresponds to the
fractional part.

BAUD = 45,

FP/8 = .454

FP = 3.6, which is 3

5.3.1.1 Application Logic
In this section, only fractional baud rate part will be explained, whereas the remaining explanation
is covered in the Basic Configuration section. The fractional baud rate of 11000 bps is used in the
application. The macro FRAC_BAUD_RATE contains the fractional baud value. Adhere to the steps
outlined for the basic configuration of the SAM D21 Curiosity Nano Evaluation Kit.

1. To add and configure MPLAB Harmony components using the MCC, see SAM D21 Curiosity Nano
Evaluation Kit.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 32

2. Add the following macros:
#define RX_BUFFER_SIZE 1
#define FRAC_BAUD_RATE 11000
#define USART_SAMPLE_NUM 16 

Figure 5-37. Defining the Macro for Fractional Baud Rate

3. Add the following variables:
uint16_t baud;
uint8_t fp; 

4. Add event handlers, see Step 1 in the Application Logic section.
5. Add the following code outside the main() function:

// Function to calculate the fractional baud value
void calculate_fractional_baud_value(const uint32_t baudrate, const uint32_t 
peripheral_clock, uint8_t sample_num)
{
    uint32_t mul_ratio;
    mul_ratio = (uint64_t)((uint64_t)peripheral_clock * (uint64_t)1000) / (uint64_t)
(baudrate * sample_num);
    baud = mul_ratio / 1000;
    fp = ((mul_ratio - (baud * 1000)) * 8) / 1000;
}

// USART initialization with fractional baud rate settings
void ext_usart_init(void)
{
    calculate_fractional_baud_value(FRAC_BAUD_RATE, SERCOM1_USART_FrequencyGet(), 
USART_SAMPLE_NUM);
    
    SERCOM1_USART_Disable();
    SERCOM1_REGS->USART_INT.SERCOM_CTRLA |= SERCOM_USART_INT_CTRLA_SAMPR(1UL);
    SERCOM1_REGS->USART_INT.SERCOM_BAUD = SERCOM_USART_INT_BAUD_FRAC_BAUD(baud) | 
SERCOM_USART_INT_BAUD_FRAC_FP(fp);
    SERCOM1_USART_Enable();
} 

6. In the following code examples, the value of the fractional baud rate is calculated using the
function, calculate_fractional_baud_value () . In the ext_usart_init () function,
SERCOM1 is disabled, enabled, and also sets the CTRLA and BAUD registers. The value of the
fractional baud rate is calculated using the function, calculate_fractional_baud_value
() . In the ext_usart_init () function, SERCOM1 is disabled, enabled, and also sets the
CTRLA and BAUD registers.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 33

Figure 5-38. Implementation of Fraction Baud Rate Configuration

7. Add the remaining code as shown in the Step 4 of the Application Logic section.

Figure 5-39. Host Side

Figure 5-40. Client Side



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 34

5.3.2 SAM E70 Xplained Ultra Evaluation Kit
In this section, only fractional baud rate part will be explained whereas the remaining are the same
as the Basic configuration section. Fractional baud rate of 11000 bps is used in the application. The
macro FRAC_BAUD_RATE contains the fractional baud value. Adhere to the steps outlined for the
basic configuration of the SAM E70 Xplained Ultra Evaluation Kit. The following figure illustrates the
block diagram.

Note: Click here to access the source code for this application configuration. Alternatively, it is also
available in the GitHub reference_apps repository.

Figure 5-41. Block Diagram (SAM E70 Xplained Ultra Evaluation Kit)

5.3.2.1 Application Logic
1. To add and configure MPLAB Harmony components using the MCC, see SAM E70 Xplained Ultra

Evaluation Kit.
2. Add the following macros:

#define RX_BUFFER_SIZE 1
#define FRAC_BAUD_RATE 11000
#define USART_SAMPLE_NUM 16 

Figure 5-42. Defining the Macro for Fractional Baud Rate

3. Add the following variables:
uint16_t cd;
uint8_t fp;  

https://github.com/Microchip-MPLAB-Harmony/reference_apps/releases/latest/download/sam_e70_xult_usart_fractional_baud.zip
https://github.com/Microchip-MPLAB-Harmony/reference_apps


 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 35

4. Add event handlers, see Step 1 in the Application Logic.
5. Add the following code outside the main() function:

void calculate_fractional_baud_value(const uint32_t baudrate, const uint32_t 
peripheral_clock,uint8_t sample_num)
{
    uint32_t mul_ratio;
    mul_ratio = (uint64_t)((uint64_t)peripheral_clock*(uint64_t)1000)/(uint64_t)
(baudrate*sample_num);
    cd = mul_ratio/1000;
    fp = ((mul_ratio - (cd*1000))*8)/1000;
}

void ext_usart_init(void)
{
    calculate_fractional_baud_value(FRAC_BAUD_RATE,USART0_FrequencyGet(),USART_SAMPLE_NUM);
    
    USART0_REGS->US_CR = (US_CR_USART_RXDIS_Msk & US_CR_USART_TXDIS_Msk);
    
    USART0_REGS->US_BRGR = US_BRGR_CD(cd) | US_BRGR_CD(fp);
    
    USART0_REGS->US_CR = (US_CR_USART_TXEN_Msk | US_CR_USART_RXEN_Msk);
} 

6. In the following code examples, value of the fractional baud rate is calculated in the
calculate_fractional_baud_value () function. In order to implement the fractional baud
rate configuration, the register (US_CR, US_BRGR) operations are done in the ext_usart_init
() function.

Figure 5-43. Implementation of Fraction Baud Rate Configuration

7. Add the remaining code, see Step 4 in the Application Logic.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 36

Figure 5-44. Host Side

Figure 5-45. Client Side

5.4 Hardware Handshaking Configuration
The USART features an out-of-band hardware handshaking flow control mechanism, implemented
by connecting the RTS and CTS lines with the remote device. This method ensures reliable data
transmission and reception between devices. It typically involves the use of additional control lines,
such as RTS (Request to Send) and CTS (Clear to Send), to manage the data flow. When one device
is ready to send data, it asserts the RTS line, and the receiving device responds by asserting the CTS
line if it is ready to receive data.

5.4.1 SAM D21 Curiosity Nano Evaluation Kit
Two SAM D21 Curiosity Nano Evaluation Kit are connected to each other by SERCOM USART lines
(TxD, RxD, RTS, and CTS), and connected to the PC terminal through EDBG port.

Note: Click here to access the source code for this application configuration. Alternatively, it is also
available in the GitHub reference_apps repository.

https://github.com/Microchip-MPLAB-Harmony/reference_apps/releases/latest/download/sam_d21_cnano_usart_hardware_handshaking.zip
https://github.com/Microchip-MPLAB-Harmony/reference_apps


 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 37

Figure 5-46. Block Diagram (SAM D21 Curiosity Nano Evaluation Kit)

In this application, only extension SERCOM1 will be used. In this demonstration the defined data
0xAA will be sent by both the SAM D21 Curiosity Nano boards with handshaking protocol.

This section is similar to the Basic Configuration, but with additional configuration of the hardware
flow control signal lines and some modifications in the code execution. This section will only address
the changes.

Users need to follow these steps outlined for the basic configuration of the SAM D21 Curiosity Nano
Evaluation Kit.

1. To add and configure MPLAB Harmony components using the MCC, see SAM D21 Curiosity Nano
Evaluation Kit.

2. Click and expand SERCOM1 and then configure the SERCOM1 Peripheral Library block as shown
below:

Figure 5-47. SERCOM1 Configuration

3. Configure the pin configuration as shown below:



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 38

Figure 5-48. Pin Configuration

4. In the MCC Configuration Options, click and expand System, and then select Enable SysTick.

Figure 5-49. Enable the Systick Timer

5. After configuring the peripherals, click Generate under Project Resources as shown in Step 9 of
the SAM D21 Curiosity Nano Evaluation Kit section.

5.4.1.1 Application Logic
To develop and run the application, follow these steps:

1. Open the main.c file of the project located in the source files folder. Add the following code
outside the main() function:
#define RX_BUFFER_SIZE 1  
#define TX_BUFFER_SIZE 1

uint8_t rxBuffer;
uint8_t txBuffer = 0xAA;

volatile bool readStatus_SERCOM_1= false;
volatile bool writeStatus_SERCOM_1 = false;

volatile bool readStatus_SERCOM_5 = false;
volatile bool writeStatus_SERCOM_5 = false;

void APP_SERCOM_1_WriteCallback(uintptr_t context)
{
SERCOM1_USART_Write(&txBuffer, TX_BUFFER_SIZE);
}

void APP_SERCOM_1_ReadCallback(uintptr_t context)
{
readStatus_SERCOM_1 = true;
}

2. In the following figure, the read callback and write callback is declared. These functions set the
pointer to a client function to be called when the given USART’s write or read event occurs. Once
the read is completed, the write callback is called and the write function inside this callback
writes the data in the console. These callbacks describe the pointer to the function to be called
when the write or read event has completed. By setting this to NULL, it will be disabled.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 39

Figure 5-50. Event Handlers

3. Inside the main() function, add the following code:
SYSTICK_TimerStart();

 // Extension SERCOM Read and Write Callback
 SERCOM1_USART_WriteCallbackRegister(APP_SERCOM_1_WriteCallback, 0);
 SERCOM1_USART_ReadCallbackRegister(APP_SERCOM_1_ReadCallback, 0);
    
 // Read request for Extension
 SERCOM1_USART_Write(&txBuffer, TX_BUFFER_SIZE);
 SERCOM1_USART_Read(&rxBuffer, RX_BUFFER_SIZE);

4. In the following figure, SYS_Initialize (NULL)initializes the modules, such as ports, clock,
SERCOM USART, Nested Vector Interrupt Controller (NVIC), and Non-Volatile Memory Controller
(NVMCTRL). The callback register functions for read and write operations are declared. Also, the
SYSTICK times and the read and write request for SERCOM1 (for extension) is implemented.

Figure 5-51. Initialization of Modules



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 40

5. Add the following code inside the while loop:
SYSTICK_DelayMs(1U);
        
if(readStatus_SERCOM_1 == true)
{
readStatus_SERCOM_1 = false;
SERCOM1_USART_Read(&rxBuffer, RX_BUFFER_SIZE);
}

6. In the following code example, to visualize the hardware flow control using the RTS and CTS
lines, a delay of one millisecond is introduced in the code.

Figure 5-52. Implementation of Hardware Handshaking Configuration

Figure 5-53. SAM D21 Curiosity Nano – Hardware Handshaking Output

5.4.2 SAM E70 Xplained Ultra Evaluation Kit
Two SAM E70 Xplained Ultra Evaluation Kits are connected to each other by SERCOM USART lines
(TxD, RxD, RTS, and CTS) through EXT1 connector and connected to the PC terminal through EDBG
port.

Notes: Click here to access the source code for this application configuration. Alternatively, it is also
available in the GitHub reference_apps repository.

https://github.com/Microchip-MPLAB-Harmony/reference_apps/releases/latest/download/sam_e70_xult_usart_hardware_handshaking.zip
https://github.com/Microchip-MPLAB-Harmony/reference_apps


 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 41

Figure 5-54. Block Diagram (SAM E70 Xplained Ultra Evaluation Kit)

In this section, only hardware handshaking part will be explained whereas the remaining are
covered in the Basic configuration section. Here, RTS and CTS lines are controlled manually, whereas
in SAM D21 it is not. Adhere to the steps outlined for the basic configuration of the SAM E70
Xplained Ultra Evaluation Kit.

1. To add and configure MPLAB Harmony components using the MCC, see SAM E70 Xplained Ultra
Evaluation Kit.

2. In Pin Configuration, configure the PB2 and PB3 pins for RTS and CTS.

Figure 5-55. Pin Configuration

3. In MCC Configuration Options, click and expand System > Contex-M7 Configuration > SysTick.
4. Select Enable SysTick.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 42

Figure 5-56. Enable the Systick Timer

5. Click Generate in Project Resources as shown in Step 9 of the SAM E70 Xplained Ultra Evaluation
Kit section.

5.4.2.1 Application Logic
1. Add the following macros and variables outside the main() function:

#define RX_BUFFER_SIZE 1
#define TX_BUFFER_SIZE 1

volatile bool USART1_writeStatus = false;
volatile bool USART1_readStatus = false;

volatile bool USART0_writeStatus = false;
volatile bool USART0_readStatus = false;

uint8_t rxBuffer;
uint8_t txBuffer = 0xAA;

Figure 5-57. Adding the Macros and Variables



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 43

2. Add the RTS_ENABLE and RTS_DISABLE functions outside the main() function to manually
control the RTS lines:
void RTS_ENABLE(void)
{
    USART0_REGS->US_CR = US_CR_USART_RTSEN_Msk;
}
void RTS_DISABLE(void)
{
    USART0_REGS->US_CR = US_CR_USART_RTSDIS_Msk;
}

Figure 5-58. Adding the RTS Functions

3. Add event handlers and enable the hardware handshaking mode outside the main() function:
void USART0_WriteEventHandler ( uintptr_t context )
{
    USART0_writeStatus = true;
}

void USART0_ReadEventHandler (uintptr_t context)
{
    RTS_ENABLE();
    USART0_readStatus = true;
}

void ext_usart_init()
{
    USART0_REGS->US_MR |= US_MR_USART_MODE_HW_HANDSHAKING;
}

Figure 5-59. Adding Event Handlers



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 44

4. Call the necessary functions and callback registers inside the main() function:
SYSTICK_TimerStart();
ext_usart_init();
    
USART0_WriteCallbackRegister(USART0_WriteEventHandler, (uintptr_t)NULL);
USART0_ReadCallbackRegister(USART0_ReadEventHandler, (uintptr_t)NULL);
    
RTS_DISABLE();
USART0_Read(&rxBuffer, RX_BUFFER_SIZE);
    
USART0_Write(&txBuffer, TX_BUFFER_SIZE);

Figure 5-60. Initialization of Modules

5. Add the hardware handshaking configuration logic inside the while loop in the main() function:
SYSTICK_DelayUs(500U);
if(USART0_writeStatus == true)
{
USART0_writeStatus = false;

//Transmit received bytes from EDBG
USART0_Write(&txBuffer, TX_BUFFER_SIZE);
}
        
if(USART0_readStatus == true)
{
USART0_readStatus = false;
            
//Receive transmitted bytes from EDBG
RTS_DISABLE();
USART0_Read(&rxBuffer, RX_BUFFER_SIZE);
}



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 45

Figure 5-61. Adding the Application Logic

Figure 5-62. SAM E70 Xplained Ultra – Hardware Handshaking Output

5.5 SOF Detection and Wakeup Configuration
The USART start-of-frame (SOF) detector can wake up the CPU from Standby Sleep mode when it
detects a Start bit. In Standby Sleep mode, the internal fast start-up oscillator must be selected as
the GCLK_SERCOMx_CORE source. The application enters the Standby Sleep mode, and the PC key
press character will wake up the device from the Sleep mode and displays the character on the
terminal.

Note: Click here to access the source code for this application configuration. Alternatively, it is also
available in the GitHub reference_apps repository.

https://github.com/Microchip-MPLAB-Harmony/reference_apps/releases/latest/download/sam_d21_cnano_usart_sof_wakeup.zip
https://github.com/Microchip-MPLAB-Harmony/reference_apps


 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 46

Figure 5-63. Block diagram (SAM D21 Curiosity Nano Evaluation Kit)

This application uses only one SAM D21 Curiosity Nano Evaluation Kit connected to the PC terminal
through EDBG. In this section, only SOF detection and wakeup configuration part will be explained
whereas the remaining availabe in the Basic Configuration section.

To add and configure MPLAB Harmony components using the MCC, follow these steps:

1. To create the project, see SAM D21 Curiosity Nano Evaluation Kit.
2. Click and expand SERCOM5 and then select Enable Run in Standby, and then click Generate.

Figure 5-64. Configuration Options



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 47

3. Add the following code outside the main() function:
#define RX_BUFFER_SIZE 1 
volatile bool rx_done = false;
uint8_t edbg_rx_data;
volatile bool tx_done = false;

void APP_SERCOM_5_WriteCallback(uintptr_t context)
{
   tx_done = true;
}

void APP_SERCOM_5_ReadCallback(uintptr_t context)
{
    if((SERCOM5_REGS->USART_INT.SERCOM_INTFLAG & SERCOM_USART_INT_INTFLAG_RXS_Msk) == 
SERCOM_USART_INT_INTFLAG_RXS_Msk)
    {
        SERCOM5_REGS->USART_INT.SERCOM_INTFLAG |= 
(uint8_t)SERCOM_USART_INT_INTFLAG_RXS_Msk;
        
    }  
    
    rx_done = true;
} 
void usart_send_string(const char *str)
{
    SERCOM5_USART_Write((void *)&str[0], strlen(str));
} 

4. In the following code example, the tx_done becomes true once the write function (which is
happening in APP_SERCOM_5_Writecallback () is completed and rx_done becomes true
once read function (APP_SERCOM_5_Raedcallback ()is completed. Also, set the RXS flag if the
value of RXS_Msk and SERCOM_INTFLAG equals RXS_Msk. The function usart_send_string()
is used to send strings to the console.

Figure 5-65. Implementation of SOF Detection and Wakeup Configuration - Example 1

5. Add the following code inside the main() function:
/* Initialize all modules */
    SYS_Initialize ( NULL );
    SERCOM5_REGS->USART_INT.SERCOM_INTENSET =  (uint8_t)SERCOM_USART_INT_INTENSET_RXS_Msk;
    
    // EDBG SERCOM Read and Write Callback
    SERCOM5_USART_ReadCallbackRegister(APP_SERCOM_5_ReadCallback, 0);
    SERCOM5_USART_WriteCallbackRegister(APP_SERCOM_5_WriteCallback, 0);
    
    // Read request for EDBG
    SERCOM5_USART_Read(&edbg_rx_data, RX_BUFFER_SIZE); 



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 48

6. In the following figure, set the particular RXS interrupt, and the callback registers are called as
seen in the basic configuration. Also, a read request is also given.

Figure 5-66. Implementation of SOF Detection and Wakeup Configuration - Example 2

Note: In SOF detection and wakeup configuration only SERCOM5 (EDBG) is used.
7. Add the following code inside the while loop:

if (!rx_done)
        {
            tx_done = false;
            usart_send_string("\r\n Device entered into standby sleep mode");
            while(!(SERCOM5_REGS->USART_INT.SERCOM_INTFLAG & 
SERCOM_USART_INT_INTFLAG_TXC_Msk));
            
            // Enters standby sleep mode.
            PM_StandbyModeEnter();
        }
        while(!rx_done);
        
        tx_done = false;
        usart_send_string("\r\n Character received after wakeup :");
        while(!tx_done);
        
        tx_done = false;
        SERCOM5_USART_Write(&edbg_rx_data, RX_BUFFER_SIZE);
        while(!tx_done);
        
        rx_done = false;
        SERCOM5_USART_Read(&edbg_rx_data, RX_BUFFER_SIZE);
        SYS_Tasks ( );
    } 

8. In the following figure, when a character is entered, it wakes up from Sleep mode and print the
character that is entered. Until the TXC is false (i.e., until the transmission is complete) it loops
in the while loop itself. When it becomes true (i.e., once the transmission is complete) it enters
Standby Sleep mode.



 AN5807
Application Demonstration

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 49

Figure 5-67. Implementation of SOF Detection and Wakeup Configuration - Example 3

Figure 5-68. SERCOM USART – SOF Detection and Wake-up Configuration Output

Note: The SOF detection and wakeup configuration is not available in the SAM E70/S70/V7x
family of devices.



 AN5807
References

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 50

6. References
The following documents are used as reference:

• Getting started with MPLAB Harmony v3 Peripheral Libraries on SAM D21 MCUs
• Getting started with MPLAB Harmony v3 Drivers on SAM D21 MCUs Using FreeRTOS
• Getting started with MPLAB Harmony v3 Peripheral Libraries on SAM E70/S70/V70/V71 MCUs
• Getting started with MPLAB Harmony v3 Drivers on SAM E70/S70/V70/V71 MCUs Using FreeRTOS
• SAM D21 Curiosity Nano Evaluation Kit
• SAM E70 Xplained Ultra Evaluation Kit
• SAM D21/DA1 Family Data Sheet (DS40001882)
• SAM D21 Curiosity Nano User Guide (DS70005409)
• SAM E70/S70/V70/V71 Family Data Sheet (DS60001527)
• SAM E70 Xplained Ultra User Guide (DS70005389)
• For additional information about 32-bit Microcontroller Collaterals and Solutions, refer to: 32-bit

Microcontroller Collateral and Solutions Reference Guide (DS70005534)
• For additional information on MPLAB® Harmony v3, refer to the Microchip

web site: www.microchip.com/en-us/tools-resources/configure/mplab-harmony and https://
developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/

• For more information on various applications, refer to: github.com/Microchip-MPLAB-Harmony/
reference_apps

• For additional information, visit the Microchip website or contact a local Microchip Sales
Representative

https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/samd21-getting-started-training-module/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/samd21-getting-started-tm-drivers-freertos/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/same70-getting-started-training-module/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/same70-getting-started-tm-drivers-freertos/
https://www.microchip.com/en-us/development-tool/dm320119
https://www.microchip.com/en-us/development-tool/dm320113
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/ReferenceManuals/32-bit-Microcontroller-Collateral-and-Solutions-Reference-Guide-DS70005534.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/ReferenceManuals/32-bit-Microcontroller-Collateral-and-Solutions-Reference-Guide-DS70005534.pdf
https://www.microchip.com/en-us/tools-resources/configure/mplab-harmony
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/
https://github.com/Microchip-MPLAB-Harmony/reference_apps
https://github.com/Microchip-MPLAB-Harmony/reference_apps
https://www.microchip.com/


 AN5807
Revision History

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 51

7. Revision History
7.1 Revision A - February 2025

This is the initial release of this document.



 AN5807

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 52

Microchip Information
Trademarks
The “Microchip” name and logo, the “M” logo, and other names, logos, and brands are registered
and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or
subsidiaries in the United States and/or other countries (“Microchip Trademarks”). Information
regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-
information/microchip-trademarks.

ISBN: 979-8-3371-0711-0

Legal Notice
This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information
in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP’S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR
ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within

operating specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the

code protection features of Microchip products are strictly prohibited and may violate the Digital
Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services


 AN5807

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005807A - 53

Product Page Links
ATSAMD21E15, ATSAMD21E15L, ATSAMD21E16, ATSAMD21E16L, ATSAMD21E17, ATSAMD21E17L,
ATSAMD21E18, ATSAMD21G15, ATSAMD21G16, ATSAMD21G16L, ATSAMD21G17, ATSAMD21G17L,
ATSAMD21G18, ATSAMD21J15, ATSAMD21J16, ATSAMD21J17, ATSAMD21J18, ATSAME70J19,
ATSAME70J20, ATSAME70J21, ATSAME70N19, ATSAME70N20, ATSAME70N21, ATSAME70Q19,
ATSAME70Q20, ATSAME70Q21, ATSAML10D14A, ATSAML10D15A, ATSAML10D16A,
ATSAML10E14A, ATSAML10E15A, ATSAML10E16A, ATSAML11D14A, ATSAML11D15A,
ATSAML11D16A, ATSAML11E14A, ATSAML11E15A, ATSAML11E16A, ATSAML21E15B,
ATSAML21E16B, ATSAML21E17B, ATSAML21E18B, ATSAML21G16B, ATSAML21G17B,
ATSAML21G18B, ATSAML21J16B, ATSAML21J17B, ATSAML21J18B, ATSAML22G16A, ATSAML22G17A,
ATSAML22G18A, ATSAML22J16A, ATSAML22J17A, ATSAML22J18A, ATSAML22N16A, ATSAML22N17A,
ATSAML22N18A, PIC32CK0512GC00064, PIC32CK0512GC00100, PIC32CK0512GC01064,
PIC32CK0512GC01100, PIC32CK0512SG00064, PIC32CK0512SG00100, PIC32CK0512SG01064,
PIC32CK0512SG01100, PIC32CK1025GC00064, PIC32CK1025GC00100, PIC32CK1025GC01064,
PIC32CK1025GC01100, PIC32CK1025GC01144, PIC32CK1025SG00064, PIC32CK1025SG00100,
PIC32CK1025SG01064, PIC32CK1025SG01100, PIC32CK1025SG01144, PIC32CK2051GC00064,
PIC32CK2051GC00100, PIC32CK2051GC00144, PIC32CK2051GC01064, PIC32CK2051GC01100,
PIC32CK2051GC01144, PIC32CK2051SG00064, PIC32CK2051SG00100, PIC32CK2051SG00144,
PIC32CK2051SG01064, PIC32CK2051SG01100, PIC32CK2051SG01144, PIC32CM1216MC00032,
PIC32CM1216MC00048, PIC32CM2532JH00032, PIC32CM2532JH00048, PIC32CM2532JH00064,
PIC32CM2532JH00100, PIC32CM2532JH01032, PIC32CM2532JH01048, PIC32CM2532JH01064,
PIC32CM2532JH01100, PIC32CM2532LE00048, PIC32CM2532LE00064, PIC32CM2532LE00100,
PIC32CM2532LS00048, PIC32CM2532LS00064, PIC32CM2532LS00100, PIC32CM2532LS60048,
PIC32CM2532LS60064, PIC32CM2532LS60100, PIC32CM5112GC00048, PIC32CM5112GC00064,
PIC32CM5112GC00100, PIC32CM5112SG00048, PIC32CM5112SG00064, PIC32CM5112SG00100,
PIC32CM5164JH00032, PIC32CM5164JH00048, PIC32CM5164JH00064, PIC32CM5164JH00100,
PIC32CM5164JH01032, PIC32CM5164JH01048, PIC32CM5164JH01064, PIC32CM5164JH01100,
PIC32CM5164LE00048, PIC32CM5164LE00064, PIC32CM5164LE00100, PIC32CM5164LS00048,
PIC32CM5164LS00064, PIC32CM5164LS00100, PIC32CM5164LS60048, PIC32CM5164LS60064,
PIC32CM5164LS60100, PIC32CM6408MC00032, PIC32CM6408MC00048, PIC32CX1025MTC,
PIC32CX1025MTG, PIC32CX1025MTSH, PIC32CX1025SG41128, PIC32CX1025SG60100,
PIC32CX1025SG60128, PIC32CX1025SG61100, PIC32CX1025SG61128, PIC32CX2051MTC,
PIC32CX2051MTG, PIC32CX2051MTSH, PIC32CX5109BZ31032, PIC32CX5109BZ31048,
PIC32CX5112MTC, PIC32CX5112MTG, PIC32CX5112MTSH, PIC32CX-BZ2, PIC32CX-BZ3, PIC32CX-
BZ6, PIC32CZ2051CA70064, PIC32CZ2051CA70100, PIC32CZ2051CA70144, PIC32CZ2051CA80100,
PIC32CZ2051CA80144, PIC32CZ2051CA80176, PIC32CZ2051CA80208, PIC32CZ2051CA90100,
PIC32CZ2051CA90144, PIC32CZ2051CA90176, PIC32CZ2051CA90208, PIC32CZ2051MC70064,
PIC32CZ2051MC70100, PIC32CZ2051MC70144, PIC32CZ4010CA80100, PIC32CZ4010CA80144,
PIC32CZ4010CA80176, PIC32CZ4010CA80208, PIC32CZ4010CA90100, PIC32CZ4010CA90144,
PIC32CZ4010CA90176, PIC32CZ8110CA80100, PIC32CZ8110CA80144, PIC32CZ8110CA80176,
PIC32CZ8110CA80208, PIC32CZ8110CA90100, PIC32CZ8110CA90144, PIC32CZ8110CA90176,
PIC32CZ8110CA90208

https://www.microchip.com/en-us/product/ATSAMD21E15
https://www.microchip.com/en-us/product/ATSAMD21E15L
https://www.microchip.com/en-us/product/ATSAMD21E16
https://www.microchip.com/en-us/product/ATSAMD21E16L
https://www.microchip.com/en-us/product/ATSAMD21E17
https://www.microchip.com/en-us/product/ATSAMD21E17L
https://www.microchip.com/en-us/product/ATSAMD21E18
https://www.microchip.com/en-us/product/ATSAMD21G15
https://www.microchip.com/en-us/product/ATSAMD21G16
https://www.microchip.com/en-us/product/ATSAMD21G16L
https://www.microchip.com/en-us/product/ATSAMD21G17
https://www.microchip.com/en-us/product/ATSAMD21G17L
https://www.microchip.com/en-us/product/ATSAMD21G18
https://www.microchip.com/en-us/product/ATSAMD21J15
https://www.microchip.com/en-us/product/ATSAMD21J16
https://www.microchip.com/en-us/product/ATSAMD21J17
https://www.microchip.com/en-us/product/ATSAMD21J18
https://www.microchip.com/en-us/product/ATSAME70J19
https://www.microchip.com/en-us/product/ATSAME70J20
https://www.microchip.com/en-us/product/ATSAME70J21
https://www.microchip.com/en-us/product/ATSAME70N19
https://www.microchip.com/en-us/product/ATSAME70N20
https://www.microchip.com/en-us/product/ATSAME70N21
https://www.microchip.com/en-us/product/ATSAME70Q19
https://www.microchip.com/en-us/product/ATSAME70Q20
https://www.microchip.com/en-us/product/ATSAME70Q21
https://www.microchip.com/en-us/product/ATSAML10D14A
https://www.microchip.com/en-us/product/ATSAML10D15A
https://www.microchip.com/en-us/product/ATSAML10D16A
https://www.microchip.com/en-us/product/ATSAML10E14A
https://www.microchip.com/en-us/product/ATSAML10E15A
https://www.microchip.com/en-us/product/ATSAML10E16A
https://www.microchip.com/en-us/product/ATSAML11D14A
https://www.microchip.com/en-us/product/ATSAML11D15A
https://www.microchip.com/en-us/product/ATSAML11D16A
https://www.microchip.com/en-us/product/ATSAML11E14A
https://www.microchip.com/en-us/product/ATSAML11E15A
https://www.microchip.com/en-us/product/ATSAML11E16A
https://www.microchip.com/en-us/product/ATSAML21E15B
https://www.microchip.com/en-us/product/ATSAML21E16B
https://www.microchip.com/en-us/product/ATSAML21E17B
https://www.microchip.com/en-us/product/ATSAML21E18B
https://www.microchip.com/en-us/product/ATSAML21G16B
https://www.microchip.com/en-us/product/ATSAML21G17B
https://www.microchip.com/en-us/product/ATSAML21G18B
https://www.microchip.com/en-us/product/ATSAML21J16B
https://www.microchip.com/en-us/product/ATSAML21J17B
https://www.microchip.com/en-us/product/ATSAML21J18B
https://www.microchip.com/en-us/product/ATSAML22G16A
https://www.microchip.com/en-us/product/ATSAML22G17A
https://www.microchip.com/en-us/product/ATSAML22G18A
https://www.microchip.com/en-us/product/ATSAML22J16A
https://www.microchip.com/en-us/product/ATSAML22J17A
https://www.microchip.com/en-us/product/ATSAML22J18A
https://www.microchip.com/en-us/product/ATSAML22N16A
https://www.microchip.com/en-us/product/ATSAML22N17A
https://www.microchip.com/en-us/product/ATSAML22N18A
https://www.microchip.com/en-us/product/PIC32CK0512GC00064
https://www.microchip.com/en-us/product/PIC32CK0512GC00100
https://www.microchip.com/en-us/product/PIC32CK0512GC01064
https://www.microchip.com/en-us/product/PIC32CK0512GC01100
https://www.microchip.com/en-us/product/PIC32CK0512SG00064
https://www.microchip.com/en-us/product/PIC32CK0512SG00100
https://www.microchip.com/en-us/product/PIC32CK0512SG01064
https://www.microchip.com/en-us/product/PIC32CK0512SG01100
https://www.microchip.com/en-us/product/PIC32CK1025GC00064
https://www.microchip.com/en-us/product/PIC32CK1025GC00100
https://www.microchip.com/en-us/product/PIC32CK1025GC01064
https://www.microchip.com/en-us/product/PIC32CK1025GC01100
https://www.microchip.com/en-us/product/PIC32CK1025GC01144
https://www.microchip.com/en-us/product/PIC32CK1025SG00064
https://www.microchip.com/en-us/product/PIC32CK1025SG00100
https://www.microchip.com/en-us/product/PIC32CK1025SG01064
https://www.microchip.com/en-us/product/PIC32CK1025SG01100
https://www.microchip.com/en-us/product/PIC32CK1025SG01144
https://www.microchip.com/en-us/product/PIC32CK2051GC00064
https://www.microchip.com/en-us/product/PIC32CK2051GC00100
https://www.microchip.com/en-us/product/PIC32CK2051GC00144
https://www.microchip.com/en-us/product/PIC32CK2051GC01064
https://www.microchip.com/en-us/product/PIC32CK2051GC01100
https://www.microchip.com/en-us/product/PIC32CK2051GC01144
https://www.microchip.com/en-us/product/PIC32CK2051SG00064
https://www.microchip.com/en-us/product/PIC32CK2051SG00100
https://www.microchip.com/en-us/product/PIC32CK2051SG00144
https://www.microchip.com/en-us/product/PIC32CK2051SG01064
https://www.microchip.com/en-us/product/PIC32CK2051SG01100
https://www.microchip.com/en-us/product/PIC32CK2051SG01144
https://www.microchip.com/en-us/product/PIC32CM1216MC00032
https://www.microchip.com/en-us/product/PIC32CM1216MC00048
https://www.microchip.com/en-us/product/PIC32CM2532JH00032
https://www.microchip.com/en-us/product/PIC32CM2532JH00048
https://www.microchip.com/en-us/product/PIC32CM2532JH00064
https://www.microchip.com/en-us/product/PIC32CM2532JH00100
https://www.microchip.com/en-us/product/PIC32CM2532JH01032
https://www.microchip.com/en-us/product/PIC32CM2532JH01048
https://www.microchip.com/en-us/product/PIC32CM2532JH01064
https://www.microchip.com/en-us/product/PIC32CM2532JH01100
https://www.microchip.com/en-us/product/PIC32CM2532LE00048
https://www.microchip.com/en-us/product/PIC32CM2532LE00064
https://www.microchip.com/en-us/product/PIC32CM2532LE00100
https://www.microchip.com/en-us/product/PIC32CM2532LS00048
https://www.microchip.com/en-us/product/PIC32CM2532LS00064
https://www.microchip.com/en-us/product/PIC32CM2532LS00100
https://www.microchip.com/en-us/product/PIC32CM2532LS60048
https://www.microchip.com/en-us/product/PIC32CM2532LS60064
https://www.microchip.com/en-us/product/PIC32CM2532LS60100
https://www.microchip.com/en-us/product/PIC32CM5112GC00048
https://www.microchip.com/en-us/product/PIC32CM5112GC00064
https://www.microchip.com/en-us/product/PIC32CM5112GC00100
https://www.microchip.com/en-us/product/PIC32CM5112SG00048
https://www.microchip.com/en-us/product/PIC32CM5112SG00064
https://www.microchip.com/en-us/product/PIC32CM5112SG00100
https://www.microchip.com/en-us/product/PIC32CM5164JH00032
https://www.microchip.com/en-us/product/PIC32CM5164JH00048
https://www.microchip.com/en-us/product/PIC32CM5164JH00064
https://www.microchip.com/en-us/product/PIC32CM5164JH00100
https://www.microchip.com/en-us/product/PIC32CM5164JH01032
https://www.microchip.com/en-us/product/PIC32CM5164JH01048
https://www.microchip.com/en-us/product/PIC32CM5164JH01064
https://www.microchip.com/en-us/product/PIC32CM5164JH01100
https://www.microchip.com/en-us/product/PIC32CM5164LE00048
https://www.microchip.com/en-us/product/PIC32CM5164LE00064
https://www.microchip.com/en-us/product/PIC32CM5164LE00100
https://www.microchip.com/en-us/product/PIC32CM5164LS00048
https://www.microchip.com/en-us/product/PIC32CM5164LS00064
https://www.microchip.com/en-us/product/PIC32CM5164LS00100
https://www.microchip.com/en-us/product/PIC32CM5164LS60048
https://www.microchip.com/en-us/product/PIC32CM5164LS60064
https://www.microchip.com/en-us/product/PIC32CM5164LS60100
https://www.microchip.com/en-us/product/PIC32CM6408MC00032
https://www.microchip.com/en-us/product/PIC32CM6408MC00048
https://www.microchip.com/en-us/product/PIC32CX1025MTC
https://www.microchip.com/en-us/product/PIC32CX1025MTG
https://www.microchip.com/en-us/product/PIC32CX1025MTSH
https://www.microchip.com/en-us/product/PIC32CX1025SG41128
https://www.microchip.com/en-us/product/PIC32CX1025SG60100
https://www.microchip.com/en-us/product/PIC32CX1025SG60128
https://www.microchip.com/en-us/product/PIC32CX1025SG61100
https://www.microchip.com/en-us/product/PIC32CX1025SG61128
https://www.microchip.com/en-us/product/PIC32CX2051MTC
https://www.microchip.com/en-us/product/PIC32CX2051MTG
https://www.microchip.com/en-us/product/PIC32CX2051MTSH
https://www.microchip.com/en-us/product/PIC32CX5109BZ31032
https://www.microchip.com/en-us/product/PIC32CX5109BZ31048
https://www.microchip.com/en-us/product/PIC32CX5112MTC
https://www.microchip.com/en-us/product/PIC32CX5112MTG
https://www.microchip.com/en-us/product/PIC32CX5112MTSH
https://www.microchip.com/en-us/product/PIC32CX-BZ2
https://www.microchip.com/en-us/product/PIC32CX-BZ3
https://www.microchip.com/en-us/product/PIC32CX-BZ6
https://www.microchip.com/en-us/product/PIC32CX-BZ6
https://www.microchip.com/en-us/product/PIC32CZ2051CA70064
https://www.microchip.com/en-us/product/PIC32CZ2051CA70100
https://www.microchip.com/en-us/product/PIC32CZ2051CA70144
https://www.microchip.com/en-us/product/PIC32CZ2051CA80100
https://www.microchip.com/en-us/product/PIC32CZ2051CA80144
https://www.microchip.com/en-us/product/PIC32CZ2051CA80176
https://www.microchip.com/en-us/product/PIC32CZ2051CA80208
https://www.microchip.com/en-us/product/PIC32CZ2051CA90100
https://www.microchip.com/en-us/product/PIC32CZ2051CA90144
https://www.microchip.com/en-us/product/PIC32CZ2051CA90176
https://www.microchip.com/en-us/product/PIC32CZ2051CA90208
https://www.microchip.com/en-us/product/PIC32CZ2051MC70064
https://www.microchip.com/en-us/product/PIC32CZ2051MC70100
https://www.microchip.com/en-us/product/PIC32CZ2051MC70144
https://www.microchip.com/en-us/product/PIC32CZ4010CA80100
https://www.microchip.com/en-us/product/PIC32CZ4010CA80144
https://www.microchip.com/en-us/product/PIC32CZ4010CA80176
https://www.microchip.com/en-us/product/PIC32CZ4010CA80208
https://www.microchip.com/en-us/product/PIC32CZ4010CA90100
https://www.microchip.com/en-us/product/PIC32CZ4010CA90144
https://www.microchip.com/en-us/product/PIC32CZ4010CA90176
https://www.microchip.com/en-us/product/PIC32CZ8110CA80100
https://www.microchip.com/en-us/product/PIC32CZ8110CA80144
https://www.microchip.com/en-us/product/PIC32CZ8110CA80176
https://www.microchip.com/en-us/product/PIC32CZ8110CA80208
https://www.microchip.com/en-us/product/PIC32CZ8110CA90100
https://www.microchip.com/en-us/product/PIC32CZ8110CA90144
https://www.microchip.com/en-us/product/PIC32CZ8110CA90176
https://www.microchip.com/en-us/product/PIC32CZ8110CA90208

	Introduction
	Table of Contents
	1.  Introduction to Serial Communication Interfaces
	1.1.  USART
	1.2.  I2C
	1.3.  SPI
	1.4.  LIN
	1.5.  LON

	2.  SERCOM Implementation in SAM D Microcontrollers
	2.1.  Overview
	2.2.  Features
	2.3.  Block Diagram
	2.4.  Clocks

	3.  USART Implementation in SAM E70 Microcontroller
	3.1.  Overview
	3.2.  Features
	3.3.  Block Diagram
	3.4.  Clocks

	4.  Hardware and Software Requirements
	5.  Application Demonstration
	5.1.  Creating the Project
	5.2.  Basic Configuration
	5.2.1.  SAM D21 Curiosity Nano Evaluation Kit
	5.2.1.1.  Application Logic

	5.2.2.  SAM E70 Xplained Ultra Evaluation Kit
	5.2.2.1.  Application Logic


	5.3.  Fractional Baud Configuration
	5.3.1.  SAM D21 Curiosity Nano Evaluation Kit
	5.3.1.1.  Application Logic

	5.3.2.  SAM E70 Xplained Ultra Evaluation Kit
	5.3.2.1.  Application Logic


	5.4.  Hardware Handshaking Configuration
	5.4.1.  SAM D21 Curiosity Nano Evaluation Kit
	5.4.1.1.  Application Logic

	5.4.2.  SAM E70 Xplained Ultra Evaluation Kit
	5.4.2.1.  Application Logic


	5.5.  SOF Detection and Wakeup Configuration

	6.  References
	7.  Revision History
	7.1.  Revision A - February 2025

	Microchip Information
	Trademarks
	Legal Notice
	Microchip Devices Code Protection Feature

	Product Page Links

