
 AN2634
Bootloader for tinyAVR® 0- and 1-series, and

megaAVR® 0-series

Introduction

Author: Egil Rotevatn, Microchip Technology Inc.

This application note describes how tinyAVR® 0- and 1-series, and megaAVR® 0-series microcontrollers
(MCUs) can use self-programming. This enables the user to download application code into Flash without
the need for an external programmer. The example application is using the ATtiny817 Xplained Pro
(ATTINY817-XPRO) kit to communicate via the UART with a PC running a Python script. In addition, a
TWI version of the bootloader application is available.

The provided example bootloader applications and Python script are suitable as starting points for custom
bootloader applications.

Features

• Configure Flash Sections
• Read and Write Both Flash and EEPROM Memories
• Read and Write Protection
• C-code Application Example for Self-Programming
• Python Host Application Example

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 1

Table of Contents

Introduction..1

Features.. 1

1. Relevant Devices...3
1.1. tinyAVR 0-series...3
1.2. tinyAVR 1-series...3
1.3. megaAVR® 0-series..4

2. Device Self-Programming..5
2.1. Memory Layout...5
2.2. Compiler and Linker... 9
2.3. Memory Protection... 11
2.4. Bootloader Operation... 12

3. Host Application...14
3.1. Python Script Operation... 14

4. Expanding Functionality.. 17
4.1. Entering Boot Mode..17
4.2. Interfaces..17
4.3. Data Integrity..18
4.4. Confidentiality...18

5. References.. 19

6. Revision History...20

The Microchip Web Site.. 21

Customer Change Notification Service..21

Customer Support... 21

Microchip Devices Code Protection Feature... 21

Legal Notice...22

Trademarks... 22

Quality Management System Certified by DNV...23

Worldwide Sales and Service..24

 AN2634

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 2

1. Relevant Devices
This chapter lists the relevant devices for this document.

1.1 tinyAVR 0-series
The figure below shows the tinyAVR 0-series, laying out pin count variants and memory sizes:

• Vertical migration is possible without code modification, as these devices are fully pin- and feature
compatible.

• Horizontal migration to the left reduces the pin count and, therefore, the available features.

Figure 1-1. tinyAVR® 0-series Overview

8 14 20 24
Pins

Flash

ATtiny1607

ATtiny807

ATtiny1606

ATtiny806

ATtiny1604

ATtiny804

ATtiny402

ATtiny202

ATtiny404

ATtiny204

ATtiny406

32 KB

16 KB

8 KB

4 KB

2 KB

devices ATtiny~~

ATtiny~~Legend:

common data sheet

Devices with different Flash memory size typically also have different SRAM and EEPROM.

1.2 tinyAVR 1-series
The following figure shows the tinyAVR 1-series devices, laying out pin count variants and memory sizes:

• Vertical migration upwards is possible without code modification, as these devices are pin
compatible and provide the same or more features. Downward migration may require code
modification due to fewer available instances of some peripherals.

• Horizontal migration to the left reduces the pin count and, therefore, the available features.

 AN2634
Relevant Devices

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 3

Figure 1-2. tinyAVR® 1-series Overview

48 KB

32 KB

16 KB

8 KB

4 KB

2 KB

8 14 20 24
Pins

Flash

ATtiny816 ATtiny817ATtiny814

ATtiny417

ATtiny1616 ATtiny1617

ATtiny414 ATtiny416ATtiny412

ATtiny214ATtiny212

ATtiny1614

ATtiny3216 ATtiny3217

devices
ATtiny~~

ATtiny~~
Legend:

common data sheet

Devices with different Flash memory size typically also have different SRAM and EEPROM.

1.3 megaAVR® 0-series
The figure below shows the megaAVR 0-series devices, laying out pin count variants and memory sizes:

• Vertical migration is possible without code modification, as these devices are fully pin and feature
compatible.

• Horizontal migration to the left reduces the pin count and, therefore, the available features.

Figure 1-3. megaAVR® 0-series Overview

48 KB

32 KB

16 KB

8 KB

28/32 48
Pins

Flash

ATmega3208

ATmega4808

ATmega3209

ATmega4809

ATmega808

ATmega1608 ATmega1609

ATmega809

Devices with different Flash memory size typically also have different SRAM and EEPROM.

 AN2634
Relevant Devices

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 4

2. Device Self-Programming
In tinyAVR® 0- and 1-series, and megaAVR® 0-series MCUs, Flash programming is done one page at a
time. The Flash page size is either 64 or 128 bytes, dependent on device Flash size, and the data must
be loaded into a page buffer of the same size before it can be written to Flash.

Before writing the page buffer to Flash, the target page must be erased. Writing to an unerased Flash
page will corrupt its content. Starting the page erase can be done at the same time as writing data to the
page by loading the PAGEERASEWRITE command into the NVMCTRL.CTRLA register.

It is also possible to do the erase and write in two separate operations to enable shorter programming
time for each command, using the following steps:

• Write a dummy value to a location in the page to set up the address
• Perform a PAGEERASE command
• Fill the page buffer
• Perform a PAGEWRITE command

The page buffer is automatically cleared after any of the commands in NVMCTRL.CTRLA are executed.

Flash word addressing uses little-endian byte order. If the Least Significant address bit (bit 0) is ‘0’, the
low byte is accessed, and if it is ‘1’, the high byte is accessed.

NVMCTRL.CTRLA has Configuration Change Protection (CCP) to prevent accidental modification. Refer
to the CPU chapter in the relevant device data sheet for details on CCP. To make sure the command has
finished, it is advised to wait for the Flash Busy bit (FBUSY) in the NVMCTRL.STATUS register to clear.

Note:  The CHIPERASE command in NVMCTRL.CTRLA will erase the entire Flash, so this may not be
executed during self-programming unless the aim is to make the device useless.

2.1 Memory Layout
In addition to Flash, the EEPROM and User Row sections can be self-programmed by the MCU. This
chapter explains the locations and differences in the sections.

For actual sizes and address offsets, refer to the relevant device data sheet.

2.1.1 Flash
The Flash memory can be divided into three sections: Boot Loader (BOOT), Application Code
(APPCODE) and Application Data (APPDATA). The main difference between these sections are access
privileges:

• The code in the BOOT section can write to APPCODE and APPDATA
• The code in APPCODE can write to APPDATA
• The code in APPDATA cannot write to Flash or EEPROM

Figure 2-1 shows how the Flash sections are ordered in the Flash.

 AN2634
Device Self-Programming

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 5

Figure 2-1. Flash Sections

BOOT

APPLICATION
CODE

APPLICATION
DATA

FLASHSTART

BOOTEND

APPEND

FLASHEND

FLASHSTART is at 0x0000 when accessed as program memory, and mapped with the following offsets
when accessed via data memory:

• megaAVR 0-series: 0x4000
• tinyAVR 0- and 1-series: 0x8000

The address mapping is needed for access using normal Load/Store Indirect instructions. In the device
header file, the offset is defined as MAPPED_PROGMEM_START, so if accessing Flash address 0x100 via
data memory, the Address Pointer can be defined as in the example below:

uint8_t *flash_pointer = (uint8_t *) 0x100 + MAPPED_PROGMEM_START;

The size of the Flash sections can be configured through the BOOTEND and APPEND fuses in steps of
256 bytes (128 words). The following table shows how these fuses configure the sections.

Table 2-1. Setting Up Flash Sections

BOOTEND APPEND BOOT Section APPCODE Section APPDATA Section

0 0 0 to FLASHEND - -

> 0 0 0 to 256*BOOTEND 256*BOOTEND to
FLASHEND

-

> 0 ==
BOOTEND

0 to 256*BOOTEND - 256*BOOTEND to
FLASHEND

> 0 >
BOOTEND

0 to 256*BOOTEND 256*BOOTEND to
256*APPEND

256*APPEND to
FLASHEND

 AN2634
Device Self-Programming

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 6

A good way of making sure these fuses are set up as expected on a device is to use the FUSES macro in
the bootloader code project. It can be found in fuse.h, which is included by io.h:
#include <avr/io.h>

FUSES = {
 .OSCCFG = FREQSEL_20MHZ_gc,
 .SYSCFG0 = CRCSRC_NOCRC_gc | RSTPINCFG_UPDI_gc,
 .SYSCFG1 = SUT_64MS_gc,
 .APPEND = 0x00, // Application data section disabled
 .BOOTEND = 0x02 // Boot section size = 0x02 * 256 bytes = 512 bytes
};

This will compile the fuse settings into the elf-file for the bootloader, and if this is used to program the
device instead of the hex-file, the fuse settings will be programmed at the same time as the Flash.

Note:  All fuse bytes in the struct must be configured, not only BOOTEND and APPEND. This is because
an omitted fuse byte will be set to 0x00 and may cause an unwanted configuration.

The device fuses can also be configured directly from Atmel® Studio 7.0, using Device Programming (Ctrl
+Shift+P) - Fuses, as shown in Figure 2-2.

 AN2634
Device Self-Programming

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 7

Figure 2-2. Configure BOOTEND and APPEND fuses, Atmel Studio 7.0

2.1.2 EEPROM
The EEPROM is a separate section similar to the Flash Application Data section, with the following
differences:

• Starts at memory address 0x1400.
• Page size is half of a Flash page size.
• Code cannot be executed from EEPROM.
• Supports single byte read and write. Only the values written to the page buffer for that address

location will be erased/written.
• Same write commands as Flash, but a different Status bit in NVMCTRL.STATUS.

 AN2634
Device Self-Programming

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 8

2.1.3 User Row
The User Row section is one extra EEPROM page, with the following differences:

• Starts at memory address 0x1300.
• Will not be erased by a chip erase.
• Can be accessed through UPDI on a locked device.

2.2 Compiler and Linker
Atmel® Studio 7.0 is using AVR® GCC to compile C and C++ code for AVR devices. AVR GCC is used
when referring to GNU Compiler Collection (GCC) targeting specifically the AVR, or something that is
AVR specific about GCC.

AVR GCC can also be used standalone, without Atmel® Studio 7.0.

2.2.1 Standard Start Files in the Bootloader
The standard start files used by AVR GCC contain the interrupt vector table, initialize the AVR CPU and
memory, and jump to ‘main()’. If interrupts are not used by the bootloader, the start files can be removed
to keep the code as small as possible.

When the standard start files are disabled, ‘main()’ is not called, so a function needs to be defined and
entered as the device starts executing. The following code snippet shows an example ‘boot()’ function
with needed initialization in the constructors section (.ctors) of the AVR GCC code project:
__attribute__((naked)) __attribute__((section(".ctors"))) void boot(void){
 /* Initialize system for C support */
 asm volatile("clr r1");

 /* Replace with bootloader code */
 while (1)
 {
 }
}

As the function is not called using CALL/RET instructions, but entered at start-up, the compiler is
instructed by the naked attribute to omit the function prologue and epilogue. See the AVR GCC
documentation for details.

With AVR GCC, the standard start files are disabled by setting the linker flag -nostartfiles when
compiling the project. In Atmel® Studio 7.0 this can be found in Project Properties (Alt+F7) → Toolchain
→ AVR/GNU Linker → General, as seen in Figure 2-3.

 AN2634
Device Self-Programming

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 9

https://gcc.gnu.org/onlinedocs/gcc/AVR-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/AVR-Function-Attributes.html

Figure 2-3. Configuring "Do not use standard start files", Atmel Studio 7.0

2.2.2 Application Start
For the AVR GCC linker script to know where in the Flash to put the compiled application code, the start
of the .text code section must be configured to correspond with the location of the Flash sections. The
input is word-aligned, so the following numbers may be used:

• Boot start: 0x0000 (default).
• Application Code start: BOOTEND * 0x80.
• Application Data start: APPEND * 0x80.

Using BOOTEND fuse setting 0x02 as an example (256 word boot size), relocation of the application
code .text section is done by using the following linker option:
-Wl,--section-start=.text=0x100

In Atmel® Studio 7.0, relocation can be done in Project Properties (Alt+F7) → Toolchain → AVR/GNU
Linker → Memory Settings, by adding .text=0x100 to the FLASH segment, as shown in Figure 2-4.

 AN2634
Device Self-Programming

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 10

Figure 2-4. Configure Application Section Start, AVR GCC, Atmel Studio 7.0

2.3 Memory Protection
To protect some or all of the Flash from being accessed or written, there are several steps of protection
available. The only protection that cannot be disabled is Flash section write privileges, described in the
2.1 Memory Layout chapter. In addition, the following types of protection can be configured for added
security.

2.3.1 BOOTLOCK and APCWP
Boot Section Lock (BOOTLOCK) and Application Code Section Write Protection (APCWP) are located in
the NVMCTRL.CTRLB register and are used for run-time write protection.

BOOTLOCK prevents read access and code execution from BOOT. This bit can only be set by code
executed from BOOT, and will activate when code execution moves out of BOOT. When BOOT is locked,
any attempt to read from BOOT will return 0x00, and any instruction executed from BOOT will be a No
Operation (NOP) instruction.

APCWP controls write access to APPCODE. When set, any attempt to write to this section will result in a
write error.

Note:  Once enabled, the bits in NVMCTRL.CTRLB can only be disabled by a Reset.

 AN2634
Device Self-Programming

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 11

2.3.2 EESAVE
EESAVE is one of the bits in the SYSCFG0 fuse byte. It controls whether the EEPROM will be erased or
not during a chip erase.

Note:  If EESAVE is enabled and the device is unlocked by running a chip erase, data remaining in
EEPROM can be read.

2.3.3 Lock Bits
The Lock bits are placed in a separate fuse that can prevent a programmer from accessing the fuses,
Flash and EEPROM. When a locked device is accessed with UPDI, only the control and status space is
available, allowing the user to access device ID and User Row and execute a chip erase.

A chip erase must be executed to unlock a device locked with the Lock bits.

2.4 Bootloader Operation
At the start of the example bootloader, the state of a GPIO pin is polled. If this boot pin is high,
BOOTLOCK is enabled and execution jumps to APPCODE. If the pin is low, the bootloader starts
receiving data over USART, and writes this data to the page buffer. When the page buffer is full, the page
is written to Flash. After enough data is received to fill the entire Flash, a software Reset is issued,
resetting all peripherals. The new application can then be started.

When first programming the bootloader to the device, APPCODE and APPDATA are empty. In this
situation, if the boot pin is high on start-up, code execution will jump to a Flash section with all bytes
equal 0xff. This will be executed as a NOP. When execution reaches the end of Flash, it will wrap
around to the start of BOOT, and again execute the bootloader. This will create a loop, until the boot pin
goes low.

The following illustration shows a flow diagram of the bootloader operation.

 AN2634
Device Self-Programming

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 12

Figure 2-5. Booloader Flowchart

Note:  For the example bootloader used on ATiny817 Xplained Pro, the Boot pin is connected to the
SW1 tactile switch with external pull-up.

Before jumping to the application code, BOOTLOCK is enabled to prevent access to boot from the
application.

 AN2634
Device Self-Programming

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 13

3. Host Application
In a bootloader context, the host is the system responsible for sending the application code to the device.
This is usually a computer or CPU that can be connected to the target device for the purpose of
performing the firmware upgrade or a CPU host on the same circuit board.

There are very few limitations on how to make a host application, as long as you are able to communicate
with the target device. The simplest hosts have only a basic command line interface, while some have
Graphical User Interfaces with several layers of security and advanced configuration settings.

Over-the-air (OTA) programming is also possible if the device has wireless connectivity. This makes it
easier to add software upgrade features from a smartphone application, or other ways of upgrading a
large amount of devices without having to physically connect each device to a computer or progammer.

3.1 Python Script Operation
The example Python script uploads an application hex file to a device running the bootloader example.
This is achieved using the Xplained Pro Embedded Debugger as a bridge between the device and the
PC. For each byte sent, the same value is expected in return to confirm that the data transfer was
successful. The bootloader expects enough data to fill APPCODE. If the hex file does not contain enough
data to do so, 0xff will be sent until APPCODE is filled. Figure 3-1 shows how this works.

 AN2634
Host Application

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 14

Figure 3-1. Python Script Flowchart

To run the script, the following arguments are required:

1. Hex file to upload. Include path if file is not in the same folder.
2. Total Flash size. This is needed to calculate byte array size and add 0xff padding to unused

codespace.
3. Virtual COM port used for UART communication.

– This is listed in the Device Manager on a Windows® PC. For an ATtiny817 Xplained Pro, it is
listed as EDBG Virtual COM Port (COMxxx).
Figure 3-2. mEDBG Virtual COM Port

Note:  The Virtual COM port is connected to USART pins (PB2-TxD and PB3- RxD) on the
ATtiny817 device on the board.

4. Baud rate used. The default baud rate used by the example bootloader is 115200.

 AN2634
Host Application

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 15

For an ATtiny817 Xplained Pro connected to port COM130, with a total Flash size of 8 KB, running the
script looks like this when uploading the release version of the example application:
python tiny_uploader.py ./App/Release/App.hex 8192 COM130 115200

Note:  Make sure to put the device in Bootloader mode before starting the script. This is done by
pressing SW1 while powering or resetting the ATtiny817 Xplained Pro.

After a successful application upload, the command window may look like this:
c:\[your_path]>python tiny_uploader.py ./App/Release/App.hex 0x2000 COM130 115200
Uploading 7936 bytes...
100.00%
OK

The following type of message appears if the upload fails. In this example, it is due to the Virtual COM
port returning 0x00 after a communication timeout:
Uploading 7936 bytes...

Failed at address 0x0100
Value 0x00 echoed, expected 0x19

Python Requirements
The script is written to support Python 2.7.13 and 3.5.2, and it will most likely run without error on later
versions as well. Download Python from https://www.python.org/downloads/ or use your favorite Python
distribution.

In addition to Python, these modules need to be installed:
• intelhex, for parsing hex files.
• pyserial, for serial communication.
• future, for compatibility with both Python 2 and 3

The following command will install the latest version of the modules, with dependencies, from the Python
Packaging Index.
python -m pip install -U future pyserial intelhex

This command can also be used to upgrade the modules to the latest version.

 AN2634
Host Application

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 16

https://www.python.org/downloads/

4. Expanding Functionality
The example bootloader is a simple implementation of a bootloader, containing only the most basic
functionality. However, this implementation can be extended in a number of ways. This chapter introduces
some of the possible improvements.

4.1 Entering Boot Mode
A physical pin state is not the only way to make the device enter the bootloader; often it is necessary for
the application to trigger a bootloader update. The example below shows a function that checks for a
value in User Row or EEPROM to trigger an update:

static bool is_boot_requested(void)
{
 /* Check for boot request from firmware */
 if (USERROW.USERROW31 == 0xEB) {
 /* Clear boot request*/
 USERROW.USERROW31 = 0xff;
 _PROTECTED_WRITE_SPM(NVMCTRL.CTRLA, NVMCTRL_CMD_PAGEERASEWRITE_gc);
 while(NVMCTRL.STATUS & NVMCTRL_EEBUSY_bm);
 }
 /* Check if SW1 (PC5) is low */
 else if(VPORTC.IN & PIN5_bm) {
 return false;
 }

 return true;
}

To enter Boot mode without pulling the pin low, byte 31 in User Row will need to be programmed either by
the application or a programmer. The example below shows how to write the needed value and reset the
device:

void enter_bootloader(void)
{
 /* Write boot request */
 USERROW.USERROW31 = 0xEB;
 _PROTECTED_WRITE_SPM(NVMCTRL.CTRLA, NVMCTRL_CMD_PAGEERASEWRITE_gc);
 while(NVMCTRL.STATUS & NVMCTRL_EEBUSY_bm);

 /* Issue system reset */
 _PROTECTED_WRITE(RSTCTRL.SWRR, RSTCTRL_SWRE_bm);
}

Together these two functions make it possible to enter Bootloader mode without needing power cycling
and a physical pin.

4.2 Interfaces
The interfaces available for the host communication may differ between end applications. While the
example bootloader is utilizing a basic configuration of the USART peripheral to receive the application
code, this can easily be updated as needed, by replacing the three UART functions in boot.c:

• ‘static void init_uart(void)’
• ‘static uint8_t uart_receive(void)’
• ‘static void uart_send(uint8_t byte)’

 AN2634
Expanding Functionality

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 17

All tinyAVR® 0- and 1-series, and megaAVR® 0-series devices have hardware USART, TWI and SPI
peripherals available for serial communication, and the I/O pins can also be used for custom digital
protocols.

The available peripheral interrupts can be used in the bootloader code by relocating the interrupt vector
table to the start of boot section. This is done by enabling the IVSEL bit in the CPUINT.CTRLA register.
For more information, see AN1982 - Interrupt System in tinyAVR 0- and 1-series, and megaAVR 0-series.

A bootloader code example using the TWI peripheral in Slave mode is also available. It it located in
a .zip file related to this application note.

4.3 Data Integrity
To make sure the code transferred to the device is received correctly, a Cyclic Redundancy Check can be
used on the incoming data. This can be done while receiving the data or before executing the code.

All tinyAVR 1-series and megaAVR 0-series devices have Cyclic Redundancy Check Memory Scan
(CRCSCAN) that can be used to verify the Flash content. See AN2521 - CRCSCAN on Devices in the
tinyAVR® 1-Series for more info on how to use this peripheral.

4.4 Confidentiality
Cryptographic countermeasures might be necessary to ensure that a product and its application code is
not cloned, counterfeited or tampered with. Implementing CryptoAuthentication™ in the bootloader will
ensure only legitimate code can be transferred between host and device.

For more information, visit the Microchip CryptoAuthentication™ Site.

 AN2634
Expanding Functionality

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 18

http://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en603505
http://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en599876
http://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en599876
http://www.microchip.com/design-centers/security-ics/cryptoauthentication

5. References
The following references are related to the devices and topics covered in this application note.

• AN1982 - Interrupt System in tinyAVR® 0- and 1-series, and megaAVR® 0-series:
– http://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en603505

• AN2521 - CRCSCAN on Devices in the tinyAVR® 1-Series:
– http://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en599876

• ATtiny817 Xplained Pro User Guide:
– http://ww1.microchip.com/downloads/en/DeviceDoc/50002684A.pdf

• Microchip CryptoAuthentication™ Site:
– http://www.microchip.com/design-centers/security-ics/cryptoauthentication

• AVR® GCC documentation:
– https://gcc.gnu.org/onlinedocs/gcc/AVR-Function-Attributes.html

 AN2634
References

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 19

http://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en603505
http://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en599876
http://ww1.microchip.com/downloads/en/DeviceDoc/50002684A.pdf
http://www.microchip.com/design-centers/security-ics/cryptoauthentication
https://gcc.gnu.org/onlinedocs/gcc/AVR-Function-Attributes.html

6. Revision History
Doc. Rev. Date Comments

C 10/2018 Updated figures 1-1, 1-2, 1-3 in chapter "Relevant Devices". Fixed grammar and
punctuation.

B 04/2018 Information added for TWI bootloader code.

A 01/2018 Initial document release.

 AN2634
Revision History

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 20

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 AN2634

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 21

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 AN2634

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 22

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-3675-1

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 AN2634

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 23

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2018 Microchip Technology Inc. Application Note DS00002634C-page 24

	Introduction
	Features
	Table of Contents
	1. Relevant Devices
	1.1. tinyAVR 0-series
	1.2. tinyAVR 1-series
	1.3. megaAVR® 0-series

	2. Device Self-Programming
	2.1. Memory Layout
	2.1.1. Flash
	2.1.2. EEPROM
	2.1.3. User Row

	2.2. Compiler and Linker
	2.2.1. Standard Start Files in the Bootloader
	2.2.2. Application Start

	2.3. Memory Protection
	2.3.1. BOOTLOCK and APCWP
	2.3.2. EESAVE
	2.3.3. Lock Bits

	2.4. Bootloader Operation

	3. Host Application
	3.1. Python Script Operation

	4. Expanding Functionality
	4.1. Entering Boot Mode
	4.2. Interfaces
	4.3. Data Integrity
	4.4. Confidentiality

	5. References
	6. Revision History
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

