

SAM L10/SAM L11 Op Amp as ADC Gain Amplifier

Abstract

The Microchip® SAM L10/SAM L11 includes three on-chip operational amplifiers (op amp). The Operational Amplifier Controller module offers the most common inverting and non-inverting programmable gain and hysteresis configurations. Each op amp is software configurable and can be used as a standalone general purpose operational amplifier. This document introduces the configuration and usage of the op amp module, different built-in modes, and presents an application example. In the application example, one of the operational amplifiers is configured as a non-inverting gain amplifier with output internally connected to the ADC. With this setup, the op amp operates as a gain amplifier stage for ADC sampling.

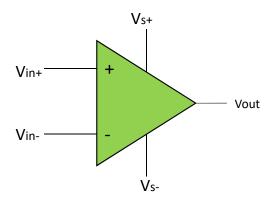
Table of Contents

Ab	stract		1			
1.	Introduction					
	1.1.	Operational Amplifiers				
	1.2.	Introduction to the Application Example	. 3			
2.	Module Overview					
	2.1.	Configuring the Operational Amplifiers	.5			
	2.2.	Built-In Modes				
	2.3.	Low-Power Mode	7			
3.	Example Overview					
	3.1.	Application Configuration and Implementation	.9			
	3.2.	Importing Atmel Start Project into Atmel Studio	10			
	3.3.	Summary	11			
Th	е Міс	rochip Web Site1	2			
Customer Change Notification Service						
Customer Support						
Microchip Devices Code Protection Feature						
Legal Notice1						
Tra	adema	arks1	3			
Qι	ality I	Management System Certified by DNV1	4			
W	orldwi	de Sales and Service1	5			

This document introduces the Operational Amplifier Controller (OPAMP) module on the SAM L10/SAM L11. The operational amplifiers can be software configured and combined to many different modes, as described in the product data sheet. Before the OPAMP module is further investigated, a brief introduction to ideal operational amplifiers and the application example is presented.

1.1 Operational Amplifiers

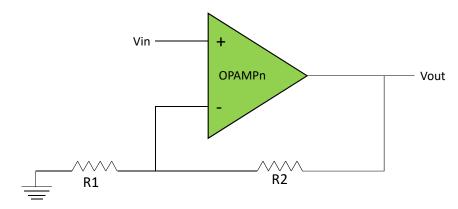
Introduction


1.

An operational amplifier (op amp) is an electronic component designed for voltage gain amplification. Op amps most often include a differential input (Vin±), inputs for a power supply (Vs±), and a single output (Vout). For an ideal op amp, the following two laws will determine its main properties:

- 1. The op amp will attempt to keep the differential inputs the same (Vin+ =Vin-).
- 2. No current flows into or out of the differential inputs. For a non-ideal op amp the low leakage current is due to the high impedance input stage composed by the transistor gates.

Using these two laws, many configurations for different purposes can be obtained by creating circuits with op amps and other components, often resistors. The most common configurations are available as built-in modes on the SAM L10/SAM L11 as presented in Built-In Modes.


Figure 1-1. Ideal Op Amp

1.2 Introduction to the Application Example

In the code example, one of the op amps is configured as a non-inverting Programmable Gain Amplifier (PGA) with output internally connected to the ADC module for signal sampling. The input reference signal is connected to the non-inverting (positive) input while the inverting (negative) input, and the output is connected in a closed loop with an internal resistor ladder, as shown in Non-Inverting PGA. For a non-inverting PGA, the ideal amplified output is given in the below equation:

Figure 1-2. Non-Inverting PGA

Vout = Vin (1 + R2/R1), which is derived using the two laws of an ideal op-amp.

The example is useful when sampling a low-voltage measurement, and there is a need for gain amplification. Recalling the laws for an ideal op-amp, no current flows into the inputs. This property, known as buffering, is valuable for minimizing the impact of the measurement on the voltage.

1.2.1 Prerequisites

Running the example, as described in this application note, requires: SAM L10/SAM L11 Xplained Pro Evaluation Kit with USB cable.

2. Module Overview

The block diagram of the op amp module is shown in the below figure. Each individual op amp is configured by its respective Operational Amplifier Control (OPAMPCTRLx) register.

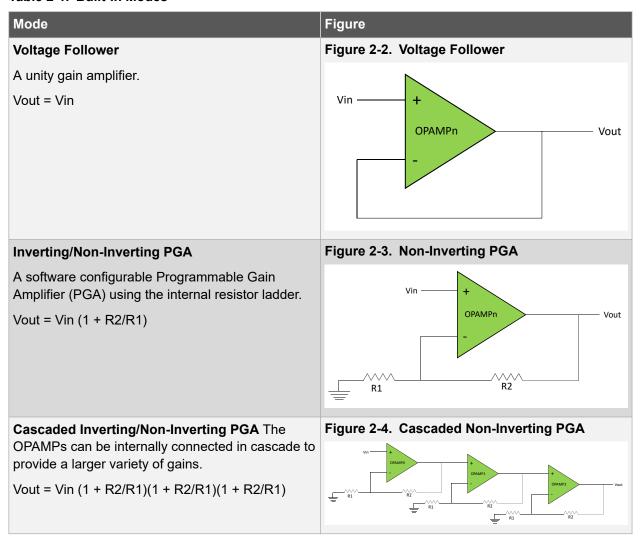
STATUS OPAMPCTRL0.MUXPOS CTRLA OANPOS PAMPCTRL0.ANAOUT DAC/ REFBUF DPAMPCTRL2.MUXPOS VDDANA OA2POS OA2TAP STATUS ◆ OA0OUT OPAMPCTRL0.MUXNEG DAC/REFBUF GND OA1OUT OA0POS OPAMPCTRL2.ANAOUT OA1POS DAC VDDANA OA0TAP OPAMPCTRL0.RES2VCC RES3TAP OPAMP2 ► OA2OUT VD<u>D</u>ANA OPAMPCTRL2.MUXNEG OPAMPCTRL0.RES2OUT GND OPAMPCTRL0.POTMUX UG DAC/REFBUF OA0TAP OA0NEG OA1NEG OPAMPCTRL2.RES2VCC OA0NEG DAC/REFBUF VDDANA OPAMPCTRL2.RES2OUT DPAMPCTRL0.RES1EN OPAMPCTRL2.POTMUX OPAMPCTRL0.RES1MUX OA2TAP STATUS OPAMPCTRL1.MUXPOS OA2POS CTRLA OA1POS OA1TAF OA1OUT DAC/ REFBUR PAMPCTRL1.ANAOUT OPAMPCTRL2.RES1EN VDDANA OPAMPCTRL2.RES1MUX OA1OUT DPAMPCTRL1.MUXNEG OA0OUT GND UG RESCTRL.RES2OUT DAC/_ REFBUF OPAMPCTRL1.RES2VCC RESCTRL.POTMUX CTRLA.LPMUX RES3TAP OPAMPCTRL1.RES2OUT DAC/REFBUR OPAMPCTRL1.POTMUX R2 OA1TAP REFBUF VDOUBLER*₄ CLK_ULP32K RESCTRL.RES1EN VDDANA OA1POS OA1NEG RESCTRL.RES1MUX *: VDOUBLER supplies all muxes CACCLIT DPAMPCTRL1.RES1EN

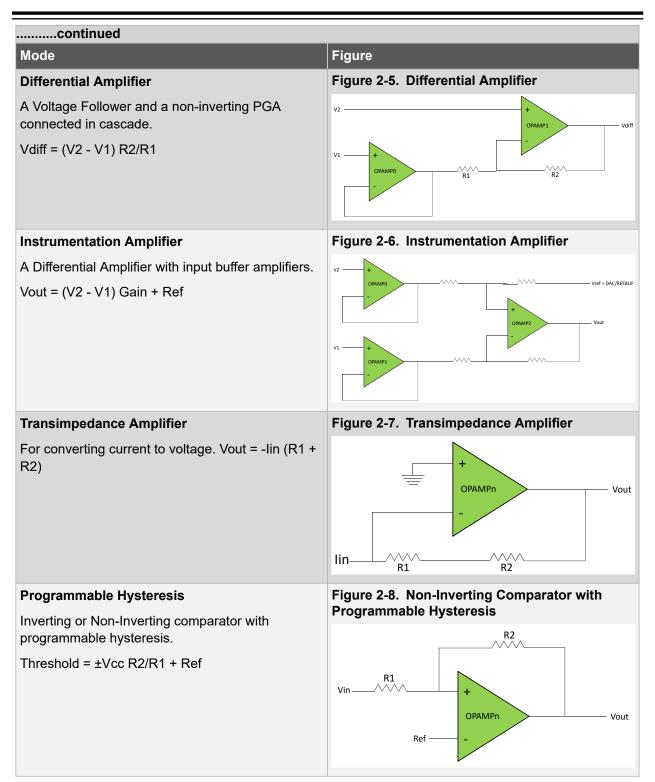
Figure 2-1. OPAMP Block Diagram

2.1 Configuring the Operational Amplifiers

The OPAMP settings must be configured before the amplifier is enabled. The following is a brief description of significant bit fields and groups in the Operational Amplifier Control registers:

Select the positive input in OPAMPCTRLx.MUXPOS


OPAMPCTRL1.RES1MUX


- Select the negative input in OPAMPCTRLx.MUXNEG
- Select OPAMPCTRLx.RES1EN if resistor ladder issued
- Select the input for the resistor ladder in OPAMPCTRLx.RES1MUX
- Select the potentiometer selection of the resistor ladder in OPAMPCTRLx.POTMUX
- Select the VCC input for the resistor ladder in OPAMPCTRLx.RES2VCC
- Connect the operational amplifier output to the resistor ladder using OPAMPCTRLx.RES2OUT
- Select the trade-off between speed and energy consumption in OPAMPCTRLx.BIAS

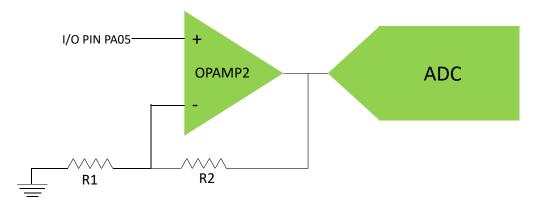
2.2 Built-In Modes

The op amp module includes software configurable internal connections that enables the most common op-amp modes. The different modes are briefly introduced in the following table. For additional information related to implementation of the built-in modes, refer to the product data sheet.

Table 2-1. Built-In Modes

2.3 Low-Power Mode

For low-power applications, the op amp module contains settings for power saving. One of them is to trade off speed versus power efficiency to get the lowest power consumption. The speed setting is configured for each amplifier individually by the Bias Control field in the Operational Amplifier x Control


AN2794 Module Overview

register (OPAMPCTRLx.BIAS). The BIAS bits select the amount of bias current provided to the operational amplifiers. This will also affect the start-up time. Another low-power configuration is to disable the voltage doubler by setting the Low-Power Mux bit in the Control Register (CTRLA.LPMUX), if the supply voltage is guaranteed to be above 2.5V. Disabling the voltage doubler saves power and reduces the start-up time. The Analog-On-Demand feature allows the ADC and the AC analog peripherals to automatically enable the OPAMPx only when it is needed, thereby allowing a reduction in power consumption. When OPAMPCTRLx.ONDEMAND=1, the analog block is powered off for the lowest power consumption if it is not requested.

3. Example Overview

In the application example, the OPAMP2 is configured as a non-inverting PGA. The amplified output is enabled for sampling with the ADC. As mentioned in the product data sheet, the OPAMP2 positive input can be multiplexed to the I/O pin PA05. Therefore, the input signal to be amplified must be connected to this pin. The pin must also be configured as an input. The ADC needs to be configured to use the OPAMP2 output as input.

Figure 3-1. OPAMP2 Configured as Non-Inverting PGA with Output Connected to the ADC Module

In this example OPAMP2 is configured with R2/R1 = 1/3 and the internal connection to the ADC is enabled. When OPAMP2 is configured and enabled in the main loop, the ADC starts converting a predefined number of samples of the amplified signal. The ADC is configured in callback mode, implying that an interrupt occurs when the conversion is complete. The ADC result can be verified as:

ADC result (in Volts) = $(1 + R2/R1) \times Vin = (1 + 1/3) \times Vin$

3.1 Application Configuration and Implementation Oscillator and GCLK Configuration:

- Configure the 16 MHz internal oscillator frequency to 16 MHz by setting OSC16MCTRL.FSEL[1:0] to 0x11. Enable the 16 MHz internal oscillator by setting OSC16MCTRL.ENABLE to 1.
- Configure the GCLK0 clock source to 16 MHz oscillator output by setting GENCTRL0.SRC[4:0] to 0x05 (OSC16M oscillator output). Enable GCLK0 by setting GENCTRL0.GENEN to 1.

Operational Amplifier Controller (OPAMP) Configuration:

The following steps describe the important register settings for configuring OPAMP2 as a non-inverting programmable gain amplifier with a gain of 1+1/3.

- 1. Select OA2POS as the positive input of OPAMP2 by setting OPAMPCTRL2.MUXPOS[3:0] to 0x00 (OPAMPx Positive Input).
- 2. PA05 is used as the OPAMP input. Assign the OA2POS peripheral function to PA05 by setting the PMUX2.PMUX0[3:0] to 0x01 (Peripheral Function B Selected).
- 3. Select Resistor Ladder Taps as the negative input of OPAMP2 by setting OPAMPCTRL2.MUXNEG[3:0] to 0x01 (OPAMPx Resistor Ladder Taps).
- 4. Enable the Resistor ladder. Set OPAMPCTRL2.RES1EN to 1.
- 5. Select GND as input to the Resistor ladder by setting OPAMPCTRL2.RES1MUX[2:0] to 0x03.

- 6. Set the Potentiometer selection for the resistor ladder to 1/3 by setting OPAMPCTRL2.POTMUX[2:0] to 1. This sets R1 to 12R and R2 to 4R.
- 7. Connect the resistor ladder to the operational amplifier output by setting OPAMPCTRL.REST2OUT to 1.
- 8. Close the switch that connects the OPAMP2 output to the ADC input by setting OPAMPCTRL2.ANAOUT to 1.

Analog-to-Digital Converter (ADC) Configuration:

The following steps describe the important register settings for configuring ADC to convert the OPAMP input.

- 1. Select GCLK0 as the clock source to the ADC module by configuring PCHCTRL20.GEN[2:0] to 0x0 (Generic Clock Generator 0).
- 2. Divide the input clock to the ADC peripheral by 8 by setting CTRLB.PRESCALER[2:0] to 0x02.
- 3. Assign OA2POS peripheral function to PA05 by setting PMUX2.PMUXO[3:0] to 0x01 (Peripheral Function B Selected).
- 4. Select OPAMP2 output as the positive input of the ADC by setting INPUTCTRL.MUXPOS[4:0] to 0x1F (OPAMP2 Output).
- 5. Select GND as the negative input of the ADC by setting INPUTCTRL.MUXNEG[4:0] to 0x18 (Internal ground).
- 6. Set the ADC reference voltage to ½ VDDANA by setting REFCTRL.REFSEL[3:0] to 0x02.
- 7. Set the ADC resolution to 12-bit by setting CTRLC.RESSEL[1:0] to 0x0.

Note:

- The ADC clock prescaler must be set according to the specifications of the ADC module, and the speed of the clock source. The ADC clock speed should not exceed the maximum conversion frequency.
- 2. The ADC is mostly configured with default settings. The accuracy of the sampling can be increased by applying built-in software selectable features to accumulate and divide samples for averaging and gain and offset correction.

In the application code, enable the ADC Result Ready interrupt (INTENSET.RESRDY = 1) and the ADC module (CTRLA.ENABLE=1). Enable the OPAMP module (CTRLA.ENABLE=1) and wait for the OPAMP module to be ready by polling the STATUS.READYx bit (where x = 2, corresponding to OPAMP2).

Start the first ADC conversion by setting SWTRIG.START to 1. The subsequent ADC conversions are triggered from the ADC interrupt by setting the SWTRIG.START to 1 in the ADC result ready interrupt handler.

Note: The amplified signal voltage can be calculated from the ADC result buffer values according to: adc_result_buffer * V_REF / ADC_MAX_VALUE, where V_REF is the sampling voltage reference (ADC_REFERENCE_INTVCC1) and ADC_MAX_VALUE is 0xFFF for a 12-bit conversion.

3.2 Importing Atmel Start Project into Atmel Studio

The example application corresponding to this document can be downloaded from the following web site: start.atmel.com. Follow these steps to download the example project:

- 1. Go to start.atmel.com and click Browse Examples.
- 2. Search for the ADC Gain Amplifier example.

Example Overview

- 3. Select the ADC Gain Amplifier example, and then click **Download Selected Example** to download the project.
- 4. Once prompted, select the board to use.

3.3 Summary

The SAM L10/SAM L11 operational amplifiers can be used for many purposes. This document describes how to use the on-chip op amp module as a non-inverting amplifier, and how to configure the op amp and ADC modules, such that the output of the OPAMP2 is sampled by the ADC.

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.

 Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-3555-6

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4450-2828
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
http://www.microchip.com/	China - Chongqing	Japan - Osaka	Finland - Espoo
support	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
Web Address:	China - Dongguan	Japan - Tokyo	France - Paris
www.microchip.com	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Atlanta	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Duluth, GA	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Tel: 678-957-9614	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Fax: 678-957-1455	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Austin, TX	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Tel: 512-257-3370	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Boston	China - Nanjing	Malaysia - Penang	Tel: 49-7131-67-3636
Westborough, MA	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Tel: 774-760-0087	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Fax: 774-760-0088	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Chicago	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Itasca, IL	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Tel: 630-285-0071	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Fax: 630-285-0075	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Dallas	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Addison, TX	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Tel: 972-818-7423	China - Suzhou	Taiwan - Taipei	Italy - Milan
Fax: 972-818-2924	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Detroit	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Novi, MI	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Tel: 248-848-4000	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Houston, TX	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Tel: 281-894-5983	China - Xiamen		Tel: 31-416-690399
Indianapolis	Tel: 86-592-2388138		Fax: 31-416-690340
Noblesville, IN	China - Zhuhai		Norway - Trondheim
Tel: 317-773-8323	Tel: 86-756-3210040		Tel: 47-7289-7561
Fax: 317-773-5453			Poland - Warsaw
Tel: 317-536-2380			Tel: 48-22-3325737
Los Angeles			Romania - Bucharest
Mission Viejo, CA			Tel: 40-21-407-87-50
Tel: 949-462-9523			Spain - Madrid
Fax: 949-462-9608			Tel: 34-91-708-08-90
Tel: 951-273-7800			Fax: 34-91-708-08-91
Raleigh, NC			Sweden - Gothenberg
Tel: 919-844-7510			Tel: 46-31-704-60-40
New York, NY			Sweden - Stockholm
Tel: 631-435-6000			Tel: 46-8-5090-4654
San Jose, CA			UK - Wokingham
Tel: 408-735-9110			Tel: 44-118-921-5800
Tel: 408-436-4270			Fax: 44-118-921-5820
Canada - Toronto			
Tel: 905-695-1980			
Fax: 905-695-2078			