

Application Note 44a

Type II Stability Program for the MIC2168/69

Stability Analysis for the MIC2168/69 Voltage Mode Converter Using a Type II Transconductance Error Amplifier

The MIC2169 is a high efficiency, simple to use synchronous buck controller IC, housed in a 10-pin MSOP package. The MIC2169 switches at 500kHz and features a high output driver capability for an all N-Channel synchronous architecture. The MIC2169 operates from a 3V to 13.2V input and can be configured to generate output voltages as low as 0.8V. Thus, the MIC2169 is a voltage mode converter with an internal transconductance error amplifier.

This application note addresses stability analysis for the MIC2169 voltage mode controller based on Dean Venable's K¹-factor method. The following analysis is based on a Type II error amplifier scheme that calculates the compensation resistor and capacitors for the MIC2169 controller, see Figure 1. Type II error amplifier compensation scheme relies on the output capacitor ESR to produce a Zero in the power path (input to output) transfer function. For additional information on this subject, consult reference 2.

Type II compensation analysis is done in MathCad that gives the user the flexibility to enter the output capacitance value and ESR; inductor's value and its DCR to match the actual values used on a specific MIC2169 application. This program not only calculates the Compensation values but also gives lot of insight on how the values affect the overall open loop response. It also has the power-path and error-amplifier transfer functions that show the location of poles and zeros. The MathCad file can be downloaded from Micrel Semiconductor's website (URL:www.micrel.com/xyz/typeII. mcd). This program can be modified to any fit any voltage mode controller with a transconductance error amplifier by

simply changing the gm (error amplifier gain) and the peak magnitude of the voltage ramp signal value.

The following values have to be entered in the program before it calculates the Compensation resistor, R1 and capacitors C1 and C2, see Figure 1:

- 1. V_{IN}
- 2. V_{OUT}
- 3. C_{OUT}
- 4. C_{OUT_ESR}
- 5. Inductor Value
- 6. DCR of inductor + R_{DSON} of upper MOSFET
- 7. Crossover Frequency (normally 50kHz)
- 8. Required Phase Margin (normally 45°-60°)

After entering the above values the program calculates the Compensation values and displays the power-path gain and phase, error amplifier gain and phase and total open-loop response gain and phase for the circuit. The program will also display the crossover frequency and phase margin for the calculated Compensation values:

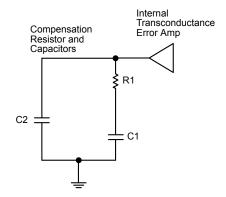


Figure 1. Type II Error Amplifier Scheme

Application Note 44a Micrel, Inc.

L := 2.5µH Enter inductor value.

C := $300\mu F$ Enter output capacitor value. ESR := 0.030Ω Enter ESR for output capacitor.

DCR := 0.025Ω Enter inductor DC resistance+ Top MOSFET R_{DS ON}.

 $f_c := 50 \times kHz$ Choose crossover frequency.

 $f_{esr} := \frac{1}{2 \times \pi \times C \times ESR}$

 $V_{IN} := 5V$ Enter input voltage. $V_{OUT} := 3.3V$ Enter output voltage.

 $D: = \frac{V_{OUT}}{V_{IN}}$

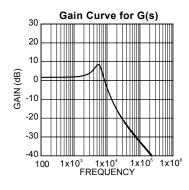
 $G_S := 20 \times log \left[\left(\frac{0.8 \times V}{V_{OUT}} \right) - 0 \right] \qquad G_S = -12.308$

 $G_m:=20 \times log\left(\frac{V_{IN} \times 1}{1V}\right)$ Modulator gain.

Gm = 13.979

 $G_{(s)} := \frac{\left(\frac{1}{s \times C} + ESR\right)}{\left(DCR + s \times L + \frac{1}{s \times C} + ESR\right)}$

S × C Power path transfer function.


 $G_{(s)} := \frac{(1 + ESR \times s \times C)}{(DCR \times s \times C + s^2 \times L \times C + 1 + ESR \times s \times C)}$

Power path transfer function simplified.

Feedback divider attenuation.

Transfer function used for plotting gain curve in dB.

$$G(f) := G_s + Gm + 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{\left[1 - \left(2 \times \pi \times f \right)^2 \times L \times C \right]^2 + \left[2 \times \pi \times f \times C \times \left(ESR + DCR \right) \right]^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times 2 \times \pi \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times C \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times f \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(ESR \times f \right)^2} \right] - 20 \times log$$

Mag := $G(f_c)$ Mag = -26.08 Mag is the amplitude of gain required at crossover from the error amplifier.

Phase Denominator- due to the LC of the output stage.

Phase Numerator- due to the ESR Zero of the output stage.

$$\phi$$
1(f) := 57.3 × atan(2 × π × f × ESR × C)

$$\phi tot(f) := \phi 1(f) - \phi 1(f)$$

$$g_m := 0.99 \times 10^3 \times \Omega^{-1}$$

MIC2169 transconductance gain.

R1: =
$$\frac{10^{\left|\frac{Mag}{20}\right|}}{g_{m}}$$
 R1 = 2.034 × 10⁴ Ω

R1 is the compensation resistor.

$$\theta_{lc}$$
:= 180 - 57.3atan $\left(\frac{f_c}{f_{acr}}\right)$ θ_{lc} = 109.472

$$\phi_{m} := 55$$

Select required phase margin.

$$P_{\text{shift}} := 360 - \phi_{\text{m}}$$

$$P_{shift} = 305$$

$$P_{errorpermitted} := P_{shift} - \theta_{lc}$$

This number should be greater than 180 degrees.

$$K_{fac} := tan \left(\frac{360 - P_{errorpermitted}}{2} \times \frac{\pi}{180} \right) \quad K_{fac} = 7.335 \quad K: = K_{fac}$$

This value should be positive, otherwise cannot do this with a type II comp scheme.

Application Note 44a Micrel, Inc.

$$F_z := \frac{f_c}{\kappa}$$
 $F_z = 6.817 \times 10^3 \text{Hz}$

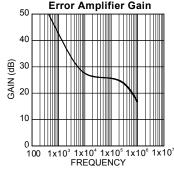
C1: =
$$\frac{1}{2 \times \pi F_7 \times R1}$$
 C1 = 1.148 × 10⁻⁹ F

$$\begin{aligned} F_p &:= f_c \times K & F_p &= 3.667 \times 10^5 \text{ Hz} \\ C2 &:= \frac{1}{2 \times \pi F_p \times R1} & C2 &= 2.134 \times 10^{-11} F \end{aligned}$$

Error amplifier transfer function

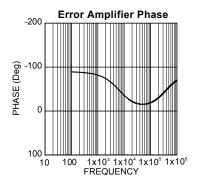
$$E(z) := g_m \times \left[\frac{1 + R1 \times S \times C1}{s \times (C1 + C2) \times \left(1 + R1 \times \frac{C1 \times C2 \times S}{C1 + C2}\right)} \right]$$

Zero location.


C1 is the compensation capacitor.

R1 in series with C1 and C2 is connected to GND on the comp pin.

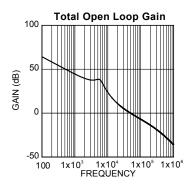
Pole location.

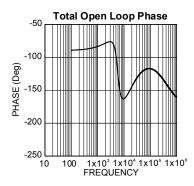

C2 is capacitor in parallel with R1 in series with C1.

$$\text{Error (f):=} \left[20 \times log \left(\frac{g_m}{C1 + C2} \right) + 20 \times log \left[\sqrt{1 + \left(2 \times \pi \times f \times R1 \times C1 \right)^2} \right] - 20 \times log \left[\sqrt{1 + \left(\frac{2 \times \pi \times f \times R1 \times C1 \times C2}{C1 + C2} \right)^2} \right] - \left[20 \times log \left[\sqrt{(2 \times \pi \times f)^2} \right] \right] \right]$$

$$\text{ErPhase } \left(f\right) := 57.3 \times \left(\text{atan}\left(2 \times \pi \times f \times R1 \times C1\right) - \text{atan}\left(\frac{2 \times \pi \times f \times R1 \times C1 \times C2}{C1 + C2}\right) - \text{atan}\left(2 \times \pi \times f\right)\right)$$

ErPhase (f): = ErPhase (f) – 180




Application Note 44a Micrel, Inc.

Total open loop

CI(f) := G(f) + Error(f)

Clphase(f) := ErPhase1(f) ϕ tot(f)

 $R1 = 2.034 \times 10^4 \Omega$

 $C1 = 1.148 \times 10^{-9} F$

 $C2 = 2.134 \times 10^{-11}F$

Compensation values.

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Inc.