
 Core Independent Peripherals
on AVR

 Core Independent Peripherals on AVR®

Prerequisites

• Hardware Prerequisites
– Microchip ATmega328PB Xplained Mini board
– Micro-USB cables (Type-A/Micro-B)

• Software Prerequisites
– Atmel Studio 7.0

• Required Knowledge
– Hands-on Training: AN17644: Getting Started with AVR Microcontroller

• Estimated Completion Time: 30-60 minutes

Introduction

This workshop will demonstrate how to build an application that reads the on-chip temperature sensor
using an asynchronous interrupt handler, displays the temperature in Atmel Studio 7 debugger using the
on-chip debug system, and optimize the application using core independent peripherals of the AVR. The
core independent peripherals are designed to complete the tasks with no CPU intervention.

The following topics are covered:

• Combine Core Independent Peripherals in the ATmega328PB to automate tasks and allow the
CPU to idle

• Implement asynchronous interrupt handlers for the Analog to Digital Converter (ADC) and use
Timer/Counter event signal as ADC trigger source

• Use the ADC peripheral (found in most of the AVRs) to read the on-chip temperature sensor
• Toggle a LED using an I/O pin
• Use advanced debug features in Atmel Studio 7

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 1

Table of Contents

Prerequisites..1

Introduction..1

1. Icon Key Identifiers.. 3

2. Assignment 1: Peripheral Initialization...4

3. Assignment 2: Setup Core Independent Peripherals with Interrupt Handlers......... 15

4. Assignment 3: Run and Debug the Application... 19

5. Conclusion...22

6. Revision History...23

The Microchip Web Site.. 24

Customer Change Notification Service..24

Customer Support... 24

Microchip Devices Code Protection Feature... 24

Legal Notice...25

Trademarks... 25

Quality Management System Certified by DNV...26

Worldwide Sales and Service..27

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 2

1. Icon Key Identifiers
The following icons are used in this document to identify different assignment sections and to reduce
complexity.

Info:  Delivers contextual information about a specific topic.

Tip:  Highlights useful tips and techniques.

To do:  Highlights objectives to be completed.

Result:  Highlights the expected result of an assignment step.

Warning:  Indicates important information.

Execute:  Highlights actions to be executed out of the target when necessary.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 3

2. Assignment 1: Peripheral Initialization
This assignment will create a real life application example, which combines AVR CIP - Core Independent
Peripherals, AVR HW and SW tools, and Debugging features of the Atmel Studio 7.

In this project the ADC is used to read the on-chip temperature sensor every second, autonomously
triggered by one of the timer/counters.

The ATmega328PB device features a 10-bit successive approximation ADC. The ADC is controlled by
TIMER1 with it's capture event signal to trigger the ADC sampling.

As core is not involved to read the ADC, the use of such core independent peripheral technique is
particularly helpful for time critical control-tasks.

Application: Read temperature using channel 8 of the ADC every 1000ms. Focus on minimal
usage of the CPU, which should be in sleep mode most of the time!

1. Project Creation

To do:  Create a new Project.

1. Open Atmel Studio 7.
2. Select File → New → Project.
3. The New Project window appears. Select GCC C Executable Project and give the project 'Name'

to “Assignment_CIP” and set the 'Location' (any path on PC) and Click OK.
4. Now the Device Selection window appears as shown in the following figure. In the search bar, type

328p, then select the device Atmega328PB, and click OK.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 4

Figure 2-1. Device Selection

Result:  The AVR project is created.

Add code below in main.c file and take a look at function main() in main.c file, which includes the LED
setup and names of functions used to initialize the used peripherals.

#define ADC_ADMUX_REFS_INT_1_1V 3

#define ADC_ADMUX_TEMP 8

#define ADC_PRESCALER_DIV_128 7

#define ADC_ADCSRB_AUTO_TRIGGER_TC1_CE 7

#define TC_PRESCALER_DIV_1024 5

volatile int16_t temperature;

int main(void)
{
 // Set PORTB5 as output
 DDRB |= (1 << DDRB5);

 // Setup the ADC
 //InitADC();

 // Setup the Timer
 //InitTC1();

 //All code runs in asynchronous interrupt handler
 while (1)

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 5

 {
 ;
 }
}

Info:  The on-board orange LED0 will be used to display the activity on the ATmega328PB
Xplained Mini board. The LED0 is connected to pin PB5, a pin on PORTB, which can be
checked in the ATmega328PB Xplained Mini board schematic.

Figure 2-2. LED0 on ATmega328PB Xplained Mini Board

2. Initialize the Analog to Digital Converter

To do:  Insert the following code above the main(void).

static void InitADC(void)
{
 // Select internal 1.1 V reference, and tempsensor as input
 ADMUX = (??? << REFS0) | (??? << MUX0);

 // Set prescaler to 1024, enable Auto Trigger, enable interrupts(clear flag)
 // and enable ADC
 ADCSRA = (1 << ???) | (1 << ???) | (1 << ???) | (1 << ???) | (??? << ADPS0);

 // Set ADC trigger source to TC1 Capture Event
 ??? = (ADC_ADCSRB_AUTO_TRIGGER_TC1_CE << ADTS0);
}

Info:  The ADC Block Diagram and description are given below.

In the above function some of the code is missing. The missing code needs to be added as explained in
the next steps:

a. Internal Reference.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 6

b. Set up the ADCSRA.

c. Choose the trigger Source for the ADC.

Figure 2-3. ADC Block Diagram

The setup of the ADC is done by the following steps:

a. Internal Reference: Setup of the ADC involves configuring a stable reference voltage for
measurements. The reference voltage for the ADC (VREF) indicates the conversion range for the ADC.
Single ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as
either AVCC, internal 1.1V reference, or external AREF pin. AVCC is connected to the ADC through a
passive switch. The internal 1.1V reference is generated from the internal bandgap reference (VBG)

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 7

through an internal amplifier. In either case, the external AREF pin is directly connected to the ADC, and
the reference voltage can be made more immune to noise by connecting a capacitor between the AREF
pin and ground. VREF can also be measured at the AREF pin with a high impedance voltmeter. Note that
VREF is a high impedance source, and only a capacitive load should be connected in a system.

The internal reference voltage of 1.1V offers sufficient precision needed for this application and is defined
in the main.c file as below:

#define ADC_ADMUX_REFS_INT_1_1V 3

As the ADC has multiple input channels and modes of operation, in this case the Single Conversion
mode will be used and configuration of the input channel to channel 8 is needed as defined in the top of
the main.c file. Channel 8 will be read from the internal temperature sensor of the ATmega328PB. It is
defined as below in main.c file.

#define ADC_ADMUX_TEMP 8

To do:  Add the missing code to select the 1.1V Internal reference and to set the temperature
sensor as input.

ADMUX = (??? << REFS0) | (??? << MUX0);

Tip:  Use defined value ADC_ADMUX_REFS_INT_1_1V to set the internal reference value.
Use defined value ADC_ADMUX_TEMP to set the temperature sensor as the ADC input.

Info:  ADC Multiplexer Selection Register is shown in the figure below.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 8

Figure 2-4. ADC Multiplexer Selection Register (this is a screen-shot from the ATmega328PB data
sheet)

b. Set up the ADCSRA - ADC Control and Status register A.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 9

Info:  This register is configured to enable the ADC (ADEN), Auto Trigger (ADATE), ADC
Interrupt Flag (ADIF), Interrupts (ADIE), and to select Prescaler for the system clock (ADPSn).

Figure 2-5. ADC Control and Status Register A (this is a screen-shot from the ATmega328PB data
sheet)

By default, the successive approximation circuitry requires an input clock frequency between 50kHz and
200kHz to get maximum resolution. If a resolution lower than 10 bits is needed, the input clock frequency
to the ADC can be higher than 200kHz to get a higher sample rate. The ADC module contains a
prescaler, which generates an acceptable ADC clock frequency from any CPU frequency above 100kHz.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 10

The prescaling factor is selected by the 'ADC Prescaler Select bits' in the ADC Control and Status
Register A (ADCSRA.ADPS). The prescaler starts counting from the moment the ADC is switched ON
by writing the ADC Enable bit ADCSRA.ADEN to '1'. The prescaler keeps running for as long as
ADEN=1, and is continuously reset when ADEN=0.

To do:  Add the missing code below.

ADCSRA = (1 << ???) | (1 << ???) | (1 << ???) | (1 << ???) | (??? << ADPS0);

Tip: 
• Use defined value ADEN to enable the ADC
• Use defined value ADATE to make the ADC start a conversion on a positive edge of the

selected trigger signal
• Use defined value ADIF to clear the Interrupt Flag
• Use defined value ADIE to activate the ADC Conversion Complete Interrupt
• Use defined value ADC_PRESCALER_DIV_128 to set the prescaler of the system clock

to 128

c. Choose the trigger Source for the ADC.

The ADC don't need to run continuously as temperature measurements are done at a given configurable
interval. The sample interval and the ADC is controlled by another autonomous peripheral, TIMER1, with
it's capture event signal.

Info:  For this purpose, bits 2, 1, and 0 are used in the register ADCSRB - ADC Control and
Status register B.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 11

Figure 2-6. ADC Control and Status Register B (this is a screen-shot from the ATmega328PB data
sheet)

It can be seen from the screen-shot above that it is needed to configure value 0x111 to ADTSn bits.

To do:  Add the missing code shown below to choose the correct register, where the Auto
Trigger Source will be set.

??? = (ADC_ADCSRB_AUTO_TRIGGER_TC1_CE << ADTS0);

3. Initialize TIMER 1

To do:  Insert the following code above the main(void) function.

static void InitTC1(void)
{

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 12

 // Set wave generation mode CTC with ICR1 as top value and prescaler to 1024
 TCCR1B = (1 << WGM12) | (1 << WGM13) | (TC_PRESCALER_DIV_1024 << CS10);

 // Set timeout to 1s
 ICR1 = ???;
}

Info:  The 16-bit Timer/Counter Block Diagram and description is given below.

In the InitTC1 function above some of the code is missing. The missing code needs to be added as
explained below.

Configure Time interval to 1s

Figure 2-7. 16-bit Timer/Counter Block Diagram

The TIMER1 module is a 16-bit Timer/Counter unit that allows accurate program execution timing (event
management), waveform generation, and signal timing measurement. In this exercise the timer is
configured to reset the counter on reaching it's TOP value (CTC mode) and Input Compare Register
(ICR1) is used to store the TOP value. Once the TOP value is reached, the counter will clear and restart.
To achieve a 1 second time interval, the timer's built-in prescaler must be used.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 13

Info:  In this project the TOP value, or maximum Timer/Counter value, is defined by the Input
Capture Register 1 - ICR1 Register.

The system clock is set to 16MHz and the prescaler is set to 1024. So, to achieve a 1 second time
interval, we need to fill the ICR1 with value (16000000/1024) = 15625.

To do:  Add the missing number shown below for the Input Capture Register 1 value.

// Set timeout to 1s
 ICR1 = ???;

Info:  The Waveform Generation mode and Clock selection is configured in the TCCR1B
register. The Waveform Generation mode is CTC mode, configured by writing bits WGM2 and
WGM3 to 1. (Refer table Waveform Generation Mode Bit Description from the data sheet.)
Clock prescaler CLKio/1024 is selected by configuring 'Bits 2:0 – CS[2:0]: Clock Select' in the
TCCR1B register to 1. (Refer table Clock Select Bit Description from the data sheet.)

Result:  The code included inside the application is shown below.
static void InitADC(void)
{
 // Select internal 1.1 V reference, and tempsensor as input
 ADMUX = (ADC_ADMUX_REFS_INT_1_1V << REFS0) | (ADC_ADMUX_TEMP << MUX0);

 // Set prescaler to 1024, enable Auto Trigger, enable interrupts (clear flag) and
 // enable ADC
 ADCSRA = (1 << ADEN) | (1 << ADATE) | (1 << ADIF) | (1 << ADIE) |
(ADC_PRESCALER_DIV_128 << ADPS0);

 // Set ADC trigger source to TC1 Capture Event
 ADCSRB = (ADC_ADCSRB_AUTO_TRIGGER_TC1_CE << ADTS0);
}

static void InitTC1(void)
{
 // Set wave generation mode CTC with ICR1 as top value and prescaler to 1024
 TCCR1B = (1 << WGM12) | (1 << WGM13) | (TC_PRESCALER_DIV_1024 << CS10);

 // Set timeout to 1s
 ICR1 = 15625;
}

int main(void)
{
 // Set PORTB5 as output
 DDRB |= (1 << DDRB5);

 // Setup the ADC
 InitADC();

 // Setup the Timer
 InitTC1();

 while (1)
 {
 }
}

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 14

3. Assignment 2: Setup Core Independent Peripherals with Interrupt
Handlers
At this moment the application is missing one important part; setting the ISR for the ADC.

The AVR provides several different interrupt sources. All interrupts including the Reset Vector have a
separate program vector in the program memory space. All interrupts have assigned individual enable bit.
In order to enable the interrupt you need to configure the enable bit at the peripheral to one together with
the Global Interrupt Enable bit in the Status Register.

Info:  Depending on the Program Counter value, interrupts may be automatically disabled,
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. In this application lock bits are not configured.

1. Include header file

To be able to use interrupts the user must add the header file where interrupts related macros and
functions are defined.

To do:  Include the header file at the top of main.c file.

#include <avr/interrupt.h>

Result:  The file inclusion will look like as shown in the figure below.

Figure 3-1. Header File

2. Setup ISR for ADC

To do:  Insert the following code before the main(void) function.

ISR(ADC_vect)
{
 // Calculate the temperature in C
 temperature = (ADC - ???)/???;

 // Set PORTB5 low
 PINB |= (1 << PINB5);

 // Clear the input capture flag in the TC1
 TIFR1 = (1 << ICF1);
}

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 15

Info:  An interrupt handler is by syntax an ANSI-C compliant function, embedded in a macro
specific to the compiler. For GCC (used in Atmel Studio), the ISR() macro defines the interrupt
handler. The ADC interrupt handler will only handle the interrupt trigger after a read and
conversion is completed by the ADC. Remember that the configuration of the ADC defines the
channel to read and the mode of operation for the ADC from previous assignment and there is
no need to change this between reads and conversions.

To do:  Read the information and tip below and add the missing code to the ISR(ADC_vect)
function above.

Info:  The temperature measurement is based on an on-chip temperature sensor that is
coupled to a single ended ADC8 channel. When the temperature sensor is enabled, the ADC
converter can be used in single conversion mode to measure the voltage over the temperature
sensor. The result can be accessed after the end of each conversion, as the interrupt is
triggered and the conversion result can be found in the ADC Result Registers (ADCL, ADCH).

For single ended conversion the result is ��� = ���. 1024���� where VIN is the voltage on the

selected input pin and VRef is the selected voltage reference.

Tip:  To calculate the temperature from the ADC output, use the formula below.

� = ���−���� , where ADC is the ADC data register, k is a gain coefficient, and TOS is the temperature

sensor offset value.

Info:  Calibration values for k and TOS needs to be calculated as these values vary from one
device to another.

Temperature sensor calibration can be referred from the AVR122 application note: http://
ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVR.

The measured voltage is linearly proportional to the temperature as described in the following table. The
voltage sensitivity is approximately 1mV/°C and the accuracy of the temperature measurement is ±10°C
after calibration.
Figure 3-2. Temperature vs. Sensor Output Voltage (Typical Case)

From the table above, at 25°C, the expected ADC count is 270, so for 0°C it is 245.
Default calibration Values: TOS = 245 and k = 1 (default gain).

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 16

http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVR
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8108-Calibration-of-the-AVR

In this example, select TOS = 247 and k = 1.22. These chosen values are an example of the software
calibration required in the conversion and will vary from one device to another.

So the temperature measurement formula will be:

// Calculate the temperature in C
temperature = (ADC - 247)/1.22;

PIN PB5 is connected to the LED0 on the ATmega328PB Xplained Mini board and by setting the PINB5
bit, this pin will toggle.

// Toggle PORTB5
PINB |= (1 << PINB5);

At the end of the ISR for the ADC, the Input Capture Flag (triggered by TIMER1) has to be cleared to
ensure that TIMER1 will start counting again.

// Clear the input capture flag in the TC1
TIFR1 = (1 << ICF1);

3. Enable Global Interrupts

To do:  Insert the following code into the main(void) function, before the while() loop to
enable the global interrupt.

sei();

Result:  The code should look like below.

ISR(ADC_vect)
{
 // Calculate the temperature in C
 temperature = (ADC - 247)/1.22;

 // Toggle PORTB5
 PINB |= (1 << PINB5);

 // Clear the input capture flag in the TC1
 TIFR1 = (1 << ICF1);
}

static void InitADC(void)
{
 // Select internal 1.1 V reference, and tempsensor as input
 ADMUX = (ADC_ADMUX_REFS_INT_1_1V << REFS0) | (ADC_ADMUX_TEMP << MUX0);

 // Set prescaler to 1024, enable interrupts (clear flag) and enable ADC
 ADCSRA = (1 << ADEN) | (1 << ADATE) | (1 << ADIF) | (1 << ADIE) | (ADC_PRESCALER_DIV_128
<< ADPS0);

 // Set ADC trigger source to TC1 Capture Event
 ADCSRB = (ADC_ADCSRB_AUTO_TRIGGER_TC1_CE << ADTS0);
}

static void InitTC1(void)
{
 // Set wave generation mode CTC with ICR1 as top value and prescaler to 1024
 TCCR1B = (1 << WGM12) | (1 << WGM13) | (TC_PRESCALER_DIV_1024 << CS10);

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 17

 // Set timeout to 1s
 ICR1 = 15625;
}

int main(void)
{
 // Set PORTB5 as output
 DDRB |= (1 << DDRB5);

 // Setup the ADC
 InitADC();

 // Setup the Timer
 InitTC1();

 //All code runs in asynchronous interrupt handler
 sei();

 while (1)
 {
 }
}

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 18

4. Assignment 3: Run and Debug the Application
Debug the application, Tips and Tricks!

To do:  Compile the application using the F7 shortcut key. Alternatively, it can be done from the
menu, Build → Build Solutions. The build should finish successfully with no errors.

Result:  The result of the compilation is found in the output window in Atmel Studio 7 as shown
below.

Figure 4-1. Build Solution

Info:  The Flash and RAM footprint of the application are also found in the "Program Memory"
and "Data Memory" usage in the 'Output' window.

Task "RunOutputFileVerifyTask"
 Program Memory Usage : 1004 bytes 3.1 % Full
 Data Memory Usage : 2 bytes 0.1 % Full
 Done executing task "RunOutputFileVerifyTask".
Done building target "CoreBuild" in project "Assignment_CIP.cproj".
Target "PostBuildEvent" skipped, due to false condition; ('$(PostBuildEvent)' != '') was
evaluated as ('' != '').
Target "Build" in file "C:\Program Files (x86)\Atmel\Studio\7.0\Vs\Avr.common.targets" from
project "C:\MASTERS\20112\Assignment_CIP\Assignment_CIP\Assignment_CIP.cproj" (entry point):
Done building target "Build" in project "Assignment_CIP.cproj".
Done building project "Assignment_CIP.cproj".

Build succeeded.
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========

To do:  Connect the ATmega328PB Xplained Mini board to the PC using a USB cable and start
debugging by using the shortcut Alt+F5 or choose from menu Debug → Start debugging and
Break

Info:  If the 'Firmware upgrade' window is displayed, upgrade the firmware and close the
'Firmware upgrade' window.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 19

Warning:  If the DWEN fuse is not enabled an error message is displayed. Click Yes and the
Atmel Studio 7 will use the SPI to set the fuse as shown below.

Figure 4-2. Enable the DWEN Fuse

Result:  This will start the debug session and stop on the first executable line of code in the
main() function.

To do:  Find the ISR(ADC_vect) function in the main.c file and set a breakpoint on the
following line.

// Set PORTB5 low
PINB |= (1 << PINB5);

Info:  Setting a breakpoint is done by using the F9 shortcut or from the menu, Debug →
Toggle Breakpoint.

To do:  Move the mouse over the breakpoint red circle to be able to see the settings... pop-up
option. Click on the cogwheel icon.

To do:  Inside the 'Breakpoint Setting' window, click to choose 'Actions' as shown below. Inside
the 'Log a message to Output Window' insert the following: Temperature = {temperature} and
hit 'Close'.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 20

Figure 4-3. Setting the Output Window to Show Variable Temperature Value

To do:  Start debugging by selecting Debug → Continue. Then open the 'Output' window by
selecting menu Debug → Windows → Output.

Result:  The value of the temperature variable is displayed in the 'Output' window as shown
below.

Figure 4-4. Output Window: Temperature Display

Info:  Click on Debug → Break All (Ctrl+F5) to stop the execution. Exit from debug mode by
disabling debugWIRE. This is done by selecting menu Debug → Disable debugWIRE and
Close.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 21

5. Conclusion
This training demonstrated how to use core independent peripherals in an application to automate tasks
and allow the CPU to idle.

Using the core independent peripheral technique is particularly helpful for time critical control-tasks as the
AVR features a hardware interrupt controller that offloads work from the CPU.

With Atmel Studio 7 and advanced debugging feature it is easier to run real-time debugging of an
application.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 22

6. Revision History
Doc Rev. Date Comments

A 06/2017 Initial document release.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 23

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 24

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings,
BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA,
SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL
ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2017, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 25

ISBN: 978-1-5224-1765-1

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 Core Independent Peripherals on AVR

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 26

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
France - Saint Cloud
Tel: 33-1-30-60-70-00
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2017 Microchip Technology Inc. Training Manuals DS00002449A-page 27

	Prerequisites
	Introduction
	Table of Contents
	1. Icon Key Identifiers
	2. Assignment 1: Peripheral Initialization
	3. Assignment 2: Setup Core Independent Peripherals with Interrupt Handlers
	4. Assignment 3: Run and Debug the Application
	5. Conclusion
	6. Revision History
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

