
AN1284
Microchip Wireless MiWi™ Application

Programming Interface – MiApp
INTRODUCTION

Developing wireless applications can be challenging.
Apart from Radio Frequency (RF) circuit designs, the
firmware development process may require the devel-
opers to understand the details of RF transceivers, as
well as the different wireless communication protocols.
Microchip has developed a way to handle the complex
RF hardware or communication protocol stack software
development, or both, which enables wireless applica-
tion developers to focus on their own application devel-
opment. This type of wireless communication is
achieved through a concise, yet powerful communica-
tion programming interface in the application layer
called MiApp which is defined in this application note.

The MiApp specification defines the programming
interfaces between the application layer and Microchip
proprietary wireless communication protocols. The
MiApp programming interface is implemented in two
ways: as configuration parameters defined in the con-
figuration file, and as a set of function calls to the Micro-
chip proprietary wireless communication protocols.
Complying with the MiApp specification defined in this
application note, applications can use any Microchip
proprietary wireless protocols. With little or no modifica-
tion in the application layer, software development can
be easily changed between a proprietary P2P/Star
topology connection protocol to a full Mesh proprietary
networking protocol for small or big networks, depend-
ing on the application needs.

FIGURE 1: BLOCK DIAGRAM OF MICROCHIP WIRELESS MiWi™ STACK

Authors: Yifeng Yang
 Pradeep Shamanna
 Derrick Lattibeaudiere
 Vivek Anchalia
 Microchip Technology Inc.

User Application

MiApp

Interchangeable Wireless Communication Protocols

MiWi™ P2P/Star

MiWi™ Mesh
Future Microchip Proprietary

Wireless Protocols ...

MiMAC

Interchangeable RF Transceivers

MRF24J40 Transceiver
MRF89XA Transceiver

Future Microchip RF
Transceivers ...

Application
Configuration

Protocol Configuration

RF Transceiver
Configuration
 2009-2017 Microchip Technology Inc. DS00001284B-page 1

AN1284
The MiApp specification benefits wireless application
developers in multiple ways:

• Wireless application development focuses on its
application. Complex RF or protocol consider-
ations are transparently handled by the MiApp
programming interface.

• The MiApp specification allows maximum flexibil-
ity to choose a wireless protocol at any stage of
application software development with little effort,
thus greatly lowering the risk of software develop-
ment. Application requirement changes in net-
working capabilities have little or no impact in
application development.

• MiApp uses the same control interface for
Microchip wireless proprietary protocols. Once
you are familiar with MiApp, you can apply that
knowledge to the development of another applica-
tion even if it has a completely different network-
ing capability requirement.

• By communicating to the Microchip proprietary
protocols, MiApp indirectly talks to the Microchip
RF transceivers through the MiMAC interface. As
a result, MiApp indirectly enables the wireless
application developers to switch between
Microchip RF transceivers through MiMAC. This
flexibility, in turn, further reduces the development
risk of the wireless application project.

FEATURES

The MiApp programming interface has the following
features:

• Easy to learn and use

• Powerful interface to meet most requirements
from wireless applications

• Little or no extra effort to migrate the wireless
application between Microchip proprietary
wireless protocols

• Minimum footprint impact

CONSIDERATIONS

The MiApp specification is designed to support Micro-
chip proprietary wireless communication protocols.
Once a wireless application is implemented by the
MiApp programming interface, the Microchip RF trans-
ceivers are also supported through standardization in
MiMAC, the module defined in the Media Access Con-
troller (MAC) layer.

MiMAC standardizes the interface between Microchip
wireless protocols and Microchip RF transceivers.
MiMAC makes Microchip RF transceivers interchange-
able with little or no change in the software application
code. For more information on MiMAC, refer to the
Application Note “AN1283 Microchip Wireless MiWi™
Media Access Controller - MiMAC” (DS00001283).

MiMAC regulates the lower interface of the Microchip
proprietary wireless protocols, while MiApp regulates
the higher interface of the Microchip proprietary wire-
less protocols. Working together, both MiMAC and
MiApp provide wireless application developers the
maximum flexibility to choose the RF transceivers and
wireless communication protocols at any stage of soft-
ware development, thus further minimizing the risk of
software development.The block diagram in Figure 1
shows the Microchip Wireless MiWi™ stack offerings.

There are three layers of configurations for application,
protocol stacks and RF transceivers. Application con-
figuration may change between devices in the same
application according to their hardware design, role in
the application and network. Wireless application
developers tend to do the majority of the configuration
in the application layer. Protocol configurations fine-
tune the behavior of the protocol stack. The majority of
protocol stack configurations define the timing and
routing mechanism for the chosen wireless protocol.
Transceiver configurations define the frequency band,
data rate and other RF related features of the RF trans-
ceiver. The default settings for the protocol and RF
transceiver configurations may work with the applica-
tion without any modification. The application configu-
rations, however, usually need to be changed to fit the
needs of different wireless applications.
DS00001284B-page 2  2009-2017 Microchip Technology Inc.

AN1284
MiApp OVERVIEW

As discussed earlier, there are two parts defined in the
MiApp specification:

• Configuration parameters defined in the
configuration file

• Signatures of function calls to the Microchip
proprietary wireless protocols

The configuration file contains parameters that must be
set before compilation. Generally, there are two types
of parameters defined in the configuration file:

• Hardware Definitions – these includes MCU
hardware resources, peripherals definition and
the definition for the RF transceiver control pins.
The default hardware definitions are defined in
several Microchip standard demo boards that
support Microchip RF transceivers. In these
cases, the definition of demo boards automatically
introduces all hardware definitions.

• Software Definitions – these definitions control
the code sections to be compiled into the firmware
hex file. The software definitions include selec-
tions of Microchip proprietary wireless protocol,
choice of Microchip RF transceiver, and individual
functionalities. Proper definitions in this category
ensure the minimum firmware footprint with the
intended protocol capabilities.

Application Programming Interfaces (APIs) are the
function calls between the Microchip proprietary
wireless communication protocols with the wireless
application. As a rule, the application interface must be
clean, concise, easy to understand, and powerful.

There are five categories of interfaces for the APIs:

• The initialization interface allows wireless applica-
tion developers to properly initialize the selected
Microchip proprietary wireless protocol in the con-
figuration file.

• The handshaking interface allows the wireless
nodes to discover and get connected with their
peers, or to join the network.

• Interfaces to send messages which enable appli-
cation developers to transmit information from the
current node to an intended audience over-the-air.

• Interfaces to receive messages which enable
application developers to receive information
over- the-air from other devices.

• Special functionalities which ensure the optimal
operating condition for wireless nodes through
environment noise control and power saving.

MiApp CONFIGURATION FILE

The hardware definitions depends on the choices of the
Demo/Development boards, the MCUs and the RF
transceivers. The hardware definitions can be divided
into the following subcategories:

• I/Os on the demo board – these includes the push
buttons, LEDs, serial ports, and so on.

• MCU system resources – these includes the
timers, interrupts, and so on.

• Interconnections between MCU and RF
transceiver

Hardware definitions are mainly associated with hard-
ware selections of the wireless application system
design. They depend more on the hardware than the
software and vary across different designs. As a result,
MiApp does not have a set of standards for those
hardware definitions.

Selective compilation configurations select the features
among the list of available ones. Using the selective
compilation, application developers are able to config-
ure Microchip proprietary wireless protocols to perform
the desired functionality with the least possible system
resources. Table 1 describes the possible selective
compilation configurations and its scope, value, and
functionality.
 2009-2017 Microchip Technology Inc. DS00001284B-page 3

AN1284
TABLE 1: APPLICATION LAYOUT SOFTWARE DEFINITIONS IN A CONFIGURATION FILE

Application Definitions Functionality Comments

#define PROTOCOL_P2P
#define PROTOCOL_STAR
#define PROTOCOL_MESH

Selects the Microchip proprietary
wireless protocol to be used in the
wireless application.

Only one protocol can be defined at any
one time.

#define MRF24J40
#define MRF89XA

Selects the Microchip RF trans-
ceiver to be used in the wireless
application.

Only one transceiver can be defined at any
one time.

#define TX_BUFFER_SIZE 64 Defines the maximum size of the
application payload to be transmit-
ted, excluding all protocol headers.

There may be RF transceiver hardware
restrictions on the size of buffer that can be
transmitted. The hardware restriction
includes all protocol headers.

#define RX_BUFFER_SIZE 64 The maximum size of application
payload to be received, excluding
all protocol headers.

There may be RF transceiver hardware
restrictions on the size of buffer that can be
received. The hardware restriction includes
all protocol headers.

#define
CONNECTION_SIZE 10

The size of connection table.
Determines the maximum number
of devices that the node can con-
nect to.

Depends upon available MCU RAM.

#define
ADDITIONAL_NODE_ID_SIZE 1

Defines the size of additional infor-
mation attached to the packets in
the handshake process. Primarily
used to identify the node in the
application layer.

The additional node identifier plays no role
in Microchip’s proprietary protocols. How-
ever, it may play an important role in the
application. In a simple case of light and
switch, two lights may not be interested in
connecting to each other, and the same
applies to two switches. Using the addi-
tional node identifier enables the application
to identify the role of the node in the appli-
cation so that switches only connect with
lights.

#define ENABLE_PA_LNA Enables the RF transceiver to use
an external power amplifier or a
low noise amplifier, or both.

For RF transceivers that can control an
external PA or LNA, or both.

#define ENABLE_HAND_SHAKE Enables the Microchip proprietary
wireless protocol to automatically
establish connections with peers.

Handshake process enables two wireless
nodes to know each other. In other proto-
cols, this process is also called Pairing.
Applications without handshake only use
broadcast to exchange messages.

#define ENABLE_SLEEP Enables the RF transceiver to go
to sleep when idle to save power.

Sleep mode depends on the capability of
the RF transceiver.

#define ENABLE_ED_SCAN Enables the Microchip proprietary
wireless protocol and RF trans-
ceiver to perform an energy detec-
tion scan.

The energy scan depends on the capability
of the RF transceiver.

#define
ENABLE_ACTIVE_SCAN

Enables the Microchip proprietary
wireless protocol to perform an
active scan to discover nodes and
networks in the neighborhood.

Active Scan is used to search for existing
wireless devices of the same kind in the
neighborhood. Active Scan can be used to
decide which device to connect to.

#define ENABLE_SECURITY Enables the Microchip proprietary
wireless protocol to secure pack-
ets that are transferred.

The security engine, security mode, and
keys are defined in a configuration file for
the RF transceiver, as security is defined as
part of MiMAC.
DS00001284B-page 4  2009-2017 Microchip Technology Inc.

AN1284
#define
ENABLE_INDIRECT_MESSAGE

Enables the wireless node to
cache messages for sleeping
devices and to deliver them once
the sleeping device wakes up and
asks for the messages.

Only wireless nodes that do not go to sleep
can cache message for sleeping nodes.
The number of messages which can be
cached depends on the available MCU
RAM.

#define
RFD_WAKEUP_INTERVAL 5

Defines, in seconds, the RFD
devices' wake-up time interval.

Only effective when indirect message is
enabled. This definition is used for devices
that are always awake to keep track of time-
outs for indirect messages. The sleeping
time of sleeping devices depends on the
WDT setting of the host MCU.

#define ENABLE_BROADCAST Enables the wireless node to han-
dle broadcast messages for sleep-
ing devices.

Only wireless nodes that do not go to sleep
can cache messages for sleeping nodes.
This macro is supported only for MiWi P2P
and Star networks. Mesh supports caching
only through the Personal Area Network
(PAN) Coordinator.

#define
ENABLE_FREQUENCY_AGILITY

Enables the Microchip proprietary
wireless protocol to perform fre-
quency agility procedures.

Only supported by P2P and Star networks.

#define HARDWARE_SPI Enables the MCU to use the hard-
ware SPI to communicate with the
transceiver.

Defining of HARDWARE_SPI enables the
MCU to use the hardware SPI to communi-
cate with the transceiver. Otherwise, the
MCU can use bit-bang to simulate SPI com-
munication with transceiver.

#define TARGET_SMALL Minimizes the footprint of Micro-
chip proprietary wireless protocols.

Some features of the Microchip proprietary
wireless protocol may not be supported
when minimizing the footprint of the proto-
col. This macro is supported only for MiWi
P2P and Star networks.

#define
ENABLE_NETWORK_FREEZER

Enables the Microchip proprietary
wireless protocol to store critical
network parameters and to
recover from power loss to the
original network setting.

Requires nonvolatile memory of either MCU
data EEPROM, external EEPROM or pro-
gramming space. Network size and chosen
wireless protocol decides the total amount
of nonvolatile memory required. This macro
is supported only for MiWi P2P and Star
networks. The Mesh does not take care of
this network freezer functionality due to the
dynamic connections, routing, and self-
healing features.

#define
ENABLE_APP_LAYER_ACK

Enables the acknowledgment fea-
ture to receive a software-based
acknowledgment from the end
device receiving the packet.

Only supported by MiWi Star protocol.

TABLE 1: APPLICATION LAYOUT SOFTWARE DEFINITIONS IN A CONFIGURATION FILE

Application Definitions Functionality Comments
 2009-2017 Microchip Technology Inc. DS00001284B-page 5

AN1284
#define
ENABLE_PERIODIC_CONNEC-
TION_TABLE_SHARE

Used to enable a connection table
share feature on the PAN Coordi-
nator. The PAN Coordinator peri-
odically broadcasts the connection
table information to the end
devices in the network. This fea-
ture is added to ensure the Full-
Function Devices (FFDs) are noti-
fied of all the other end devices
that join or leave the network. The
frequency of the periodic connec-
tion table broadcast is a compile
option.

Only supported by MiWi Star protocol.

#define
ENABLE_LINK_STATUS

Provides the means for the PAN
Coordinator to monitor the status
of the network. By default, each
end device sends a link status
message to the PAN Coordinator
every 15 seconds indicating it is
alive/active and communicating on
the network. The frequency of the
link status is a compile time option.

Only supported by MiWi Star protocol.

#define MAKE_ENDDE-
VICE_PERMANENT

Enables the Reduced-Function
Device (RFD) sleeping device to
be deemed permanently active in
the network. PAN Coordinator do
not expect any link status being
sent from the end device which
has enabled this feature.

Only supported by MiWi Star protocol.

#define
RADIO_BUFFER_SIZE 64

Enables the size of the Radio
Buffer allocated and used along
with the TX and RX buffers.

Only supported by MiWi Mesh protocol.

#define
MY_ADDRESS_LENGTH 8

Defines the address length based
on the supported radio devices (in
IEEE or non IEEE format).

This can be 2 to 8 bytes in size.

#define
MEM_ACK_INFO_SIZE 5

Displays the maximum number of
acknowledgments that must be
handled after a TX.

—

#define
ACTIVE_SCAN_RESULT_SIZE 5

Defines the number of results to
be managed/accounted for based
on the Active Scan responses.

—

#define PAYLOAD_START 0 Initializes the initial size of the pay-
load to zero .

—

#define PAN_ID 0x1234 Defines the PAN ID number when
a PAN Coordinator starts the net-
work.

The PAN ID can be dynamically assigned in
P2P and Star networks when the PAN ID is
defined as 0xFFFF.

Note: Some of the values shown along with the definitions point to the default values that are part of the latest
MiWi stack.

TABLE 1: APPLICATION LAYOUT SOFTWARE DEFINITIONS IN A CONFIGURATION FILE

Application Definitions Functionality Comments
DS00001284B-page 6  2009-2017 Microchip Technology Inc.

AN1284
MiApp FUNCTION INTERFACES

Other than the options used as Macro definitions as
part of the configuration file which refers to the hard-
ware definitions, the application layer also uses the
software definitions through the function calls to com-
municate with the Microchip proprietary wireless proto-
col layer, thus controlling the transceiver indirectly to
perform wireless communication. There are five cate-
gories of function calls to the protocol layers from the
application layer:

• Initialization

• Handshaking

• Sending Messages

• Receiving Messages

• Special Functionality

The following sections describe the function interfaces
in detail, as well as associated structure definitions.

Initialization

To initialize the RF transceiver and protocol stack, the
application layer only needs to trigger the initialization
process by calling the function ProtocolInit. The full
function signature is as follows:

There is only one parameter for the initialization. The
input boolean decides if the network freezer feature is
performed during the initialization. When the network
freezer feature is performed, the old network settings
that are stored in nonvolatile memory are restored. The
return value is a boolean to indicate if the operation is
successful.

Other than the normal initialization process, wireless
applications may need to change the transmit or
receive frequency during operation. MiApp defines the
following function to change the operating frequency of
the RF transceiver according to the predefined chan-
nel. Each channel defines the frequency either accord-
ing to the specification, or the RF transceiver settings
under different operating frequency bands. The
function signature is as follows:

The only input parameter is the channel to be set. The
return value indicates if the operation is successful.
The possible channel numbers are from 0 to 31.
Depending on the RF transceiver, frequency band and
data rate, not all channels from 0 to 31 may be valid
under all conditions. If the input channel is invalid under
current conditions, the operating channel is unchanged
and the return value is FALSE to indicate failure.

PERSONAL AREA NETWORK IDENTIFIER
(PAN ID)

The PAN ID is used by the Coordinator in the Mesh net-
work to start a PAN network. Any device in the vicinity
can identify the PAN and join based on the require-
ments. The PAN ID is defined by a macro in the file
miwi_config.h with the default PAN ID as number
0x1234.

The function related to PAN ID, specifically for the
Mesh network, is MiAPP_SetAddressPan. This func-
tion sets the device address and the PAN ID and has
no return value. The input parameters to this function
are the short address of the node and the PAN ID.
The short address is a unique address for each wire-
less node in the network. The PAN ID value must be the
same for all the wireless nodes in a chosen network.

Handshaking

Unless hard coded in manufacturing, in most applica-
tions, the two communication endpoints need an intro-
duction before they can unicast messages between a
pair of wireless nodes. The introduction for a network-
ing protocol is sometimes called joining the network.
For the P2P protocol, this process is called pairing.
Since this strategy does not focus on any particular
topology or protocol, this process is generally called the
handshaking phase. Without a handshaking process,
wireless nodes can only use broadcast, which treats
every wireless node in the source radio range as the
audience, to communicate with each other.

The following function calls for handshaking are avail-
able to the application layer:

• MiApp_StartConnection

• MiApp_SearchConnection

• MiApp_EstablishConnection

• MiApp_ConnectionMode

• MiApp_RemoveConnection

MiApp_StartConnection

The function call MiApp_StartConnection enables a
wireless node to start operating in different ways. There
are three ways to start a PAN: start a PAN directly on a
particular channel, or start a PAN after either of the two
channel assessments. The full function signature is as
follows:

The return value of the function call indicates if the
operation is successful.

bool MiApp_ProtocolInit (bool bNetworkFreezer);

bool MiApp_SetChannel (uint8_t Channel);

#define PAN_ID 0x1234

bool MiApp_StartConnection (uint8_t Mode,
uint8_t ScanDuration, uint32_t ChannelMap);
 2009-2017 Microchip Technology Inc. DS00001284B-page 7

AN1284
The input parameter mode specifies the mode of start-
ing the PAN. The modes are as follows:

• START_CONN_DIRECT – start the connection
at the current channel without any channel
assessment.

• START_CONN_ENERGY_SCN – start the con-
nection after an energy detection scan and the
PAN start at the channel with the lowest energy.

• START_CONN_CS_SCN – start the connection
after a carrier sense scan and the PAN start at the
channel with the lowest carrier sense detected.

For the transceivers that do not support energy detec-
tion or carrier sense scan, or both, those modes are not
valid and the function should start the PAN without any
channel assessment if such a mode is specified in the
input parameter.

The input parameter ScanDuration specifies the maxi-
mum time to perform the channel assessment. The
max-and-hold method must be applied for the scan
period, if multiple scans can be performed. In case the
starting mode specifies no channel assessment, this
input parameter is discarded. The value of the input
parameter ScanDuration complies with the definition in
the IEEE 802.15.4™ specification. Its range is from 1 to
14. Equation 1 is the formula to calculate the scan
duration time.

EQUATION 1: SCAN DURATION
CALCULATION

As the formula shows, a ScanDuration of 10 is roughly
one second. An increase by one roughly doubles the
time, while a decrease by one roughly cuts the time in
half.

The input parameter ChannelMap specifies the chan-
nels to be scanned in the process. ChannelMap is
defined as a 4 byte double word. It uses bit map to rep-
resent channel 0 to channel 31. When a bit is set in the
double word, it means that the corresponding channel
performs the channel assessment. For instance, if bit 0
of the input parameter ChannelMap is set, channel 0
performs the channel assessment. To perform channel
assessment on all available channels, set the input
parameter ChannelMap to 0xFFFFFFFF.

MiApp_SearchConnection

The function call MiApp_SearchConnection searches
for and discovers the existing peer wireless nodes in
the neighborhood. This procedure is also known as
active scan. In some applications, this step informs the
device whether it should start a PAN or choose a PAN
to join. If a PAN is started, this procedure can be used
to decide which PAN identifier to chose. If the device
joins a PAN, this procedure is used to choose which
PAN and which device to join.

The full function signature is as follows:

The return value of this function indicates the total num-
ber of returned PANs. The result of the return PAN is
stored in the global variable in the format of structure
ACTIVE_SCAN_RESULT, which is defined as follows:

In this structure, element address indicates the address
of the device that responded to the active scan.

Element PAN ID indicates the PAN identifier, if avail-
able. The PAN identifier is used to specify the network
ID.

Elements RSSI and LQI indicate the strength and qual-
ity of the responding signal, respectively. This
information may not be available for all RF
transceivers.

Element Capability contains information regarding the
capability of the device that sends back the response.
It is a bit map of capabilities, which is defined in the
union. Depending upon the protocol used under the
application layer, the capability information may not be
available.

MiApp_EstablishConnection

The function call MiApp_EstablishConnection estab-
lishes a connection with one or more devices. The full
function signature is as follows:

ScanTime(us) = 960 * (2ScanDuration + 1)

uint8_t MiApp_SearchConnection(uint8_t
ScanDuration, uint32_t ChannelMap);

typedef struct
{
 uint8_t Channel;
 uint8_t Address [MY ADDRESS LENGTH];
 API_UINT16_UNION ;
 uint8_t RSSIValue;
 uint8_t LQIValue;
 union
 {
 uint8_t Val;
 struct
 {
 uint8_t Role: 2;
 uint8_t Sleep: 1;
 uint8_t SecurityEn: 1;
 uint8_t RepeatEn: 1;
 uint8_t AllowJoin: 1;
 uint8_t Direct: 1;
 uint8_t altSrcAddr: 1;
 } bits;
 }Capability
 #if ADDITIONAL_NODE_ID_SIZE>0
 uint8_t PeerInfo[ADDITIONAL_NODE
 _ID_SIZE];
 #endif
} ACTIVE_SCAN_RESULT;

uint8_t MiApp_EstablishConnection(INPUT
uint8_t ActiveScanIndex, INPUT uint8_t
Mode) ;
DS00001284B-page 8  2009-2017 Microchip Technology Inc.

AN1284
This function call returns a byte to indicate the index of
the new peer node in the connection table. If the return
value is 0xFF, it means the procedure to establish a
connection has failed after attempting the number of
predefined retries. If there are multiple connections
established during the procedure, the return value is
the index of the connection table for one of the connec-
tions.

The parameter ActiveScanIndex is the index in the
active scan result table for the node to establish con-
nection. If the value is 0xFF, the protocol tries to estab-
lish a connection with any device. For this reason,
multiple connections may be established during the
process.

The parameter mode specifies the connection mode.
There are two modes defined:

• MODE_DIRECT – this mode directly establishes
a connection in the radio range. The P2P stack
uses this mode to establish a connection, while a
network protocol uses it to establish a connection
with a parent to join the network.

• MODE_INDIRECT – this mode is used by a net-
work protocol to establish a connection across the
network with one or more hops. The connected
devices may or may not be in the radio range of
the requesting node. In this case, the input
parameter ActiveScanIndex has the value 0xFF.

MiApp_ConnectionMode

The function call MiApp_ConnectionMode sets the
connection mode that regulates whether the current
wireless node is able to accept direct connections from
new devices. The full function signature is as follows:

There is no return value for this function. The input
parameter mode indicates the mode of the operation.
The available modes of operation are as follows:

• ENABLE_ALL_CONN – this mode enables the
connection under any condition. This is the
default mode when the application starts to run.

• ENABLE_PREV_CONN – this mode only
enables old connections. Connection requests
from nodes that are already on the connection
table is allowed. Otherwise, the request is
ignored.

• ENABLE_ACTIVE_SCAN_RSP – this mode
enables the current node to respond to any active
scan request to identify itself.

• DISABLE_ALL_CONN – this mode disables all
connection requests, including active scan.

The connection privilege decreases from ENABLE_-
CONN to DISABLE_ALL_CONN. Any higher privilege
has all the rights for the lower one.

MiApp_RemoveConnection

The function call MiApp_RemoveConnection allows
the current node to disconnect certain connections.
The full function signature is as follows:

There is no return value for this function. The input
parameter ConnectionIndex specifies the index in the
connection table for the peer node to be removed. If the
ConnectionIndex is 0xFF, the device removes all con-
nections and leave the network. In a network protocol,
this also means that all the device’s children leaves the
network. In case that the ConnectionIndex points to the
parent node in a network protocol, the current node and
all of its children must leave the network. If the connec-
tion index points to a node that is not the parent of the
current node, the connection is removed and the
device stays in the PAN.

Sending Messages

The most important functionality of a wireless node is
to communicate, or send and receive data. All proto-
cols have reserved buffers for the data transfer, with the
size equal or larger than TX_BUFFER_SIZE defined in
the configuration file. Two macro functions are defined
to manage the TX buffer in the stack:

The function MiApp_FlushTx is used to reset the
pointer of the transmission buffer in the stack. It has no
parameter and no return value.

The function MiApp_WriteData is used to fill one byte
of data to the transmission buffer in the stack. The only
input parameter is the one byte of data to be filled into
the transmission buffer.

Usually, MiApp_FlushTx is called first to reset the buffer
pointer and then MiApp_WriteData is called multiple
times to fill the transmission buffer, one byte at a time.

After the transmission buffer is filled, the next step is to
trigger the message to be transmitted by the protocol
layer. There are three ways to transmit a message:

• Broadcast

• Unicast to the node by its index in the connection
table

• Unicast to the node by its address, either the per-
manent address or the alternative network
address.

void MiApp_ConnectionMode(INPUT uint8_t
Mode);

void MiApp_RemoveConnection(INPUT
uint8_t ConnectionIndex);

#define MiApp_FlushTx();

#define MiApp_WriteData(a)
TxBuffer[TxData++] = a
 2009-2017 Microchip Technology Inc. DS00001284B-page 9

AN1284
Broadcasting a message targets all devices regardless
of their addresses. The full function signature for a
broadcast is as follows:

The return value of this function call indicates if the
transmission is successful. The only input parameter,
SecEn, is a boolean to specify if the payload needs to
be secured.

Unicast targets a single device as a destination. There
are two ways to unicast a message:

• The destination is represented by an index on the
connection table

• The destination address is clearly given, either
the permanent address or a network address.

The full function signature for unicast with an index of
the connection table is as follows:

The return value of this function call indicates if the
transmission is successful. The input parameter Con-
nectionIndex is the index of the destination node in the
connection table. The input parameter SecEn is a bool-
ean to indicate if the payload needs to be secured.

The full function signature for unicast with a destination
address is as follows:

The return value of this function call indicates if the
transmission is successful.

The input parameter address is the pointer that points
to the destination address.

The input boolean parameter PermanentAddr indicates
if the destination address is a permanent address or an
alternative network address. For P2P or Star protocol,
only the permanent address is used, thus the input
parameter PermanentAddr has no effect.

The input parameter SecEn indicates if the payload
needs to be secured.

Receiving Messages

The other important functionality of the transceiver is to
receive messages. The application layer needs to
know when a message is received, the content of the
message and occasionally on how the message is
received. The application layer also needs to discard
the message to release the resources and enable to
receive and process new messages. To work with the
flow as described, there are two function calls and one
structure to define.

MiApp_MessageAvailable

The function call MiApp_MessageAvailable has no
input parameter and returns a boolean to indicate if a
new message is received and is available for process-
ing in the application layer. The full function signature is
as follows:

DATA STRUCTURE FOR RECEIVED
MESSAGES

All received messages that are forwarded to the appli-
cation layer are stored in a global variable defined in
the format of RECEIVED_MESSAGE as follows:

Depending upon the transceiver and the Microchip pro-
prietary protocol used, not all elements in the structure
are valid.

MiApp_DiscardMessage

The function call MiApp_DiscardMessage has no input
parameter and returns no value. The application layer
calls this function to notify the Microchip proprietary
wireless protocol layer that the current packet is done
processing and it is ready to process the next packet.
The full function signature is as follows:

bool MiApp_BroadcastPacket(bool SecEn);

bool MiApp_UnicastConnection(uint8_t
ConnectionIndex, bool SecEn);

bool MiApp_UnicastAddress(uint8_t
*DestinationAddress, bool PermanentAddr,
bool SecEn);

bool MiApp_MessageAvailable(void);

typedef struct
{
 union
 {
 uint8_t Val;
 struct
 {
 uint8_t broadcast: 2;
 uint8_t ackReq: 1;
 uint8_t secEn: 1;
 uint8_t repeat: 1;
 uint8_t command: 1;
 uint8_t srcPrsnt: 1;
 uint8_t altSrcAddr: 1;
 } bits
 } flags;

 API_UINT16_UNION SourcePANID;
 uint8_t *SourceAddress;
 uint8_t *Payload;
 uint8_t PayloadSize;
 uint8_t PacketRSSI;
 uint8_t PacketLQI;

} RECEIVED_MESSAGE;

void MiApp_DiscardMessage(void);
DS00001284B-page 10  2009-2017 Microchip Technology Inc.

AN1284
In a MiWi wireless network for RFD sleeping devices
there needs to be a mechanism for these devices to
wake-up and receive a data packet. The function
MiApp_RequestData is used by RFD sleeping devices
to request for cached data from their parent device.

This function has no input parameter and returns no
value. The rxMessage.SourceAddress holds the
received data.

Special Functionality

Some transceivers have special functionalities that
enable the protocol stack to be more robust and adapt-
able to the environment.

NOISE DETECTION SCAN

The noise detection scan enables the transceiver to
detect the noise level in the environment. It is valuable
to start a new PAN at a quiet frequency, as well as
deciding whether channel hopping is necessary and to
which channel to hop.

The full function signature is as follows:

The function call MiApp_NoiseDetection returns the
channel with the least amount of noise. The function
has four function parameters:

• ChannelMap – this input parameter defines the
bit map of channels to be scanned. For each
transceiver, the supported number of channels is
different; therefore, not all bit maps in the input
parameter ChannelMap are valid.

• ScanDuration – this input parameter defines the
total times of noise detection on each channel.
The max-and-hold mechanism is used to detect
the noise level on each channel. Input parameter
ScanDuration follows the IEEE 802.15.4™ speci-
fication as detailed earlier in this application note
with a formula to calculate real time.

• DetectionMode – this input parameter defines
the detection mode to be used: energy detection
or carrier sense detection. Not all detection
modes are supported by all RF transceivers.

• NoiseLevel – this output parameter returns the
noise level on the best channel, or the channel of
the return value of this function call. This output
parameter enables the application layer to view
the noise level on the best possible channel. The
higher the NoiseLevel parameter value, the nois-
ier the environment.

TRANSCEIVER POWER STATE

To enable a wireless node powered by a battery, it is
necessary to set the radio transceiver to a different
power state, or to put it into sleep and wake it up period-
ically. The function call MiApp_TransceiverPowerState
is defined to achieve this goal:

The only input parameter for this function call is the
operation mode. The predefined operation modes are
as follows:

• POWER_STATE_SLEEP – puts the transceiver
into Sleep mode.

• POWER_STATE_WAKEUP – wakes up the
transceiver without sending any data request.

• POWER_STATE_WAKEUP_DR – wakes up the
transceiver and then sends out a data request to
its main associated device to ask for incoming
data.

The function call MiApp_TransceiverPowerState
returns a byte to indicate the status of the operation.
The predefined operation status return values are as
follows:

• SUCCESS – indicates that every operation is
successful.

• ERR_TRX_FAIL – indicates that the request to
sleep or wake-up the transceiver failed.

• ERR_TXFAIL – indicates that the request to send
out data failed. This option is only available when
WAKE_DR is the operation mode.

• ERR_RXFAIL – indicates that the request to
receive data from the parent failed. This option is
only available when WAKE_DR is the operation
mode.

FREQUENCY AGILITY

The frequency agility is the capability to hop channels
during operation to bypass persistent noise at certain
frequency.

Not all transceivers and protocols support frequency
agility. Frequency agility functions are optional for
application interfaces.

There are two functions to establish frequency agility.
One function is used to initiate the frequency agility pro-
cedure. The other function is used to synchronize the
connection if communication is lost due to frequency
agility performed at the other end of the communica-
tion.

The full function signature to initiate the frequency agil-
ity procedure is as follows:

Note: This function only applies for Sleeping
RFD devices.

void MiApp_RequestData(void);

uint8_t MiApp_NoiseDetection(INPUT
uint32_t ChannelMap, INPUT uint8_t
ScanDuration, INPUT uint8_t DetectionMode,
OUTPUT uint8_t *RSSIValue);

uint8_t MiApp_TransceiverPowerState(INPUT
uint8_t Mode);

bool MiApp_InitChannelHopping(INPUT
uint32_t ChannelMap);
 2009-2017 Microchip Technology Inc. DS00001284B-page 11

AN1284
The return value of the function call MiApp_InitChan-
nelHopping indicates if the channel hopping operation
is successful. The ChannelMap input parameter indi-
cates available channels to move to. The ChannelMap
parameter is a bit map of possible channels. If a chan-
nel is available, the corresponding bit (nth bit for chan-
nel n) is set; otherwise, it is cleared.

The MiApp specification does not define when to start
channel hopping. The trigger event can be continuous
transmission or receiving failures, or just periodically
searching for the optimal frequency to operate the wire-
less application. It is up to the wireless application to
decide when to start the channel hopping process. The
MiApp specification provides the proper interface to the
Microchip proprietary wireless protocols to perform
these actions as dictated by the application layer.

Once the channel hopping procedure is done, it is pos-
sible that some of the wireless nodes, especially those
in Sleep mode, do not know that the network moved to
a different channel. It is necessary to define a function
to resynchronize the connection:

The return value of the function MiApp_ResynConnec-
tion indicates if the resynchronization procedure is suc-
cessful. There are two input parameters:

• ConnectionIndex – this is the index of the device
to be synchronized in the connection table.

• ChannelMap – this is the bit map of the possible
channels to synchronize connection.

SECURITY

The network security in MiWi protocol is enabled by the
ENABLE_SECURITY. However, the Broadcast and the
Unicast functions enable the packet security through
their respective MiApp functions. For more information,
refer to “Sending Messages” section.

PROTOCOL SPECIFIC FUNCTIONS
AND DEFINITIONS

Functions and Definitions Specific to
MiWi Star Protocol

BROADCAST CONNECTION TABLE

The function MiApp_BroadcastConnectionTable is
used by the PAN Coordinator. This function is used
only in a Star network by the PAN Coordinator and is a
command type packet. The PAN Coordinator broad-
casts Connection Table as part the network protocol
function for all the End Devices in the network when-
ever an End Device joins the network. The function
checks for the defined macro ENABLE_PERIODIC_-
CONNECTION_TABLE_SHARE. Therefore, whenever
a new device joins the Star network, the PAN Coordina-
tor sends an updated connection table to the con-
nected nodes in its PAN network. The full function
signature used in the MiWi Star is as follows:

This function does not have any of the input and return
parameters.

UNICAST MESSAGE

The function MiApp_UnicastStar is used by the End
Device in the Star network. This function call expects
two variables , one is the EndDevice_Connection_In-
dex and the other is a Boolean input to check for secu-
rity if enabled or disabled.
EndDevice_Connection_Index is the index of the Des-
tination End Device in the END_DEVIC-
ES_Unique_Short_Address.
END_DEVICES_Unique_Short_Address is the struc-
ture that stores the 3 bytes short addresses of End
Devices connected to the PAN Coordinator. The func-
tion returns true if the transmission is successful.

The return value of the function call indicates if the
operation is successful.

LEAVE NETWORK

The function MiApp_Leave_Network is used by the
End Device in the Star network. This function is used by
End Devices to indicate that it is leaving of the network
and is related only to the Star network. The device is
considered inactive when the command is acknowl-
edged by PAN Coordinator. However, the End Device
can still join the same PAN when required. The full
function signature used in the MiWi Star is as follows:

This function does not have any of the input and return
parameters.

Note: The macro ENABLE_SECURITY must be
enabled in all the nodes to use this
security feature.

bool MiApp_ResyncConnection(INPUT
uint8_t ConnectionIndex, INPUT uint32_t
ChannelMap);

void MiApp_BroadcastConnectionTable
(void);

bool MiApp_UnicastStar(bool SecEn);

void MiApp_Leave_Network(void);
DS00001284B-page 12  2009-2017 Microchip Technology Inc.

AN1284
Functions and Definitions Specific to
MiWi Mesh Protocol

SET PAN ID AND DEVICE ADDRESS

This function must be used by all device roles - PAN
Coordinator (FFD), Coordinator (FFD), and Sleeping
RFDs/Sleeping End Devices.

The function call MiApp_SetAddressPan has two
parameters:

• Address – this input parameter is the short
address input for the wireless node. This address
must be unique for each node.

• PAN ID – this input parameter is the 2 byte
network identifier (PAN ID) on which the wireless
node operates on.

The MiApp_SetAddressPan sets the 2 or 8 byte
address for the device based on the IEEE802.15.4
compliance. The macro MY_ADDRESS_LENGTH
must enabled to execute the function. The full function
signature used in the MiWi Mesh protocol stack is as
follows:

The input parameters are the pointer to the 8 byte or
the 2 byte address and the 2 bytes of the PAN ID. There
is no return value for this function.

GET PARENT ADDRESS

The function MiApp_GetParentAddress is used by the
Coordinator or by a sleeping RFD to identify the short
address of its parent. Usually, wireless Mesh network
consists of multiple nodes connected to each other. In
order to understand the network mapping, it is import-
ant to know the relationship between the nodes. The
full function signature used in the MiWi Mesh is as fol-
lows:

The function MiApp_GetParentAddress has no input
parameter and the return value is an address. All
addresses that are received to the application layer are
stored in a global variable defined in the format of
addr_t as follows:

addr_t is a structure to store the address of the par-
ent node to which the Coordinator or the RFD Sleeping
device is connected as a child.

NETWORK MEMBER

In a Mesh Network, if a wireless node loses its connec-
tion with its parent node or if it is not part of network,
there must be a way to find out the lost connection from
the application layer. The function MiApp_IsMember-
OfNetwork can be used to identify whether a network
exists and the node is part of the existing network. The
full function signature used in the MiWi Mesh protocol
stack is as follows:

There is no input parameter for this function and the
return value is a boolean true if the node is part of an
existing network. When called by the PAN Coordinator
device, this function always returns the value true (the
PAN Coordinator creates the network). When used in a
RFD sleeping device or a Coordinator, this function
helps find the status of the wireless node in the net-
work. If a boolean, false is returned by the function
call which indicates that the node is not part of any net-
work. This function must be used by all device roles:
PAN Coordinator, Coordinator, and Sleeping RFDs.

INDIRECT MESSAGE

The function MiApp_InitSleepRFDBuffers is used to ini-
tialize the indirect message buffer for the devices in the
network. Indirect message buffers define the number of
messages cached inside the parent device. The parent
device for a RFD sleeping device can be the PAN Coor-
dinator or a Coordinator. Hence, this function is only
applicable for PAN Coordinator or Coordinator devices
in the network. The full function signature used in the
MiWi Mesh protocol stack is as follows:

The function call MiApp_InitSleepRFDBuffers returns a
number of sleeping RFD buffers allocated. The function
has three input parameters:

• Buffer – this input parameter is the pointer to the
buffer array.

• BufferSize – this input parameter is the size of
the buffer.

• rfdMaxDataSize – this input parameter is the
maximum length of data to be stored for each
sleeping RFDs in the network.

Note: This function is used only by the
Coordinator.

void MiApp_SetAddressPan (uint8_t
*address, uint16_t panid);

addr_t MiApp_GetParentAddress (void);

typedef union addr_t_def
{
 uint8_t bytes[ADDRESS_LEN];
 uint16_t even_addr_pack;
} addr_t;

Note: This function is only used by the
Coordinator or a sleeping RFD in a Mesh
network.

bool MiApp_IsMemberOfNetwork(void);

uint16_t MiApp_InitSleepRFDBuffers

(uint8_t *Buffer, uint16_t

BufferSize, uint16_t rfdMaxDataSize);
 2009-2017 Microchip Technology Inc. DS00001284B-page 13

AN1284
To enable the Sleep Buffers in the Coordinator, the
macro MAKE_RFDBUFFLEN must be initialized. The
macro defines the size of buffer.

EQUATION 2: SIZE OF BUFFER

DATA REQUEST FROM SLEEPING DEVICES

In a MiWi wireless network for RFD sleeping devices
there must be a mechanism for these devices to wake-
up and receive a data packet. The function MiApp_Re-
questData is used by RFD sleeping devices to request
for cached data from their parent device. If data is buff-
ered by the network, it is delivered following this
request. The full function signature used in the MiWi
Mesh protocol stack is as follows:

This function has no input parameter and returns no
value. The rxMessage.SourceAddress holds the
received data.

NETWORK SECURITY

The function MiApp_SetNetworkSecure is used to
secure all the messages in the network. The following
packet types are secured:

• Data packet

• Command packets

• Status packets

• Control packets

• Network maintenance

This function can be called by all nodes (PAN Coordi-
nator, Coordinator, RFD Sleeping Device) in the net-
work. The network security function enables or
disables the security of the network for any new device
communicating in the Mesh network. User can already
enable/disable user level security by using the boolean
in MiApp_UnicastAddress function, however the net-
work level messages (that user does not normally deal
with) can also be secured. The MiApp_SetNetworkSe-
cure allows for such operation but the necessary pre-
caution must be taken with this function because the
joining device must know the key of the network it
attempts to join. Otherwise, the device is unable to join
the network.

There is no return value for this function. The only input
parameter, isSecure, is a boolean to specify if the pay-
load needs to be secured.

Note 1: The macro ENABLE_INDIRECT_MES-
SAGE must be enabled in the PAN Coor-
dinator for the function to execute.

2: This function is applicable only for the
PAN Coordinator Mesh network.

Note: This function only applies for Sleeping
devices used in the Mesh protocol stack.

#define MAKE_RFDBUFFLEN(RFDCount,DATALEN)
((ADDRESS_LEN+3+DATALEN)*RFDCount)

Where,

RDFCount = Number of Sleeping RFDs to support

DATALEN = Maximum length of packet to store for RFD

ADDRESS_LEN = Length of the address

Other overheads are automatically included in this MACRO.

void MiApp_RequestData(void);

Note: The macro ENABLE_SECURITY must be
enabled in all the nodes to use this
security feature.

void MiApp_SetNetworkSecure(bool isSecure)
DS00001284B-page 14  2009-2017 Microchip Technology Inc.

AN1284
CONCLUSION

For wireless application developers who are looking for
a short range and low-data rate solution, the require-
ments differ from point-to-point communication to rout-
ing messages across several hops. The MiApp
specification from Microchip provides a low-cost and
low-complexity solution to address nearly all those
applications. It enables the wireless application devel-
oper to use Microchip’s proprietary wireless protocols
with little or no modification in the migration path. Work-
ing with MiMAC at the lower layer also indirectly
enables developers to choose any existing and future
RF transceivers supported by Microchip. It is highly
recommended for the readers to refer to the Application
Note “AN1283 Microchip Wireless MiWi™ Media
Access Controller – MiMAC” (DS00001283) to under-
stand the total solution available for wireless applica-
tions from Microchip. Standardization of the lower MAC
layer as MiMAC and the higher application layer as
MiApp offers wireless application developers the maxi-
mum flexibility in the software development process.

REFERENCES

• “Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (WPANs)”,
IEEE Std 802.15.4™-2003, New York: IEEE,
2003.

• IEEE Std 802.15.4™-2006, (Revision of IEEE Std
802.15.4-2003). New York: IEEE, 2006.

• “AN1283 Microchip Wireless MiWi™ Media
Access Control - MiMAC” (DS00001283),
Yifeng Yang, Pradeep Shamanna, Derrick
Lattibeaudiere, and Vivek Anchalia, Microchip
Technology Inc., 2009-2017.

• “AN1204 Microchip MiWi™ P2P Wireless
Protocol” (DS00001204), Yifeng Yang, Pradeep
Shamanna, Derrick Lattibeaudiere, and Vivek
Anchalia, Microchip Technology Inc., 2008-2017.

• “AN1066 MiWi™ Wireless Networking Protocol
Stack” (DS01066), David Flowers and Yifeng
Yang, Microchip Technology Inc., 2007-2010.

• “MRF24J40 IEEE 802.15.4™ 2.4GHz RF
Transceiver Data Sheet” (DS39776), Microchip
Technology Inc., 2008.

• “”MRF89XA Ultra Low-Power, Integrated ISM
Band Sub-GHz Transceiver Data Sheet”
(DS70622), Microchip Technology Inc. 2011.
 2009-2017 Microchip Technology Inc. DS00001284B-page 15

AN1284
APPENDIX A: SOURCE CODE FOR MIWI P2P, STAR, AND MESH WIRELESS
NETWORKING PROTOCOL STACK

All of the software covered in this application note are available through Microchip Libraries for Applications (MLA). This
MLA suite/archive can be downloaded from the Microchip corporate website at www.microchip.com/mla or
www.microchip.com.

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE
FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
DS00001284B-page 16  2009-2017 Microchip Technology Inc.

http://www.microchip.com/mla
http://www.microchip.com

AN1284
REVISION HISTORY

Revision A (July 2009)

• This is the initial release of this document.

Revision B (August 2017)

• Updated Figure 1.

• Updated Table 1 and added new definitions.

• Added Personal Area Network Identifier (PAN ID)
and Sending Messages to Section “MiApp
Function Interfaces”.

• Added Section “Protocol Specific Functions
and Definitions”

• Added Appendix A: “Source Code for MiWi
P2P, Star, and Mesh Wireless Networking Pro-
tocol Stack”.

• Incorporated minor updates to text and corrected
formatting throughout the document.
 2009-2017 Microchip Technology Inc. DS00001284B-page 17

AN1284
NOTES:
DS00001284B-page 18  2009-2017 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2009-2017 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY	MANAGEMENT		SYSTEM	
CERTIFIED	BY	DNV	

== ISO/TS	16949	==	
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2009-2017, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-2002-6
DS00001284B-page 19

DS00001284B-page 20  2009-2017 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

France - Saint Cloud
Tel: 33-1-30-60-70-00

Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

11/07/16

http://support.microchip.com
http://www.microchip.com

	Introduction
	Authors: Yifeng Yang Pradeep Shamanna Derrick Lattibeaudiere Vivek Anchalia Microchip Technology Inc.
	FIGURE 1: Block Diagram Of Microchip Wireless MiWi™ Stack

	Features
	Considerations
	MiApp Overview
	MiApp Configuration File
	TABLE 1: Application Layout Software Definitions in A Configuration file

	MiApp Function Interfaces
	Initialization
	Personal Area Network Identifier (PAN ID)

	Handshaking
	MiApp_StartConnection
	EQUATION 1: Scan Duration Calculation

	MiApp_SearchConnection
	MiApp_EstablishConnection
	MiApp_ConnectionMode
	MiApp_RemoveConnection

	Sending Messages
	Receiving Messages
	Data Structure for Received Messages

	Special Functionality
	Noise Detection Scan
	Transceiver Power State
	Frequency Agility
	Security

	Protocol Specific Functions and Definitions
	Functions and Definitions Specific to MiWi Star Protocol
	broadcast connection table
	unicast message
	leave network

	Functions and Definitions Specific to MiWi Mesh Protocol
	set pan iD and device address
	get parent address
	NETWORK MEMBER
	EQUATION 2: size of buffer

	Data request from sleeping devices
	network security

	Conclusion
	REFERences
	Revision History
	Microchip Wireless MiWi™ Application Programming Interface – MiApp
	Worldwide Sales and Service

