MICROCHIP

Flash Programming

HIGHLIGHTS

This section of the manual contains the following major topics:

(O [ 1 (oo [F o3 [ o I PRSP 2
2.0 Table INStruction OPEration .............oouiiiiiiiiiiiie e 2
3.0 CONLrOl REGISIEIS ..t 5
4.0 Run-Time Self-Programming (RTSP) ......coooiiiiiiiiiii e 11
5.0 REGISIEI MaAP ...ttt ea et e e e e e e e e e e e e e e e e ana e aane 21
6.0 Related AppliCatioN NOES......uuviiiiiiiiiieieee e e e e e e e e e e e e e e s e s nnnnenees 22
7.0 ReVISION HIiSIOIY ...t e e e e e e e e e aeeaeeaeaeeesaaannnnnes 23

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 1



dsPIC33/PIC24 Family Reference Manual

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all dsPIC33/PIC24 devices.

Please consult the note at the beginning of the “Flash Program Memory” chapter
in the current device data sheet to check whether this document supports the
device you are using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Website at: http://www.microchip.com

1.0 INTRODUCTION

This section describes the technique for programming Flash program memory. The dsPIC33/
P1C24 families of devices have an internal programmable Flash program memory for execution
of user code. There are up to three methods to program this memory:

* Run-Time Self-Programming (RTSP)
* In-Circuit Serial Programming™ (ICSP™)
» Enhanced In-Circuit Serial Programming (EICSP)

RTSP is performed by the application software during execution, while ICSP and EICSP are
performed from an external programmer using a serial data connection to the device. ICSP and
EICSP allow much faster programming time than RTSP. RTSP techniques are described in
Section 4.0 “Run-Time Self-Programming (RTSP)”. The ICSP and EICSP protocols are
defined in the Programming Specification documents for the respective devices, which can be
downloaded from the Microchip website (http://www.microchip.com).

When programming in the C language, several built-in functions are available that facilitate Flash
programming. See the “MPLAB® XC16 C Compiler User’s Guide” (DS50002071) for details
regarding built-in functions.

2.0 TABLE INSTRUCTION OPERATION

The table instructions provide the method of transferring data between the Flash program
memory space and the data memory space of dsPIC33/PIC24 devices. This section provides a
summary of the table instructions used during programming of the Flash program memory. There
are four basic table instructions:

* TBLRDL: Table Read Low
* TBLRDH: Table Read High
* TBLWTL: Table Write Low
* TBLWTH: Table Write High

The TBLRDL instruction is used to read from bits[15:0] of program memory space. The TBLWTL
instruction is used to write to bits[15:0] of Flash program memory space. TBLRDL and TBLWTL
can access Flash program memory in Word mode or Byte mode.

The TBLRDH and TBLWTH instructions are used to read or write to bits[23:16] of program memory
space. TBLRDH and TBLWTH can access Flash program memory in Word or Byte mode. Because
the Flash program memory is only 24 bits wide, the TBLRDH and TBLWTH instructions can
address an upper byte of Flash program memory that does not exist. This byte is called
the “phantom byte”. Any read of the phantom byte will return 0x00. A write to the phantom byte
has no effect.

The 24-bit Flash program memory can be regarded as two side-by-side 16-bit spaces, with each
space sharing the same address range. Therefore, the TBLRDL and TBLWTL instructions access
the “low” program memory space (PM[15:0]). The TBLRDH and TBLWTH instructions access the
“high” program memory space (PM[31:16]). Any reads or writes to PM[31:24] will access the
phantom (unimplemented) byte. When any of the table instructions are used in Byte mode, the
Least Significant bit (LSb) of the table address will be used as the byte select bit. The LSb
determines which byte in the high or low program memory space is accessed.

DS70000609F-page 2

© 2009-2021 Microchip Technology Inc. and its subsidiaries


http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Flash Programming

Figure 2-1 illustrates how the Flash program memory is addressed using the table instructions.
A 24-bit program memory address is formed using bits[7:0] of the TBLPAG register and the
Effective Address (EA) from a W register specified in the table instruction. The 24-bit Program
Counter (PC) is illustrated in Figure 2-1 for reference. The upper 23 bits of the EA are used to
select the Flash program memory location.

For the Byte mode table instructions, the LSb of the W register EA is used to select which byte
of the 16-bit Flash program memory word is addressed; ‘1’ selects bits[15:8] and ‘0’ selects
bits[7:0]. The LSb of the W register EA is ignored for a table instruction in Word mode.

In addition to the Flash program memory address, the table instruction also specifies a W register
(or a W Register Pointer to a memory location), that is the source of the Flash program memory
data to be written, or the destination for a Flash program memory read. For a table write operation
in Byte mode, bits[15:8] of the source Working register are ignored.

Figure 2-1: Addressing for Table Instructions
bt 24 Bits bl
| |
Using l/ ' ' \l
Program 0 Program Counter 1
Counter T

Working Reg EA

Space Select

Using

Table 1/0| TBLPAG Reg | .

Instruction | ————# = |
| 8 Bits 16 Bits N
| A

_ _ | | + ] Byte
User/Configuration | 24-Bit EA | ] Select

|

21 Using Table Read Instructions

Table reads require two steps:

1. The Address Pointer is set up using the TBLPAG register and one of the W registers.
2. The Flash program memory contents at the address location may be read.

2.11 READ WORD MODE

The code shown in Example 2-1 and Example 2-2 shows how to read a word of Flash program
memory using the table instructions in Word mode.

Example 2-1: Read Word Mode

; Set up the address pointer to program space
MOV #tblpage (PROG_ADDR), WO ; get table page value
MOV WO, TBLPAG ; load TBLPAG register
MOV #tbloffset (PROG_ADDR) , WO ; load address LS word
; Read the program memory location
TBLRDH [WO],W3 ; Read high byte to W3
TBLRDL [WO],wW4 ; Read low word to W4

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 3



dsPIC33/PIC24 Family Reference Manual

Example 2-2: Read Word Mode (in C)

int addrOffset;
int varWordl;
int varWord2;

TBLPAG = ((PROG_ADDR & 0x7F0000)>>16);
addrOffset = (PROG_ADDR & OxO0O0FFFE) ;
varWordl = _ builtin_ tblrdl (addrOffset);

varWord2 = _ builtin tblrdh(addrOffset);

21.2 READ BYTE MODE

The code shown in Example 2-3 shows the post-increment operator on the read of the low byte,
which causes the address in the Working register to increment by one. This sets EA[0] to a ‘1’
for access to the middle byte in the third write instruction. The last post-increment sets WO back
to an even address, pointing to the next Flash program memory location.

Example 2-3: Read Byte Mode

; Set up the address pointer to program space
MOV #tblpage (PROG_ADDR) , WO ; get table page value
MOV WO, TBLPAG ; load TBLPAG register
MOV #tbloffset (PROG_ADDR), W0 ; load address LS word

; Read the program memory location
TBLRDH.B [WO],W3 ; Read high byte to W3
TBLRDL.B [WO++] ,W4 ; Read low byte to W4
TBLRDL.B [WO++],W5 ; Read middle byte to W5

213 TABLE WRITE LATCHES

Table write instructions do not write directly to the nonvolatile program memory. Instead, the table
write instructions load write latches that store the write data. The NVM Address registers must
be loaded with the first address where latched data should be written. When all of the write
latches have been loaded, the actual memory programming operation is started by executing a
special sequence of instructions. During programming, the hardware transfers the data in the
write latches to Flash memory.

The write latches always start at address 0xFA0000, and extend through OxFA0002 for word
programming, or through OxFAOOFE for devices which have row programming.

Note: The number of write latches varies by device. Refer to the “Flash Program
Memory” chapter of the specific device data sheet for the number of available write
latches.

DS70000609F-page 4

© 2009-2021 Microchip Technology Inc. and its subsidiaries



Flash Programming

CONTROL REGISTERS

Several Special Function Registers (SFRs) are used to program the Flash program memory
erase and write operations: NVMCON, NVMKEY, and the NVM Address registers, NVMADR and
NVMADRU.

3.1 NVMCON Register

The NVMCON register is the primary control register for Flash and program/erase operations.
This register selects whether an erase or program operation will be performed and can start the
program or erase cycle.

The NVMCON register is shown in Register 3-1. The lower byte of NVMCON configures the type
of NVM operation that will be performed.

3.2 NVMKEY Register

The NVMKEY register (see Register 3-4) is a write-only register used to prevent accidental writes
of NVMCON that can corrupt Flash memory. Once unlocked, writes to NVMCON are allowed for
one instruction cycle in which the WR bit can be set to invoke an erase or program routine. Given
the timing requirements, disabling interrupts is required.

Perform the following steps to start an erase or programming sequence:
Disable interrupts.

Write 0x55 to NVMKEY.

Write OxAA to NVMKEY.

Start the programming write cycle by setting the WR bit (NVMCON[15]).
Execute two NOP instructions.

Restore interrupts.

o ok wh =

Example 3-1 shows how the unlock sequence is performed.

Example 3-1: NVMKEY Unlock Sequence

; if programming, load write latches
; Set NVM Address Registers
; Disable interrupts
PUSH INTCON2
BCLR INTCON2, #GIE
NOP
; Load key values into NVMKEY
MOV #0x55, WO
MOV W0, NVMKEY
MOV #0xAA, WO
MOV W0, NVMKEY
; Set WR bit
BSET NVMCON, #WR
NOP
NOP
; Restore interrupts
POP INTCON2

Refer to Section 4.2 “Flash Programming Operations” for more programming examples.

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 5



dsPIC33/PIC24 Family Reference Manual

3.2.1 DISABLING INTERRUPTS

Disabling interrupts is required for all Flash operations to ensure a successful result. If an
interrupt occurs during the NVMKEY unlock sequence, it can block the write to the WR bit. The
NVMKEY unlock sequence must be executed without interruption, as discussed in Section 3.2
“NVMKEY Register”.

Interrupts can be disabled in one of two methods, by disabling the Global Interrupt Enable (GIE
bit), or by using the DIST instruction. The DIST instruction is not recommended since it only dis-
ables interrupts of Priority 6 or below; therefore, the Global Interrupt Enable method should be
used.

CPU writes to GIE take two instruction cycles before affecting the code flow. Two NOP instructions
are needed afterwards, or can be replaced with any other useful work instructions, such as
loading NVMKEY; this is applicable to both set and clear operations.

Care should be taken when re-enabling interrupts so that the NVM targeted routine does not
allow interrupts when a previous called function has disabled them for other reasons. To address
this in Assembly, a stack push and pop can be used to retain the state of the GIE bit. In C, a
variable in RAM can be used to store INTCON2 prior to clearing GIE.

Use the following sequence to disable interrupts:

1. Push INTCON2 onto the stack.

2. Clear the GIE bit.

3. Two NOPs or writes to NVMKEY.

4. Start the programming cycle by setting the WR bit (NVMCON[15]).
5. Restore GIE state by POP of INTCON2.

Example 3-2 provides the syntax in assembly.

EXAMPLE 3-2: DISABLING INTERRUPTS WITH GIE BIT

; Disable interrupts
PUSH INTCON2
BCLR INTCON2, #GIE
NOP

; Load key values into NVMKEY
MOV #0x55, WO
MOV W0, NVMKEY
MOV #0xAA, WO
MOV W0, NVMKEY

; Set WR bit
BSET NVMCON, #WR
NOP
NOP

; Restore interrupts
POP INTCON2

3.3 NVM Address Registers

The two NVM Address registers, NVMADRU and NVMADR, when concatenated, form the 24-bit
EA of the selected row or word for programming operations. The NVMADRU register is used to
hold the upper eight bits of the EA, and the NVMADR register is used to hold the lower 16 bits of
the EA. Some devices may refer to these same registers as NVMADRL and NVMADRH.

The NVM Address registers should always point to a double instruction word boundary when
performing a double instruction word programming operation, a row boundary when performing
a row programming operation or a page boundary when performing a page erase operation.

DS70000609F-page 6

© 2009-2021 Microchip Technology Inc. and its subsidiaries



Flash Programming

Register 3-1: NVMCON: Flash Memory Control Register

R/SO-0 R/W-0 R/W-0 R/W-0 u-0 u-0 U-0 U-0
wRrR(™ WREN(™ | WRERR(™") |NVMSIDL®? — — RPDF(®) URERR(®)
bit 15 bit 8
u-0 U-0 uU-0 uU-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — — NVMOP[3:0](3:)
bit 7 bit 0
Legend: SO = Settable Only bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bitis set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 WR: Write Control bit(")

1 = Initiates a Flash program memory or erase operation; the operation is self-timed and the bit is
cleared by hardware once operation is complete
0 = Program or erase operation is complete and inactive
bit 14 WREN: Write Enable bit(")
1 = Enables Flash program memory/erase operations
0 = Inhibits Flash program memory/erase operations
bit 13 WRERR: Write Sequence Error Flag bit(")
1= An improper program or erase sequence attempt, or termination has occurred (bit is set
automatically on any set attempt of the WR bit)
0 = The program or erase operation completed normally
bit 12 NVMSIDL: Stop in Idle Mode bit(?)
1 = Discontinues Flash operation when the device enters Idle mode
0 = Continues Flash operation when the device enters Idle mode
bit 11-10 Unimplemented: Read as ‘0’
bit 9 RPDF: Row Programming Data Format bit(®)
1 = Row data to be stored in RAM are in compressed format
0 = Row data to be stored in RAM are in uncompressed format
bit 8 URERR: Row Programming Data Underrun Error bit(6)
1 = Indicates row programming operation has been terminated
0 = No data underrun error is detected

bit 7-4 Unimplemented: Read as ‘0’

Note 1: This bit can only be reset (i.e., cleared) on a Power-on Reset (POR).

2: When exiting Idle mode, there is a power-up delay (TVREG) before Flash program memory becomes
operational. Refer to the “Electrical Characteristics” chapter of the specific device data sheet for more
information.

3: All other combinations of NVMOP[3:0] are unimplemented.

4: This functionality is not available on all devices. Refer to the “Flash Program Memory” chapter in the
specific device data sheet for available operations.

5: Entry into a power-saving mode after executing a PWRSAV instruction is contingent on completion of all
pending NVM operations.

6: This bit is only available on devices that support RAM buffered row programming. Refer to the
device-specific data sheet for availability.

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 7



dsPIC33/PIC24 Family Reference Manual

Register 3-1: NVMCON: Flash Memory Control Register (Continued)

bit 3-0 NVMOPI[3:0]: NVM Operation Select bits(3-5)
1111 = Reserved
1110 = Reserved
1101 = Bulk erase primary Flash program memory(4)
1100 = Reserved
1011 = Reserved
1010 = Bulk erase auxiliary Flash program memory(4)
0011 = Memory page erase operation
0010 = Memory row program operation4)
0001 = Memory double-word program operation
0000 = Program a single Configuration register byte(4

Note 1: This bit can only be reset (i.e., cleared) on a Power-on Reset (POR).

2:  When exiting Idle mode, there is a power-up delay (TVREG) before Flash program memory becomes
operational. Refer to the “Electrical Characteristics” chapter of the specific device data sheet for more
information.

3: All other combinations of NVMOP[3:0] are unimplemented.

4: This functionality is not available on all devices. Refer to the “Flash Program Memory” chapter in the
specific device data sheet for available operations.

5: Entry into a power-saving mode after executing a PWRSAV instruction is contingent on completion of all
pending NVM operations.

6: This bit is only available on devices that support RAM buffered row programming. Refer to the
device-specific data sheet for availability.

DS70000609F-page 8 © 2009-2021 Microchip Technology Inc. and its subsidiaries



Flash Programming

Register 3-2: NVMADRU: Nonvolatile Memory Upper Address Register

U-0 U-0 u-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
NVMADRU[7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-8 Unimplemented: Read as ‘0’
bit 7-0 NVMADRUI7:0]: Nonvolatile Memory Upper Write Address bits

Selects the upper eight bits of the location to program or erase in Flash program memory. This register
may be read or written by the user application.

Register 3-3: NVMADR: Nonvolatile Memory Address Register

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
NVMADRJ[15:8]
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
NVMADR][7:0]
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 NVMADR[15:0]: Nonvolatile Memory Write Address bits

Selects the 16-bit offset of the location to program or erase in Flash program memory. This register
may be read or written by the user application.

Note: The NVM Address register should always point to a double instruction word boundary when performing a
double instruction word programming operation, a row boundary when performing a row programming
operation or a page boundary when performing a page erase operation.

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 9



dsPIC33/PIC24 Family Reference Manual

Register 3-4: NVMKEY: Nonvolatile Memory Key Register

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

bit 15 bit 8
W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

NVMKEY[7:0]

bit 7 bit 0

Legend: SO = Settable Only bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as ‘0’

bit 7-0 NVMKEY[7:0]: NVM Key Register (write-only) bits

Note: Refer to Section 3.2 “NVMKEY Register” for NVMKEY register operation.

DS70000609F-page 10 © 2009-2021 Microchip Technology Inc. and its subsidiaries




Flash Programming

4.0 RUN-TIME SELF-PROGRAMMING (RTSP)

RTSP allows the user application to modify Flash program memory contents. RTSP is accomplished
using the TBLRD (Table Read) and TBLWT (Table Write) instructions, the TBLPAG register, and the
NVM Control registers. With RTSP, the user application can erase a single page of Flash memory
and program either two instruction words or up to 128 instruction words on certain devices.

4.1 RTSP Operation

The dsPIC33/PI1C24 Flash program memory array is organized into erase pages that can contain
up to 1024 instructions. The double-word programming option is available in all devices in the
dsPIC33/PIC24 families. In addition, certain devices have row programming capability, which
allows the programming of up to 128 instruction words at a time.

Programming and erase operations always occur on an even double programming word, row or
page boundaries. Refer to the “Flash Program Memory” chapter of the specific device data
sheet for the availability and sizes of a programming row, and the page size for erasing.

The Flash program memory implements holding buffers, called write latches, that can contain up
to 128 instructions of programming data depending on the device. Prior to the actual
programming operation, the write data must be loaded into the write latches.

The basic sequence for RTSP is to set up the Table Pointer, TBLPAG register, and then perform
a series of TBLWT instructions to load the write latches. Programming is performed by setting the
control bits in the NVMCON register. The number of TBLWTL and TBLWTH instructions needed
to load the write latches is equal to the number of program words to be written.

Note: It is recommended that the TBLPAG register be saved prior to modification and
restored after use.

CAUTION

On some devices, the Configuration bits are stored in the last page of program Flash user
memory space in a section called, “Flash Configuration Bytes”. With these devices, performing
a page erase operation on the last page of program memory erases the Flash Configuration
bytes, which enables code protection. Therefore, users should not perform page erase
operations on the last page of program memory. This is not a concern when the Configuration
bits are stored in Configuration memory space in a section called, “Device Configuration
Registers”. Refer to the Program Memory Map in the “Memory Organization” chapter of the
specific device data sheet to determine where Configuration bits are located.

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 11



dsPIC33/PIC24 Family Reference Manual

4.2 Flash Programming Operations

A program or erase operation is necessary for programming or erasing the internal Flash program
memory in RTSP mode. The program or erase operation is automatically timed by the device (refer
to the specific device data sheet for timing information). Setting the WR bit (NVMCON[15]) starts
the operation. The WR bit is automatically cleared when the operation is finished.

The CPU stalls until the programming operation is finished. The CPU will not execute any
instructions or respond to interrupts during this time. If any interrupts occur during the
programming cycle, they will remain pending until the cycle completes.

Some dsPIC33/PIC24 devices may provide auxiliary Flash program memory (refer to the
“Memory Organization” chapter of the specific device data sheet for details), which allows
instruction execution without CPU Stalls while user Flash program memory is being erased and/
or programmed. Conversely, auxiliary Flash program memory can be programmed without CPU
Stalls, as long as code is executed from the user Flash program memory. The NVM interrupt can
be used to indicate that the programming operation is complete.

Note 1: If a POR or BOR event occurs while an RTSP erase or programming operation is
in progress, the RTSP operation is aborted immediately. The user should execute
the RTSP operation again after the device comes out of Reset.

2: If an EXTR, SWR, WDTO, TRAPR, CM or IOPUWR Reset event occurs while an
RTSP erase or programming operation is in progress, the device will be reset only
after the RTSP operation is complete.

4.2.1 RTSP PROGRAMMING ALGORITHM
This section describes RTSP programming, which consists of three major processes.

4.3 Creating a RAM Image of the Data Page to be Modified

Perform these two steps to create a RAM image of the data page to be modified:

1. Read the page of Flash program memory and store it into data RAM as a data “image”.
The RAM image must be read starting from a page address boundary.

2.  Modify the RAM data image as needed.

44 Erasing Flash Program Memory

After completing Steps 1 and 2 above, perform the following four steps to erase the Flash
program memory page:

1. Set the NVMOP[3:0] bits (NVMCON[3:0]) to erase the page of Flash program memory
read from Step 1.

2. Write the starting address of the page to be erased into the NVMADRU and NMVADR
registers.

3. With interrupts disabled:

a) Write the key sequence to the NVMKEY register to enable setting the WR bit
(NVMCONTI15]).

b) Set the WR bit; this will start the erase cycle.
c) Execute two NOP instructions.
4. The WR bit is cleared when the erase cycle is complete.

DS70000609F-page 12

© 2009-2021 Microchip Technology Inc. and its subsidiaries



Flash Programming

4.5 Programming the Flash Memory Page

The next part of the process is to program the Flash memory page. The Flash memory page is
programmed using the data from the image created in Step 1. The data are transferred to the
write latches in increments of either double instruction words or rows. All devices have double
instruction word programming capability. (Refer to the “Flash Program Memory” chapter in the
specific device data sheet to determine if, and what type of, row programming is available.) After
the write latches are loaded, the programming operation is initiated, which transfers the data from
the write latches into Flash memory. This is repeated until the entire page has been programmed.

Repeat the following three steps, starting at the first instruction word of the Flash page and
incrementing in steps of either double program words, or instruction rows, until the entire page
has been programmed:
1. Load the write latches:

a) Setthe TBLPAG register to point to the location of the write latches.

b) Load the desired number of latches using pairs of TBLWTL and TBLWTH instructions:

» For double-word programming, two pairs of TBLWTL and TBLWTH instructions are
required

* For row programming, a pair of TBLWTL and TBLWTH instructions are required for
each instruction word row element

2. Initiate the programming operation:

a) Setthe NVMOPI3:0] bits (NVMCON]J3:0]) to program either double instruction words
or an instruction row, as appropriate.

b) Write the first address of either the double instruction word or instruction row to be
programmed into the NVMADRU and NVMADR registers.

c) With interrupts disabled:

« Write the key sequence to the NVMKEY register to enable setting the WR bit
(NVMCON][15])

» Set the WR bit; this will start the erase cycle
» Execute two NOP instructions
3. The WR bit is cleared when the programming cycle is complete.

Repeat the entire process as needed to program the desired amount of Flash program memory.

Note 1: The user should remember that the minimum amount of Flash program memory
that can be erased using RTSP is a singe erased page. Therefore, it is important
that an image of these locations be stored in general purpose RAM before an erase
cycle is initiated.

2: A row or word in Flash program memory should not be programmed more than
twice before being erased.

3: On devices with Configuration bytes stored in the last page of Flash, performing a
page erase operation on the last page of program memory clears the Configuration
bytes, which enables code protection. On these devices, the last page of Flash
memory should not be erased.

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 13



dsPIC33/PIC24 Family Reference Manual

4.5.1 ERASING ONE PAGE OF FLASH

The code sequence shown in Example 4-1 can be used to erase a page of Flash program
memory. The NVMCON register is configured to erase one page of program memory. The
NVMADR and NMVADRU registers are loaded with the starting address of the page to be
erased. The program memory must be erased at an “even” page address boundary. See the
“Flash Program Memory” chapter of the specific device data sheet to determine the size of the
Flash page.

The erase operation is initiated by writing a special unlock, or key sequence, to the NVMKEY
register before setting the WR bit (NVMCON][15]). The unlock sequence needs to be executed
in the exact order, as shown in Example 4-1, without interruption; therefore, interrupts must be
disabled.

Two NOP instructions should be inserted in the code after the erase cycle.

On certain devices, the Configuration bits are stored in the last page of program Flash. With
these devices, performing a page erase operation on the last page of program memory erases
the Flash Configuration bytes, enabling code protection as a result. Users should not perform
page erase operations on the last page of program memory.

Example 4-1: Erasing a Page of Flash Program Memory (in Assembly)

; Define the start address of the page to erase
.equ PROG_ADDR, 0x022000
; Set up the NVMADR registers to the starting address of the page

MOV #tblpage (PROG_ADDR) , WO
MOV W0, NVMADRU
MOV #tbloffset (PROG_ADDR) , WO
MOV W0, NVMADR
; Set up NVMCON to erase one page of Program Memory
MOV #0x4003, W0
MOV W0, NVMCON
; Disable interrupts
PUSH INTCONZ2
BCLR INTCON2, #GIE
NOP
; Write the KEY Sequence
MOV #0x55,W0
MOV W0, NVMKEY
MOV #0xAA, WO
MOV W0, NVMKEY

; Start the erase operation
BSET NVMCON, #15
; Insert two NOPs after the erase cycle (required)
NOP
NOP
POP INTCON2

Example 4-2: Erasing a Page of Flash Program Memory (in C)

uintl6 t targetWriteAddressL; // bits[15:0]
uintl6 t targetWriteAddressH; // bits[22:16]
uintl6_t INTCON2Save

// Set ERASE, WREN and configure NVMOP for page erase
NVMCON = 0x4003;

// Set target write address

NVMADR = targetWriteAddressL;

NVMADRU = targetWriteAddressH;

INTCON2Save = INTCONZ2;

// Disable interrupts for NVM unlock
__builtin disable_ interrupts();

__builtin write NVM(); // Start write cycle
while (NVMCONbits.WR == 1);

INTCON2 = INTCON2Save;

DS70000609F-page 14

© 2009-2021 Microchip Technology Inc. and its subsidiaries



Flash Programming

452 LOADING WRITE LATCHES

The write latches are used as a storage mechanism between the user application Table Writes
and the actual programming sequence. During the programming operation, the device will
transfer the data from the write latches into Flash memory.

For devices that support row programming, Example 4-3 shows the sequence of instructions that
can be used to load 128 write latches (128 instruction words). 128 TBLWTL and 128 TBLWTH
instructions are needed to load the write latches for programming a row of Flash program
memory. Refer to the “Flash Program Memory” chapter of the specific device data sheet to
determine the number of programming latches available on your device.

For devices that do not support row programming, Example 4-4 shows the sequence of
instructions that can be used to load two write latches (two instruction words). Two TBLWTL and
two TBLWTH instructions are needed to load the write latches.

Note 1: The code for Load Write Latch Row is shown in Example 4-3 and the code for
Load Write Latch Word is shown in Example 4-4. The code in both of these
examples is referred to in subsequent examples.

2: Refer to the specific device data sheet for the number of latches.

Example 4-3: Loading Write Latches for Row Programming

Load Write Latch Row:

; This example loads 128 write latches

; W2 points to the address of the data to write to the latches
; Set up a pointer to the first latch location to be written

MOV #0xFA, WO
MOV W0, TBLPAG
MOV #0, Wl

; Perform the TBLWT instructions to write the latches
; W2 is incremented in the TBLWTH instruction to point to the
; next instruction location

MOV #128, W3

loop:
TBLWTL.b [W2++], [W1l++]
TBLWTL.b [W2++], [Wl--]
TBLWTH.Db [W2++], [W1]
INC2 Wl, Wl
DEC W3, W3
BRA NZ, loop

Example 4-4: Loading Write Latches for Double-Word Programming
Load Write Latch Word:

; W2 points to the address of the data to write to the latches
; Set up a pointer to the first latch location to be written

MOV #0xFA, WO
MOV W0, TBLPAG
MOV #0,W1

; Perform the TBLWT instructions to write the latches
TBLWTL [W2++], [W1]
TBLWTH [W2++], [W1++]
TBLWTL [W2++], [W1]
TBLWTH [W2++], [W1++]

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 15



dsPIC33/PIC24 Family Reference Manual

453 SINGLE ROW PROGRAMMING EXAMPLE

The NVMCON register is configured to program one row of Flash program memory. The program
operation is initiated by writing a special unlock, or key sequence, to the NVMKEY register before
setting the WR bit (NVMCON][15]). The unlock sequence needs to be executed without
interruption, and in the exact order, as shown in Example 4-5. Therefore, interrupts must be
disabled prior to writing the sequence.

Note: Not all devices have row programming capability. Refer to the “Flash Program
Memory” chapter of the specific device data sheet to determine if this option is
available.

Two NOP instructions should be inserted in the code after the programming cycle.

Example 4-5: Row Programming with Write Latches (in Assembly)

; Define the address from where the programming has to start
.equ PROG_ADDR, 0x022000

; Load the NVMADR register with the starting programming address

MOV #tblpage (PROG_ADDR) , W9
MOV #tbloffset (PROG_ADDR) , W8
MOV W9, NVMADRU
MOV W8, NVMADR
; Setup NVMCON to write 1 row of program memory
MOV #0x4002, W0
MOV W0, NVMCON

; Load the program memory write latches
CALL Load Write Latch Row

; Disable interrupts
PUSH INTCON2
BCLR INTCON2, #GIE

NOP
; Load key values into NVMKEY
MOV #0x55, WO
MOV W0, NVMKEY
MOV #0xAA, WO
MOV W0, NVMKEY
; Set WR bit
BSET NVMCON, #WR
NOP
NOP
POP INTCON2

Example 4-6: Row Programming with Write Latches (in C)

int varWordL[64];

int varWordH[64];

int targetWriteAddressL; // bits[15:0]
int targetWriteAddressH; // bits[22:16]
int i

uintl6_t INTCON2Save;

NVMCON = 0x4002; // Set WREN and row program mode
TBLPAG = OxFA;
NVMADR = targetWriteAddressL; // set target write address

NVMADRU = targetWriteAddressH;

for (i=0; 1<=63; i++) // load write latches with data
{ // to be written

__builtin tblwtl((i * 2), varWordL[i]);

__builtin tblwth((i * 2), varWordH[i]);

}

INTCON2Save = INTCONZ2;

__builtin disable interrupts(); // Disable interrupts for NVM unlock sequence
__builtin write NVM();
while (NVMCONbits.WR == 1);

INTCON2 = INTCON2Save;

DS70000609F-page 16

© 2009-2021 Microchip Technology Inc. and its subsidiaries



Flash Programming

454 ROW PROGRAMMING USING THE RAM BUFFER

Select dsPIC33 devices permit row programming to be performed directly from a buffer space in
data RAM, rather than going through the holding latches to transfer data with TBLWT instructions.
The location of the RAM buffer is determined by the NVMSRCADR register(s), which are loaded
with the data RAM address containing the first word of program data to be written.

Prior to performing the program operation, the buffer space in RAM must be loaded with the row
of data to be programmed. The RAM can be loaded in either a compressed (packed) or
uncompressed format. Compressed storage uses one data word to store the Most Significant
Bytes (MSBs) of two adjacent program data words. The uncompressed format uses two data
words for each program data word, with the upper byte of every other word being 00h.
Compressed format uses about 3/4 of the space in data RAM as compared to the uncompressed
format. Uncompressed format, on the other hand, mimics the structure of the 24-bit program data
word, complete with the upper phantom byte. The data format is selected by the RPDF bit
(NVMCONI[9]). These two formats are shown in Figure 4-1.

Once the RAM buffer is loaded, the Flash Address Pointers, NVMADR and NVMADRU, are
loaded with the 24-bit start address of the Flash row to be written. As with programming the write
latches, the process is initiated by writing the NVM unlock sequence, followed by setting the WR
bit. Once initiated, the device automatically loads the right latches and increments the NVM
Address registers until all bytes have been programmed. Example 4-7 shows an example of the
process. If NVMSRCADR is set to a value such that a data underrun error condition occurs, the
URERR bit (NVMCON][8]) will be set to indicate the condition.

Devices which implement RAM buffer row programming also implement one or two write latches.
These are loaded using the TBLWT instructions and are used to perform word programming
operations.

Figure 4-1: Uncompressed and Compressed Storage Formats for Program Data
Uncompressed Format (RPDF = 0) Compressed Format (RPDF = 1)
15 7 0 15 7 0

LSWA1 LSWA1 -

ooh | wmsB MsB2 | WmsBt

Address

LSwW2 LSW2

00h ‘ MSB2

Even Byte Addresses

Example 4-7: Writing Program Memory from a Data RAM Buffer (in C)

int datall128]; // Data to be programmed in RAM
int targetWriteAddressL; // bits[15:0]
int targetWriteAddressH; // bits[22:16]

int INTCON2Save;

NVMCON = 0x4002; // Row programming
NVMCONbits.RPDF = 0; // Select uncompressed format
NVMSRCADRL = (int)&datal[0]; // Start address of data in RAM

NVMADR = targetWriteAddressL;
NVMADRU = targetWriteAddressH;
INTCON2Save = INTCONZ;

__builtin disable interrupts(); // Disable interrupts for NVM unlock sequence
__builtin write NVM();
while (NVMCONbits.WR == 1);

INTCON2 = INTCON2Save;

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 17



dsPIC33/PIC24 Family Reference Manual

455 WORD PROGRAMMING

The NVMCON register is configured to program two instruction words of Flash program memory.
The program operation is initiated by writing a special unlock, or key sequence, to the NVMKEY
register before setting the WR bit (NVMCONJ[15]). The unlock sequence needs to be executed
in the exact order, as shown in Example 4-8, without interruption. Therefore, interrupts should be
disabled prior to writing the sequence.

Two NOP instructions should be inserted in the code after the programming cycle.

Example 4-8: Two-Word Write (In Assembly)

; Define the address from where the programming has to start

.equ PROG_ADDR, 0x022000;
; Load the destination address to be written

MOV #tblpage (PROG_ADDR) , W9
MOV #tbloffset (PROG_ADDR), W8
MOV W9, NVMADRU

MOV W8, NVMADR;

; Load the two words into the latches
CALL Load Write Latch Word
; Setup NVMCON for word programming

MOV #0x4001, W0
MOV W0, NVMCON
; Disable interrupts
PUSH INTCON2
BCLR INTCON2, #GIE
NOP
; Write the key sequence
MOV #0x55, W0
MOV W0, NVMKEY
MOV #0xAA, WO
MOV W0, NVMKEY

; Start the write cycle
BSET NVMCON, #15
NOP
NOP
POP INTCON2

Example 4-9: Two-Word Write (in C)

int varWordlL OxXXXX;

int varWordlH 0x00XX;

int varWord2L = 0xXXXX;

int varWord2H = 0x00XX;

int TargetWriteAddressL; // bits[15:0]
int TargetWriteAddressH; // bits[22:16]
int INTCON2Save;

NVMCON = 0x4001; // Set WREN and word program mode
TBLPAG = OxFA; // write latch upper address
NVMADR = TargetWriteAddressL; // set target write address

NVMADRU = TargetWriteAddressH;

__builtin tblwtl(0,varWordlL); // load write latches
~_builtin tblwth (0,varWordlH) ;
__builtin tblwtl (0x2,varWord2L) ;

~ builtin tblwth (0x2,varWord2H) ;

INTCON2Save = INTCONZ2;

__builtin disable interrupts(); // Disable interrupts for NVM unlock sequence
_ builtin write NVM(); // initiate write
while (NVMCONbits.WR == 1);

INTCON2 = INTCON2Save;

DS70000609F-page 18

© 2009-2021 Microchip Technology Inc. and its subsidiaries



Flash Programming

4.6 Writing to Device Configuration Registers

On certain devices, the Configuration bits are stored in configuration memory space in a section
called, “Device Configuration Registers”. On other devices, the Configuration bits are stored in
the last page of program Flash user memory space in a section called, “Flash Configuration
Bytes”. With these devices, performing a page erase operation on the last page of program
memory erases the Flash Configuration bytes, which enables code protection. Therefore, users
should not perform page erase operations on the last page of program memory. Refer to the
Program Memory Map in the “Memory Organization” chapter of the specific device data sheet
to determine where Configuration bits are located.

When the Configuration bits are stored in configuration memory space, RTSP can be used to
write to the device Configuration registers, and RTSP allows each Configuration register to be
individually rewritten without first performing an erase cycle. Caution must be exercised when
writing the Configuration registers since they control critical device operating parameters, such
as the system clock source, PLL and WDT enable.

The procedure for programming a device Configuration register is similar to the procedure for
programming Flash program memory, except that only TBLWTL instructions are required. This is
because the upper eight bits in each device Configuration register are unused. Furthermore,
bit 23 of the Table Write address must be set to access the Configuration registers. Refer to
“Device Configuration” (DS70000618) in the “dsPIC33/PIC24 Family Reference Manual’ and
the “Special Features” chapter in the specific device data sheet for a full description of the
device Configuration registers.

Note 1: Writing to device Configuration registers is not available in all devices. Refer to the
“Special Features” chapter in the specific device data sheet to determine the modes
that are available according to the device-specific NVMOP[3:0] bits’ definition.

2: While performing RTSP on device Configuration registers, the device must be
operating using the internal FRC Oscillator (without PLL). If the device is operating
from a different clock source, a clock switch to the internal FRC Oscillator
(NOSC[2:0] = 000) must be performed prior to performing RTSP operation in the
device Configuration registers.

3: If the Primary Oscillator Mode Select bits (POSCMD[1:0]) in the Oscillator
Configuration register (FOSC) are being reprogrammed to a new value, the user
must ensure that the Clock Switching Mode bits (FCKSM[1:0]) in the FOSC register
have an initial programmed value of ‘0’, prior to performing this RTSP operation.

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 19



dsPIC33/PIC24 Family Reference Manual

4.6.1 CONFIGURATION REGISTER WRITE ALGORITHM
The general procedure is as follows:

1. Write the new configuration value to the Table Write latch using a TBLWTL instruction.
2. Configure NVMCON for a Configuration register write (NVMCON = 0x4000).

3. Write the address of the Configuration register to be programmed into the NVMADRU and
NVMADR registers.

Disable interrupts, if enabled.

Write the key sequence to the NVMKEY register.

Start the write sequence by setting the WR bit (NVMCON[15]).
Re-enable interrupts, if needed.

N o ok

Example 4-10 shows the code sequence that can be used to modify a device Configuration
register.

Example 4-10: Configuration Register Write Code
; Define the address to be written
.equ DestinationAddress, 0xF80000
; Initialize the write pointer for writing to the latches

MOV #0x0000, W7

; Initialize TBLPAG register for writing to the latches
MOV #0xFA, W12
MOV W12, TBLPAG

; Get the new data to write to the configuration register
MOV #ConfigvValue, Wl

; Perform the table write to load the write latch
TBLWTL W1, [W7]
; Load the address which is to be programmed

MOV #DestinationAddress[15:0],W2
MOV #DestinationAddress[23:16],W3
MOV W3, NVMADRU
MOV W2, NVMADR
; Configure NVMCON for a configuration register write
MOV #0x4000, W0
MOV W0, NVMCON
; Disable interrupts
PUSH INTCON2
BCLR INTCON2, #GIE
NOP
; Write the KEY sequence
MOV #0x55, W0
MOV W0, NVMKEY
MOV #0xAA, WO
MOV W0, NVMKEY

; Start the programming sequence
BSET NVMCON, #15

; Insert two NOPs after programming
NOP
NOP
POP INTCON2

DS70000609F-page 20

© 2009-2021 Microchip Technology Inc. and its subsidiaries



seleIpisqns s) pue ou| ABojouyps . dioIIN LZ0Z-6002 @

1z 86ed-46090000.50

5.0 REGISTER MAP

A summary of the registers associated with Flash Programming is provided in Table 5-1.

Table 5-1: Flash Programming Registers
File Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0 ReI:IcIats

NVMCON WR WREN | WRERR | NVMSIDL — — RPDF URERR — — — — NVMOP[3:0] 0000
NVMADRU — — — — — — — — NVMADRU[7:0] 0000
NVMADR NVMADR[15:0] 0000
NVMKEY — — — — — — — — | NVMKEY[7:0] 0000
NVMSRCADR(™ NVMSRCADR([15:0] 0000
Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Note 1: Not available for all devices. Refer to the specific device data sheet for details.

d yseld

Buiwwe.lbo.



dsPIC33/PIC24 Family Reference Manual

6.0 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33/PIC24 product families, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to Flash Programming are:

Title Application Note #
No related application notes at this time N/A

Note: Please visit the Microchip website (www.microchip.com) for additional Application
Notes and code examples for the dsPIC33/P1C24 families of devices.

DS70000609F-page 22

© 2009-2021 Microchip Technology Inc. and its subsidiaries


http://www.microchip.com
http://www.microchip.com

Flash Programming

7.0 REVISION HISTORY

Revision A (August 2009)

This is the initial released version of this document.

Revision B (February 2011)

This revision includes the following updates:

Examples:
- Removed Example 5-3 and Example 5-4
- Updated Example 4-1, Example 4-5 and Example 4-10

- Any references to #WR were updated to #15 in Example 4-1, Example 4-5 and
Example 4-8

- Updated the following in Example 4-3:

» Updated the title “Word Programming” to “Loading Write Latches for Row
Programming”

* Any reference to #ram_image was updated to #0xFA
- Added Example 4-4
- Updated the title in Example 4-8
Notes:
- Added two notes in Section 4.2 “Flash Programming Operations”
- Updated the note in Section 4.5.2 “Loading Write Latches”
- Added three notes in Section 4.6 “Writing to Device Configuration Registers”
- Added Note 1 in Table 5-1
Registers:

- Updated the bit values for NVMOP[3:0]: NVM Operation Select bits in the Flash Mem-
ory Control (NVMCON) register (see Register 3-1)

Sections:

- Removed sections 5.2.1.4 “Write Word Mode” and 5.2.1.5 “Write Byte Mode”
- Updated Section 3.0 “Control Registers”

- Updated the following in Section 4.5.5 “Word Programming”:

» Changed the section title “Programming One Word of Flash Memory” to “Word
Programming”

» Updated the first paragraph
» Changed the terms “one word” to “a pair of words” in the second paragraph
- Added a new Step 1 to Section 4.6.1 “Configuration Register Write Algorithm”
Tables:
- Updated Table 5-1
A few references to program memory were updated to Flash program memory

Other minor updates such as language and formatting updates were incorporated
throughout the document

© 2009-2021 Microchip Technology Inc. and its subsidiaries DS70000609F-page 23



dsPIC33/PIC24 Family Reference Manual

Revision C (June 2011)

This revision includes the following updates:
* Examples:
- Updated Example 4-1
- Updated Example 4-8
* Notes:
- Added a note in Section 4.1 “RTSP Operation”
- Added Note 3 in Section 4.2 “Flash Programming Operations”
- Added Note 3 in Section 4.2.1 “RTSP Programming Algorithm”
- Added a note in Section 4.5.1 “Erasing One Page of Flash”
- Added Note 2 in Section 4.5.2 “Loading Write Latches”
* Registers:
- Updated the bit description for bits 15-0 in the Nonvolatile Memory Address register
(see Register 3-3)
» Sections:
- Updated Section 4.1 “RTSP Operation”
- Updated Section 4.5.5 “Word Programming”

» Other minor updates such as language and formatting updates were incorporated
throughout the document

Revision D (December 2011)

This revision includes the following updates:

* Updated Section 2.1.3 “Table Write Latches”
» Updated Section 3.2 “NVMKEY Register”
» Updated the notes in NVMCON: Flash Memory Control Register (see Register 3-1)

» Extensive updates were made throughout Section 4.0 “Run-Time Self-Programming
(RTSP)”

» Other minor updates such as language and formatting updates were incorporated
throughout the document

Revision E (October 2018)

This revision includes the following updates:

» Added Example 2-2, Example 4-2, Example 4-6 and Example 4-9
* Added Section 4.5.4 “Row Programming Using the RAM Buffer”

» Updated Section 1.0 “Introduction”, Section 3.3 “NVM Address Registers”,
Section 4.0 “Run-Time Self-Programming (RTSP)” and Section 4.5.3 “Single Row
Programming Example”

» Updated Register 3-1
* Updated Example 4-7
* Updated Table 5-1

Revision F (November 2021)

Added Section 3.2.1 “Disabling Interrupts”.

Updated Example 3-1, Example 4-1, Example 4-2, Example 4-5, Example 4-6, Example 4-7,
Example 4-8, Example 4-9 and Example 4-10.
Updated Section 3.2 “NVMKEY Register”, Section 4.5.1 “Erasing One Page of Flash”,

Section 4.5.3 “Single Row Programming Example” and Section 4.6.1 “Configuration
Register Write Algorithm”.

DS70000609F-page 24 © 2009-2021 Microchip Technology Inc. and its subsidiaries



Note the following details of the code protection feature on Microchip products:

. Microchip products meet the specifications contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and

under normal conditions.

. Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of
Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly evolving. Microchip is committed to
continuously improving the code protection features of our products.

This publication and the information herein may be used only
with Microchip products, including to design, test, and integrate
Microchip products with your application. Use of this informa-
tion in any other manner violates these terms. Information
regarding device applications is provided only for your conve-
nience and may be superseded by updates. It is your responsi-
bility to ensure that your application meets with your
specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at https:/
www.microchip.com/en-us/support/design-help/client-support-
services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE, OR WARRANTIES RELATED TO
ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-
RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-
QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY
KIND WHATSOEVER RELATED TO THE INFORMATION OR
ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES
ARE FORESEEABLE. TO THE FULLEST EXTENT
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION
ORITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP
FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applica-
tions is entirely at the buyer's risk, and the buyer agrees to
defend, indemnify and hold harmless Microchip from any and
all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under
any Microchip intellectual property rights unless otherwise
stated.

For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud,
CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO,
JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus,
maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower,
PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch,
SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash,
Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O,
Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions
Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, TrueTime, WinPath, and ZL are
registered trademarks of Microchip Technology Incorporated in the
U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky,
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,
Dynamic Average Matching, DAM, ECAN, Espresso T1S,
EtherGREEN, GridTime, IdealBridge, In-Circuit Serial
Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip
Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView,
memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe,
Omniscient Code Generation, PICDEM, PICDEM.net, PICKkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, RTAX, RTG4, SAM-ICE, Serial Quad 1/O, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-1.S., storClad, SQl,
SuperSwitcher, SuperSwitcher I, Switchtec, SynchroPHY, Total
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, Symmcom, and Trusted Time are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany
11 GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2009-2021, Microchip Technology Incorporated and its subsidiar-
ies.

All Rights Reserved.

ISBN: 978-1-5224-9314-3

© 2009-2021 Microchip Technology Inc. and its subsidiaries

DS70000609F-page 25


www.microchip.com/quality
www.microchip.com/quality
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, Ml
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS70000609F-page 26 © 2009-2021 Microchip Technology Inc. and its subsidiaries

09/14/21


http://support.microchip.com
http://www.microchip.com

	Flash Programming
	Highlights
	1.0 Introduction
	2.0 Table Instruction Operation
	Figure 2-1: Addressing for Table Instructions
	2.1 Using Table Read Instructions
	2.1.1 Read Word Mode
	Example 2-1: Read Word Mode
	Example 2-2: Read Word Mode (in C)

	2.1.2 Read Byte Mode
	Example 2-3: Read Byte Mode

	2.1.3 Table Write Latches


	3.0 Control Registers
	3.1 NVMCON Register
	3.2 NVMKEY Register
	Example 3-1: NVMKEY Unlock Sequence
	3.2.1 Disabling Interrupts

	3.3 NVM Address Registers
	Register 3-1: NVMCON: Flash Memory Control Register
	Register 3-2: NVMADRU: Nonvolatile Memory Upper Address Register
	Register 3-3: NVMADR: Nonvolatile Memory Address Register
	Register 3-4: NVMKEY: Nonvolatile Memory Key Register


	4.0 Run-Time Self-Programming (RTSP)
	4.1 RTSP Operation
	4.2 Flash Programming Operations
	4.2.1 RTSP Programming Algorithm

	4.3 Creating a RAM Image of the Data Page to be Modified
	4.4 Erasing Flash Program Memory
	4.5 Programming the Flash Memory Page
	4.5.1 Erasing One Page of Flash
	Example 4-1: Erasing a Page of Flash Program Memory (in Assembly)
	Example 4-2: Erasing a Page of Flash Program Memory (in C)

	4.5.2 Loading Write Latches
	Example 4-3: Loading Write Latches for Row Programming
	Example 4-4: Loading Write Latches for Double-Word Programming

	4.5.3 Single Row Programming Example
	Example 4-5: Row Programming with Write Latches (in Assembly)
	Example 4-6: Row Programming with Write Latches (in C)

	4.5.4 Row Programming Using the RAM Buffer
	Figure 4-1: Uncompressed and Compressed Storage Formats for Program Data
	Example 4-7: Writing Program Memory from a Data RAM Buffer (in C)

	4.5.5 Word Programming
	Example 4-8: Two-Word Write (In Assembly)
	Example 4-9: Two-Word Write (in C)


	4.6 Writing to Device Configuration Registers
	4.6.1 Configuration Register Write Algorithm
	Example 4-10: Configuration Register Write Code



	5.0 Register Map
	Table 5-1: Flash Programming Registers

	6.0 Related Application Notes
	7.0 Revision History
	Revision A (August 2009)
	Revision B (February 2011)
	Revision C (June 2011)
	Revision D (December 2011)
	Revision E (October 2018)
	Revision F (November 2021)


	Worldwide Sales and Service

