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mTouch™ Conducted Noise Immunity Techniques for the CTMU
INTRODUCTION
This application note describes the use of special
algorithms and techniques with Microchip’s Charge
Time Measurement Unit (CTMU) for capacitive touch
applications in noisy environments. The CTMU is an
excellent peripheral for use in touch sensing
applications with many benefits such as high scanning
speed, charge current trimming and low component
count.

Before planning to use capacitive touch interfaces in
industrial environments (or any other kind of
environment with noisy power supply lines), the user
must understand the hazards of conducted noise. Even
if regulators keep a constant voltage drop at the circuit
input, human interaction couples the noise into the
touch pads. The effect on the button readings is clearly
illustrated in Figure 2 and Figure 3. The severity of the
problem changes depending on the frequency and
noise amplitude. In many cases, noise can be
countered by heavy signal filtering, but with very long
response times. The rest of the cases will result in loss
of functionality for the device because filtering is
useless when the readings are centered on the
average value, as shown in Figure 3.

By using a combination of processing techniques
(signal envelope and jittered sampling) and good PCB
layout, it is possible to detect the capacitive touch keys
reliably in the presence of conducted noise.

FIGURE 1: NORMAL OPERATION 

Author: Mihnea Rosu-Hamzescu
Microchip Technology Inc.

Normal device operation. Readings are steady and the envelope function follows very closely during a press.
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FIGURE 2: MEDIUM NOISE SCENARIO 

FIGURE 3: HIGH NOISE SCENARIO

Medium noise scenario. Press detection would be possible without the envelope function using heavy low-pass filtering but with
some loss in detection speed.

A high noise scenario in which readings are centered on the average. Filtering is useless because the resulting signal will not
show any usable deviation from the average. The envelope function quickly follows the peaks of the noise. Mirroring the values
above the average keeps it steady enough to have reliable press detection.
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An envelope function (basically a peak detector) of the
button readings is calculated for each channel and all
decisions are made based on the difference between
the envelope and the average derived from the raw
data.

Under normal conditions, the envelope functions follow
each button closely, allowing the same functionality.
Under noise conditions, raw button readings look like
white noise and the envelope function transforms that
into a much steadier signal. Modulation in the noise
amplitude can be sometimes seen as a low-frequency
component in the readings because of under sampling.
Since buttons are read in sequence the low frequency
component is phase-shifted between them (different
deviation from average), leading to problems like false
triggering or no button detection. Jittering the sampling
rate of the buttons solves this problem by distributing
the modulation frequency component energy. The
resulting signal looks like white noise and is very
suitable for use with the envelope function.

Setting Up the CTMU
For a capacitive touch application, each sensor is
connected directly to a channel of the A/D converter.

The CTMU is connected directly to the input of the A/D
converter, allowing it to connect to any pin through the
analog multiplexer. With this configuration, a single
CTMU unit can measure a number of sensors equal to
the A/D channels. For details of the CTMU features,
please refer to the “CTMU Family Reference Manual”
(DS39724).

The current source of the CTMU is available in three
ranges: 0.55 µA, 5.5 µA and 55 µA. The current range
selection is made in the CTMUICON register. For many
capacitive touch applications, the highest current range
setting (55 µA) works best. This allows for the quickest
charging of the capacitive touch circuit. The
CTMUICON register also has bits used to trim the
current source in ±2% increments up to ±62% for each
of the three current ranges. The CTMU current source
is enabled and disabled using the software. Two control
bits, EDG1STAT and EDG2STAT in the CTMU control
register, determine if the current source is enabled.
These bits are exclusively ORed. That is, if EDG1STAT
and EDG2STAT are both set or cleared, the current
source is off. If either bit is set while the other is cleared,
the current source is enabled and charging the circuit. 

The IDISSEN bit is enabled to drain charge from the
A/D converter to insure the charging process begins at
zero potential. If the bit is set, the circuit is connected to
VSS (grounded). Alternatively, the digital pin circuitry
may be used to drain the pad charge very quickly or
ground the other channels when they are not being
read.

The CTMU is configured so that the external pins are
not enabled and all control of the CTMU is handled
through software. The A/D converter is also set up to do
manual conversion. 

For capacitive touch sensing, an absolute capacitance
reading is not required, because all decoding decisions
are related to the baseline readings.

Example 1 shows the CTMU set up, as described
above.

EXAMPLE 1: SETTING UP THE CTMU
//configure ADC

AD1CON1bits.ADON        = 1;

AD1CON1bits.ASAM    = 0;       //automatic sampling off; SAMP bit will start/stop sampling

AD1CON3             = 0x1F01;

AD1CHS              = 0x0000;

AD1PCFGL            = 0xFFFF;  //configure analog channels, but pins are still set as digital 

AD1CON1bits.SAMP    = 1;       // output "0" to drain charge on pads faster than IDISSEN = 0

//configure CTMU on highest current setting for best noise immunity

CTMUICON    = 0x0300;

_IDISSEN    = 0;

_CTTRIG     = 0;//edge output disabled

_EDGEN      = 0;//edges are blocked

_EDG1POL    = 1;//select positive edge response

_EDG2POL    = 1;

_EDG1STAT   = 0;//edge bits will be set/cleared manually 

_EDG2STAT   = 0;

_CTMUIF     = 0;

_CTMUEN     = 1;//enable CTMU 
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INCREASING NOISE IMMUNITY
High immunity to conducted noise is not a requirement
in most applications. Standard button decoding with
some degree of debouncing and decent supply filtering
is good enough. Unfortunately, this will not work when
high frequency noise is coupled into the circuit through
the power rails. While the circuit has no problem
functioning correctly in these conditions, because
voltage regulators maintain a stable difference
between VDD and GND, human interaction changes
things quite a bit. 

The user’s finger couples the power supply noise back
into the capacitive buttons and severely compromises
the readings. A standard algorithm will not be able to
detect a valid touch or false triggers. For example, it is
important to take into consideration readings above the
average (apparently smaller capacitance). Also, using
a precise timing scheme to get button readings might
lead to under-sampling of noise frequencies, which
causes further complication.

Electrical and electronic equipment immunity
requirements to electromagnetic disturbances from RF
transmitters are defined in the IEC 61000-4-6 standard.
It specifically refers to equipment having at least one
conducting cable which can couple the disturbing fields
to the equipment. The standard establishes a common
reference and a set of testing methods for evaluating
electrical and electronic equipment functional immunity
to conducted noise induced by electromagnetic fields.
The range of frequencies tested is 150 kHz-80 MHz.
Three levels of testing are defined, depending on the
RMS of the disturbing signal.

The hardware and software presented in this
application note have been tested in conditions similar
to the IEC 61000-4-6 standard and have passed level
3 tests.

Board Layout and Functionality
A good layout for capacitive touch sense boards is
critical in noisy environments. Traces from the
microcontroller ADC input pins to the touch pads must
be kept short, and have similar geometry. Vias are to be
avoided, if possible. 

A proper layout is even more important than a “noise
resistant” firmware. There is no use having special
firmware if a button is resonating at a certain noise
frequency, because the trace is too long or is going in
loops around the board. A good practice is to place the
microcontroller as close as possible to the buttons and
route the traces from the pads to the ADC channels
first. 

Connecting the ADC channels to the touch pads in
order is irrelevant as it can be easily handled in the
firmware using a descrambling array. It contains the list
of ADC channels physically connected to the touch
pads. The board presented in Figure 4 has the ADC
channels connected in the order [5,4,3,2,1,0,6,7],
because they were much more convenient to route this
way.

Depending on the application, a small resistor (in the
tens of ohms range) may be put in series between each
ADC channel pin and the corresponding touch pad,
limiting noise energy input into the ADC channel. 

Even if it may decrease touch sensitivity to some
degree, ground planes must be used on both sides of
the board. It will reduce the effects of noise and the
crosstalk between buttons.
DS01317A-page 4  2010 Microchip Technology Inc.
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FIGURE 4: CMTU DEMO BOARD SCHEMATIC
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FIGURE 5: PCB LAYOUT (BOTTOM) 
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FIGURE 6: PCB LAYOUT (TOP)

Trim Current Automatic Calibration
Different PCB layouts and trace geometry result in a
different touch pad capacitance for each channel.
Sometimes, the difference can go up to 20-30% and, if
the charge currents are left untrimmed, then the
readings for each channel also vary by this amount.
This makes it difficult to establish a baseline and a trip
value when using a single fixed value for all buttons.

Fortunately, the solution is very simple and the
application can calibrate the trim currents for each
pad/channel automatically. It is also important to
remember that the current source needs a bit of voltage
drop to maintain linearity, therefore, it is strongly
recommended not to exceed 90% of VDD for the
baseline value. Most applications use 80% as a
baseline value and trim the currents to get readings
very close to this value.

Example code is shown in Example 2.
 2010 Microchip Technology Inc. DS01317A-page 7
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EXAMPLE 2: CURRENT TRIMMING PROCEDURE

The calibration function starts with the lower (negative)
trim bits values and averages 64 readings to make the
measurement more precise. The trim bits value is
increased until the readings are over 800 units (out of
1024 on a 10-bit ADC).

This procedure may be repeated every time the system
is powered up or the trim values may be stored into
some type of nonvolatile memory after calibration. 

Reading the Sensors
The software routine for reading the touch sensors has
a very simple sequence of steps (see also the diagram
in Figure 7):

1. Get the real analog channel value from a
descrambling array. This can be simply declared
as a constant in the firmware. This is related to
the fact that the ADC channels are not routed to
the pads in order.

2. Produce a bit mask for the desired channel and
apply it to the analog/digital functionality select
register.

3. Drain all pads by setting pins to 0 digital output.
4. Set the trim value for the current source to the

calibrated value for that channel.
5. Clear the temporary variable used for averaging

readings.
6. Start sampling on the ADC to allow charging of

the internal capacitor and the touch pad at the
same time.

7. If interrupts are used, set the processor priority
to max (on PIC24) or disable interrupts, to avoid
timing problems.

8. Set pin (corresponding to analog channel) to
input, allowing ADC to sample voltage on pad.

9. Start injecting current into pad.
10. Wait for a fixed period of time (in this case, 2.0

µS). The charge time should be long enough to
allow the pads with higher capacitance to be
charged. Of course, shorter time means faster
reading.

11. Stop injecting current.
12. Get ADC reading.
13. Set pin (corresponding to analog channel) to

output, draining charge on pad almost instantly.
The IDISSEN bit can be used for the same
purpose, but it is significantly slower. The digital
port circuitry can sink up to 25 mA and will do it
in 1-2 instruction cycles.

14. If interrupts are used, restore them or set
processor priority to normal.

15. Reset the CTMU for a new charging sequence.
16. Add up the ADC readings into a temporary

variable.
17. Repeat from step 6 if multiple samples are

required.

for (index = 0; index < CHANNELS; index++)

{

for (trimbits = 0x21; trimbits < 0x40; trimbits++)  //start with negative trim values

{

trim[index] = trimbits;

sum          = 0;

//average 64 samples for a better precision

for (avnum = 0; avnum < 64; avnum++) sum += ReadButton(index);

sum /= 64;

if (sum > CHAN_VAL) break; //stop if the preset 800 (of 1024) value is reached

}

        

if (trimbits == 0x40)//use positive trim values if nominal value not reached yet

    for (trimbits = 0x00; trimbits < 0x20; trimbits++)

            {

                trim[index] = trimbits;

                sum          = 0;

//average 64 samples for a better precision

                for(avnum = 0; avnum < 64; avnum++) sum += ReadButton(index);

                sum /= 64;

                if (sum > CHAN_VAL) break; //stop if the preset 800 (of 1024) value is reached

            }

        

}

DS01317A-page 8  2010 Microchip Technology Inc.
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FIGURE 7: READING THE TOUCH SENSORS
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EXAMPLE 3: READING THE TOUCH SENSORS

Touch Decoding Routine
Decoding a valid touch in a noisy environment requires
significantly more data conditioning. Relying too much
on the noise particularities (noise detectors) might
impair device functionality in normal conditions.

After reading the value on a particular channel, the data
arrays are tested to determine if they are initialized (first
acquisition). Usually, a null value means that there
were no prior readings. If low pass filters are used on
the data, starting from zero means that some values
will take a while (number of samples in this case) to
reach their proper level. Avoiding incorrect button press
decisions is done by either ignoring a number of initial
acquisitions (warm-up time), or by initializing the arrays
with values based on the instantaneous button
readings.

Low-pass filters used in this firmware are very simple
and use only additions/subtractions and bit shifting.
Coefficients are all based on the power of two values
making the implementation possible even on
microcontrollers without hardware multiplication
capabilities. 

EQUATION 1: DISCRETE LOW-PASS 
FILTER RECURRENCE

channel=chanord[channel];//get proper channel value from "descrambling" list

chanmask=(1<<channel);//bitmask for analog/digital functionality

AD1PCFGL^=chanmask;

AD1CHS=channel;//set ADC channel

TRISB=0x0000;

_ITRIM=trim[index];//set current trim for channel to calibration value

temp=0;

for(index=0;index<READINGS;index++)

{

_SAMP=1;//turn on ADC sampling

_IPL=0b111;//set processor priority to maximum so we don't get interrupts during 

measurement

TRISB^=chanmask;//set the desired channel to input mode

_EDG1STAT=1;//start injecting current

NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); //32 NOP = 2.0us @ 16MIPS

NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();

NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();

NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();

_EDG2STAT=1;//stop injecting current

_SAMP=0;

while(!_DONE);//get ADC reading

TRISB^=chanmask;//drain charge on sensor

_CTMUEN=0;

_EDG1STAT=0;

_EDG2STAT=0;

_CTMUIF=0;

_CTMUEN=1;//reset CTMU

_IPL=0b000;//restore processor priority

temp+=ADC1BUF0;//add up readings 

}

AD1PCFGL^=chanmask;

Y i  Y i 1–  * X i  Y i 1– – +=

0    1 

Where X is the input sequence, Y is the output
sequence and  is the filter coefficient.
DS01317A-page 10  2010 Microchip Technology Inc.
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We can substitute α by an integer number and scale
the coefficients by 2n. The coefficient resolution
depends on “n” (the number of bits used). Smaller
coefficients translate into slower updating filters.

On microcontrollers without hardware multiplication,
the coefficient “” can be selected to always have the
value 1 and only modify the number of bits used for
slower moving filters. This helps with the calculation,
since it only uses addition, subtraction and bit shifting.

EQUATION 2: LOW-PASS FILTER WITH 
QUANTIZED COEFFICIENTS

Dividing by the power of two (bit shifting) means that
some lower order bits are discarded every time. The
average might not reach the instantaneous reading
value in this case. The difference depends on the filter
coefficients. To counter this issue, the filtered value
may be stored on a higher number of bits. The value is
shifted left (bigger) and the lower order bits are used as
remainder bits. They eventually add up after a number
of operations and the filtered value follows the
instantaneous value correctly. The downside is that
operations with 16-bit or 32-bit integers are required.

EQUATION 3: LOW-PASS FILTER WITH 
IMPROVED ACCURACY

If the deviation while pressing a button is quite large
compared to the difference between the instantaneous
value and the calculated average (or speed is
essential), it can be left alone or a smaller number of
bits may used for the division remainder.

In most noise scenarios, button readings are very
unpredictable because the acquisition frequency is
many orders of magnitude smaller than the noise
frequency. One of the working solutions for this
problem is to use an envelope detector on the button
data, and then use that envelope to decode a touch.
Values above and below the average need to be used
(see high noise scenario in Figure 3). To simplify
things, the values above the average are mirrored
instead of calculating two envelopes. Because the
number of noise spikes below the average is practically

doubled this way, it is much easier to keep the
envelope level steady. The envelope function is
essentially a filter with different coefficients for attack
and decay. If the button value is below the envelope
value, then the envelope drops quickly to follow the
value. If the button value is over the envelope, then the
envelope rises slowly. This way we obtain a sequence
of values which is significantly more stable than the
button readings and can be used in decoding a touch.

The touch decoding routine needs updated envelope
and average values for all channels. They are calcu-
lated in a simple sequence of steps. Example code is
shown in Example 4 and the flowchart in Figure 8:

1. Read the button value.
2. If warm-up time is not used, then check for null

values in the filtered button, average and
envelope arrays and initialize them as needed. 

3. If the button data filtering is used, calculate the
value.

4. Mirror button values above the average (center
on the average).

5. Calculate the envelope value for the current
button sample.

6. Check if the current button is the most pressed.
Record value and index.

7. If the button value is below the depress thresh-
old, update the average value. This means that
the average will not move in most noise scenar-
ios.

8. Repeat from step one for each channel, as
needed.

9. If all channels have been read, start the
decoding routine.

a *2n  a
2n
-----=;=

Y i  Y i 1–  a* X i  Y i 1– – 

2n
-----------------------------------------------+=

YBIG i  Y i  *2n =

XBIG i  X i  *2n =

YBIG i  YBIG i 1–  
a* XBIG i  YBIG i 1– – 

2n
----------------------------------------------------------------+=

YBIG i  YBIG i 1–  a* X i  Y i 1– – +=
 2010 Microchip Technology Inc. DS01317A-page 11
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FIGURE 8: ENVELOPE AND AVERAGE CALCULATION
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EXAMPLE 4: ENVELOPE AND AVERAGE CALCULATION

When a touch is present, the button readings affected
by noise show a much higher deviation compared to
normal conditions. This would help with touch detection
unless the board layout has problems. Crosstalk
between channels will result in higher deviations on
adjacent buttons and some of them might give false
triggers.

Solving this problem requires limiting the number of
button presses that can be detected at the same time
to one. The first step would be to determine the button
that has the highest envelope deviation from the
average value. This only works if the background noise
readings with no press keep the deviation below the
press threshold.

Some noise frequencies will boost readings over the
press threshold on all buttons (even one is enough)
and the one having the highest deviation will be
incorrectly flagged as pressed. In this case, the
difference between the most pressed button and the
rest is small and might not even pass a debouncing test
with a long enough sequence. Again, big differences
between trace length and geometry on the board might

lead to some channels constantly having a higher
deviation compared to the others. In this case, the
debouncing test won’t protect against false triggers.

This leads to the introduction of another test before
deciding whether it’s a press or not. Since the
difference between channels in the absence of a touch
is usually small, we can compare this difference to a
threshold. For example, if the second highest deviation
is less than 50% of the maximum, it can be safely
decided that it was a press. Of course, the highest
value must remain on the same channel all through the
debouncing test to get a valid touch.

If a button passes the percentage test and is above the
fixed press threshold, then the firmware starts
debouncing up to a valid press. If no press has been
validated yet, the firmware resets all debouncing
counters to 0, except for the most pressed button. This
way a button may only be validated if it maintains this
“most pressed” status for a number of times in a row
larger than the debouncing threshold.

bt  = ReadButton(index, READINGS);

//first acquisition needs to initialize average and envelope to the instantaneous button 

value

//you can do this or start from 0 and have a "warmup time”

if (!bigraw[index]) bigraw[index]   = bt << RAW_BITS; 

  if (!raw[index]) raw[index]      = bt;

  //filter raw button data if needed (for this application there is no raw data filtering)  

  bigraw[index] += (INT32) bt - (bigraw[index] >> RAW_BITS); 

raw[index]= bigraw[index] >> RAW_BITS;

if (!average[index]) average[index] = ((INT32) bt << AVG_BITS);

 

temp = (average[index] >> AVG_BITS);

if (!envelope[index]) envelope[index] = temp;

bt  = temp - raw[index];      //determine if raw value is over the average

if (bt < 0) bt = temp + bt;   // and mirror it

        else bt = raw[index];

if (bt < envelope[index]) 

envelope[index] += ((INT32) bt-envelope[index]) >> ENV_ATTACK;

       else if (envelope[index] < temp) 

envelope[index] += ((INT32) bt-envelope[index]) >> ENV_DECAY;

temp = temp - envelope[index];

if (temp < 0) temp=0;    // no negative values allowed    

deviation[index] = temp;

if (maxpress < temp)    //determine the "most pressed" button

{

maxindex  = index;

maxpress = temp;

}

//update average only if deviation is less than the unpressed threshold

if (temp < DEPRESS_THR) 

      average[index] += (INT32) raw[index] - (average[index] >> AVG_BITS);
 2010 Microchip Technology Inc. DS01317A-page 13
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If a button is already flagged as a valid press, but a
different one has the highest deviation, we have two
choices. We either force the most pressed button index
to the flagged button index and still increment the
debouncing counter, or simply start debouncing the
flagged button down to 0. The first choice helps avoid
flickering under heavy noise conditions, but also makes
pressing two buttons in a quick succession harder.

On the other hand, if a button does not pass the
percentage test or is under the depress threshold, then
its debouncing counter is decremented. When the
counter reaches 0, the button is no longer set as
pressed.

EXAMPLE 5: DECODING PROCEDURE

//if there is no valid press clear all button debounce counters except the one with the highest 

deviation

if (!bpress) 

        for (index = 0; index < CHANNELS; index++)

        {

            if (index != maxindex) db[index]=0;

        }

//see if any button has a deviation higher than a percentage of the most pressed one

//this is useful in noise conditions to eliminate false presses

temp = maxpress * WINNER_PCT/100;

for (index = 0; index < CHANNELS; index++)

{

 if (index != maxindex && deviation[index] > temp) break;

}

if (maxpress > PRESS_THR && index == CHANNELS) //the percentage test passed

{

if (!bpress) //no valid press yet

{

if (db[maxindex] == PRESS_DEBOUNCE) 

//debounce test passed, set button as pressed

{

bpress  = (1 << maxindex);

ldb     = maxindex;

} else 

if (db[maxindex] < PRESS_DEBOUNCE) db[maxindex]++; 

//increment debounce counter for button

} else //there is a valid press

{

//keep the most pressed button to avoid flickering and increment debounce counter

maxindex  = ldb;

if (db[maxindex] < PRESS_DEBOUNCE) db[maxindex]++;

}

} 

//if most pressed button under depress threshold or percentage test failed

//start debouncing down

else if (maxpress < DEPRESS_THR || index < CHANNELS) 

{

//it is possible to set a lower debounce down value for a quicker release

if (db[maxindex] > DEPRESS_DEBOUNCE) 

           db[maxindex] = DEPRESS_DEBOUNCE;

if (db[maxindex] == 0) bpress = 0;//clear button if counter is 0

        else if (db[maxindex]) db[maxindex]--;//or decrement down to 0

}
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AN1317

A typical flow in the decoding procedure has the
following steps (see also the diagram in Figure 9):

1. Read the button value.
2. If warm-up time is not used, then check for null

values in the filtered button, average and
envelope arrays and initialize them as needed. 

3. If the button data filtering is used, calculate the
value.

4. Mirror button values above the average (center
on the average).

5. Calculate the envelope value for the current
button sample.

6. Check if the current button is the most pressed.
Record value and index.

7. If the button value is below the unpressed
threshold, update the average value. This
means that the average will not move in most
noise scenarios.

8. Repeat from step one for each channel, as
needed.

9. If all channels have been read, start the
decoding routine from step 10.

10. If there is no press validated yet, clear all
debouncing counters except for the most
pressed button.

11. Do the percentage test.
12. If the button value is above the press threshold

and has passed the percentage test, continue.
Otherwise, go to step 15.

13. Check the debouncing counter on the most
pressed button. If the debouncing threshold is
not reached, increment counter, otherwise set
the valid press flag for that button. For better
stability, but longer response times, the most
pressed button index can be forced to the valid
press index (if one exists).

14. Exit the decoding routine (button PRESSED
branch).

15. Percentage test failed or the button value is
below the depress threshold.

16. If counter is not zero, decrement, otherwise
unset the valid press flag.

17. Exit the decoding routine (button UNPRESSED
branch).
 2010 Microchip Technology Inc. DS01317A-page 15
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FIGURE 9: DECODING PROCEDURE
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ALGORITHM INTEGRATION
Another important issue is the integration of the
described algorithm in different applications. The user
might need USB communication or to control an
LCD/TFT. Processor usage is not a problem, since the
code presented in this note uses only 17% of the
processor time on a PIC24F running at 16 MIPS. The
difficulty is usually represented by the timing
constraints and the critical code sequences that must
not be interrupted.

The code attached to this note has all the reading and
decoding placed in the Timer1 interrupt routine. Each
channel is sampled at a certain interval and, after all of
them have been read, the decoding routine is called. 

While there are no strict timing constraints regarding
the sample rate, it must be kept around 100 samples
per second or the filter and envelope function
coefficients need to be adjusted.

Custom code can be easily inserted in the main loop or
in the other interrupt functions. There are no critical
code sections, except the CTMU charging time of
about 2-3 µS. This section must run for an exact
number of instructions or the readings will be
compromised. For this reason, the code sets the
processor priority to maximum before the section,
making sure no interrupt can be served. After getting
the ADC reading, the processor priority is restored to
normal.

The jittering algorithm adds a random value to the base
timer period, slightly decreasing the sample rate. The
actual number of ADC samples taken each pass is
calculated by multiplying the number of buttons by the
number of samples per button.

Data memory usage may be further decreased
depending on the number of samples taken per
channel and the envelope function coefficients by
replacing the 32-bit integer variables with 16-bit
integers.

TABLE 1: PROCESSOR USAGE VS. SAMPLE RATE FOR 8 BUTTON BOARD AT 16 MIPS
Samples Per Second*

(all channels)
Samples Per 

Button
Total ADC 
samples

T1PERIOD 
(500ns tick)

Processor Usage 
Estimation

Detection 
Speed

570 (max) 16 72960 N/A 100% Very fast
500 16 64000 4000 88% Very fast
400 16 51200 5000 70% Very fast
250 16 32000 8000 44% Fast
200 16 25600 10000 35% Fast
100 16 12800 20000 17% Medium

TABLE 2: PROGRAM AND DATA 
MEMORY USAGE ESTIMATION

Buttons Program Memory 
(words)

Data Memory 
(bytes)

16 1480 280
12 1480 220
8 1480 150
4 1480 90
2 1480 60
 2010 Microchip Technology Inc. DS01317A-page 17
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CONCLUSION
The algorithm presented in this application note solves
most of the issues resulting from conducted noise in a
CTMU-based touch application. The implementation
uses a low amount of processor time and is easily
customized for the user application.

REFERENCES
http://www.microchip.com/mTouch

AN1250, “Microchip CTMU for Capacitive Touch
Applications”

“Section 11. Charge Time Measurement Unit
(CTMU)” in the “PIC24F Family Reference Manual”
(DS39724)
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