
 AN3120
 Embedded Web Server Application Using SAM E54

Introduction

An embedded web server is a microcontroller-based server that can communicate over HTTP or HTTPS
allowing access to users over the network, providing a means to control and monitor devices connected
to it. For example, in a power plant, the power output and temperature can be monitored through sensors
connected to the MCU (with embedded web server). It can also be controlled as needed, by adjusting the
input and cooling system actuators that are connected to the MCU.

The following are merits of an embedded web server:

• Cost effective
• Offline monitoring
• Accessible from anywhere and anytime

This document describes a basic web server implementation using three LwIP APIs and the
implementation of an advanced web server application on the SAM E54 Xplained Pro Evaluation Board
which acquires real time sensor data and events. This data can be accessed and configured using a web
page, therefore providing access to monitor and control on-board features. This document also provides
an associated software package containing application code for implementation of an embedded web
server. The example code for a basic web page implementation is provided as an example in Atmel
START.

This document will mainly focus on TCP server connectivity, rather than an HTTP web server. The
features are explained by demonstrating with a simple HTTP web server. The HTML, CSS and JavaScript
files required for web page design are not explained in detail in this document.

© 2019 Microchip Technology Inc. DS00003120A-page 1

Table of Contents

Introduction..1

1. Application Overview... 3

2. LwIP...5
2.1. LwIP Configuration...6
2.2. Static and Dynamic IP Configuration..6

3. Basic Web Server Implementations...9
3.1. Raw API... 9
3.2. Netconn API... 11
3.3. Socket API..14

4. Advanced Web Server Application.. 17
4.1. Application Setup... 17
4.2. Implementation...19

5. Related Articles and Resources.. 24

6. List of Abbreviations.. 25

The Microchip Web Site.. 26

Customer Change Notification Service..26

Customer Support... 26

Microchip Devices Code Protection Feature... 26

Legal Notice...27

Trademarks... 27

Quality Management System Certified by DNV...28

Worldwide Sales and Service..29

 AN3120

© 2019 Microchip Technology Inc. DS00003120A-page 2

1. Application Overview
A basic web server requires the implementation of an Ethernet interface and an HTTP server. The
following figure shows the application overview which connects the microcontroller to the network through
the ethernet, which in turn uses a GMAC peripheral for communication over the network. A PC is used to
access all the required data from the microcontroller, which can be used for real time monitoring and
controlling of the devices connected to the microcontroller. This application demonstration uses LwIP
v1.4.0 and FreeRTOS v8.2.3 to create a basic and an advanced web server.

The basic web server implementation gives the user a brief idea of the three LwIP API’s: Raw API,
Netconn API, Socket API. In the advanced implementation, an embedded web server with the help of a
Netconn API will send data, such as temperature, light, and button status to the web page. The
application also logs the data in the SD card. LED control and alarm configuration can also be done if
required by the user.

Figure 1-1. Application Overview

The software and hardware overview of drivers, and middleware used for the advanced web server
application is shown in the following figure.

 AN3120
Application Overview

© 2019 Microchip Technology Inc. DS00003120A-page 3

Figure 1-2. Software and Hardware Components Overview

EMBEDDED WEBSERVER APPLICATION

Config
files

MIDDLEWARES
(Ethernet PHY, STDIO_Redirect, SD card, FatFs,

FreeRTOS, LwIP)

DRIVERS
(ADC, I2C, USART, RTC, MCI, GMAC)

HARDWARE ABSTRACTION LAYER

(TARGET BOARD)

+

 AN3120
Application Overview

© 2019 Microchip Technology Inc. DS00003120A-page 4

2. LwIP
Light Weight Internet Protocol (LwIP) is a small independent implementation of the TCP/IP protocol suite.
The main features of LwIP are provided in the following table.

Table 2-1. Features of LwIP

Features of LwIP Description

IP Internet Protocol, IPv4 and IPv6. Logical Address assigned by the software for
network connectivity with other protocols (Note 1).

TCP Connection oriented protocol for reliable data communication (Note 1).

DHCP Network Management Protocol to assign IP address for a node from a DHCP server.

ICMP Error reporting protocol to diagnose network connectivity.

IGMP Multicast management.

UDP Connection less communication model with minimum of protocol mechanism.

DNS Dynamic name resolution of URL.

PPPoE Network protocol for encapsulating PPP frames inside ethernet frames.

Note: 
1. This feature is used in the demonstration application.

LwIP provides three application program interfaces (APIs) for programs to use for communication with the
TCP/IP as shown in the image below:

Figure 2-1. LwIP APIs

LwIP APIs

• Raw API – It is the core API of LwIP. This API aims at providing the best performances while using a
minimal code size. It handles asynchronous events using callbacks.

• Netconn API - It is designed to make the stack easier to use (compared to the event-driven raw API)
while still preserving zero-copy functionality. To use this API, an operating system is needed as this
API requires the use of threads. All packet processing (input and output) in the core of the stack is
done inside a dedicated thread (the tcp_thread). Application threads using the Netconn API
communicate with this core thread using message boxes and semaphores.

• Socket API - It is an Inter-processing Communication (IPC) programming interface originally
provided as part of the Berkeley’s UNIX operating system. It is an abstract representation (handle)
for the local endpoint of a network communication path. These are represented as a file descriptor
(file handle) in the Unix philosophy that provides a common interface for input and output. The main
advantage of Socket API over other APIs is that it is compatible with other TCP/IP stacks as well.

 AN3120
LwIP

© 2019 Microchip Technology Inc. DS00003120A-page 5

The critical aspect of using LwIP stack is to configure it as per the application. We must configure the
LwIP to use either of Socket API, Netconn API, or Raw API and setup the connection as per application
needs.

2.1 LwIP Configuration
The configurations for the three LwIP APIs are provided in the table below:

Table 2-2. LwIP Configuration (Available in Config\lwipopts.h)

Options

Macros to be Configured

NO_SYS LWIP_NETCONN
LWIP_SOCKET and

LWIP_COMPAT_SOCKET
S

Raw API 1 0 0

Netconn API 0 1 0

Socket API 0 1 1

Note:  These APIs are applies to LwIP 1.4.0.

2.2 Static and Dynamic IP Configuration
LwIP can be configured to use in static and dynamic IP configuration. The user must use the LwIP
configuration mentioned in the table below based on the IP configuration used.

Table 2-3. Prerequisites to be Made

Options Value for
Static IP

Value for
DHCP Description

CONF_TCPIP_STACK_INTERFACE_0_STATIC_IP (Config/
lwip_macif_config.h) 1 0 Static IP configuration is

enabled

CONF_TCPIP_STACK_INTERFACE_0_DHCP (Config/
lwip_macif_config.h) 0 1 Dynamic configuration is

enabled

LWIP_DHCP
(Config/lwipopts.h) 0 1 Enable DHCP module

In Dynamic Host Configuration Protocol (DHCP), the device is automatically assigned an IP address by
the DHCP server. The following code must be included in the tcpip_init_done() callback function for
the DHCP.

//netif_set_up(&TCPIP_STACK_INTERFACE_0_desc); //enable this for static IP

/* DHCP mode. */
if (ERR_OK != dhcp_start(&TCPIP_STACK_INTERFACE_0_desc)) {
 LWIP_ASSERT("ERR_OK != dhcp_start", 0);
}

In static IP, to communicate with the web server, the IP address of the PC is configured to be in the same
network as that of the server. In this demonstration application, the IP address of the embedded web
server is configured as 192.168.1.100. The netmask address configured in the program is 255.255.255.0.

 AN3120
LwIP

© 2019 Microchip Technology Inc. DS00003120A-page 6

Therefore, all IP addresses having 192.168.1.xx are on the same subnet as the server. The following
code must be enabled in the tcpip_init_done()callback function for enabling the static IP.

netif_set_up(&TCPIP_STACK_INTERFACE_0_desc); /* enable this for static IP*/

To configure static IP on a PC installed with Windows 7, follow these steps:

• Open Network and Sharing Center.
• Click Change adapter setting in the left pane.
• Right-click on Local Area connection and then select properties.
• Select Internet Protocol Version 4 and then click Properties.

Figure 2-2. Lan Properties Tab
LAN Properties tab

• Configure the IP address as a subnet mask, and then click OK.

 AN3120
LwIP

© 2019 Microchip Technology Inc. DS00003120A-page 7

Figure 2-3. TCP/IPv4 Properties Tab
TCP/IPv4 Properties tab

 AN3120
LwIP

© 2019 Microchip Technology Inc. DS00003120A-page 8

3. Basic Web Server Implementations
This section describes how to realize a simple basic web server application using all three LwIP APIs. It
helps the user to get familiar with LwIP APIs, their usage, and provides the details of each API
implementation.

The output of the basic web server implementation will be a static web page displaying text. The IP
address assigned is printed in the console. Whenever a user enters this IP address in the browser, the
browser sends a connection request to the server. Once the connection is established, the file to be
displayed is requested. On receiving this request, the server will send the data to be displayed.

Note:  The example code for the basic web server implementation is available as part of Atmel START,
which helps the user to understand three LwIP APIs. The example names are LwIP raw API example,
LwIP netconn API example, and LwIP socket API example for raw, netconn and socket API
implementation. These examples can be accessed from the following location: https://start.atmel.com/,
under the BROWSE EXAMPLES option.

3.1 Raw API
Raw API is a direct interface which uses the lowest level of LwIP programming. It is an event driven API
designed to be used without an operating system that implements zero copy and receive. Raw APIs are
implemented as a set of callback functions, which are then invoked by the LwIP core when activity related
to that application occurs. This application demonstrates a web server implementation that displays a text
message on the web page. Refer to the Application Note, AT04055: Using the lwIP Network Stack, for
additional information on the TCP Raw API functions.

Table 3-1. TCP Raw API Functions

Function API Name API Description

TCP connection setup

tcp_new() Creates a new TCP PCB

tcp_bind() Bind PCB to local IP address or port

tcp_listen() Make PCB listen for incoming connections

tcp_accept() Set callback used for new incoming connections

Sending TCP data tcp_write() Queue data for transmission

Receiving TCP data tcp_recv() Set callback for incoming data

Application polling tcp_poll() Set application poll callback

Closing connections and aborting
connections

tcp_close() Close the connection

tcp_abort() Abort the connection

The main function initializes the microcontroller, drivers, middleware, and performs the following steps as
shown in the figure below:

 AN3120
Basic Web Server Implementations

© 2019 Microchip Technology Inc. DS00003120A-page 9

https://start.atmel.com/
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42233-Using-the-lwIP-Network-Stack_AP-Note_AT04055.pdf

Figure 3-1. Application Flow for Basic Web Server Using Raw API

Application flow for Basic Webserver using Raw
API

Register MAC
callback function

Ethernet
link

Enable LwIP and MAC

Initialize webserver events

Ethernet task

Link Down

Link Up

int main(void)
{
 int32_t ret;

 atmel_start_init();
 systick_enable();

 printf("\r\nRaw API implementation\r\n");
 mac_async_register_callback(&COMMUNICATION_IO, MAC_ASYNC_RECEIVE_CB,
(FUNC_PTR)mac_receive_cb);

 eth_ipstack_init();
 do {
 ret = ethernet_phy_get_link_status(ÐERNET_PHY_0_desc, &link_up);
 if (ret == ERR_NONE && link_up) {
 break;
 }
 } while (true);
 printf("Ethernet link up\n");
 TCPIP_STACK_INTERFACE_0_init((u8_t *)MAC_ADDRESS);
 #if CONF_TCPIP_STACK_INTERFACE_0_DHCP
 /* DHCP mode. */
 if (ERR_OK != dhcp_start(&TCPIP_STACK_INTERFACE_0_desc)) {
 LWIP_ASSERT("ERR_OK != dhcp_start", 0);
 }
 #else
 netif_set_up(&TCPIP_STACK_INTERFACE_0_desc); //enable this for Static IP
 #endif

 /*Handles web server events*/
 lwip_raw_api_init();

 while (true) {
 if (recv_flag) {
 recv_flag = false;
 ethernetif_mac_input(&TCPIP_STACK_INTERFACE_0_desc);
 }
 /* LWIP timers - ARP, DHCP, TCP, etc. */
 sys_check_timeouts();

 AN3120
Basic Web Server Implementations

© 2019 Microchip Technology Inc. DS00003120A-page 10

 /* Print IP address info */
 if (link_up && TCPIP_STACK_INTERFACE_0_desc.ip_addr.addr) {
 link_up = false;
 print_ipaddress();
 }
 }
}

The actual TCP server initialization is made from the main() function by calling the
lwip_raw_api_init() function. This function instantiates a new TCP protocol control block (PCB) and
is bound to any IP address and port 80. The PCB listens for the incoming connection of the HTTP port
80.

void lwip_raw_api_init(void)
{
 struct tcp_pcb *pcb;

 pcb = tcp_new();
 tcp_bind(pcb, IP_ADDR_ANY, HTTP_PORT);
 pcb = tcp_listen(pcb);
 if (pcb != NULL) {
 tcp_accept(pcb, http_accept);
 }
}

Note:  For additional information on lwip_raw_api_init(), refer to the Application Note, AT04055:
Using the lwIP Network Stack, section 5.1.1, httpd_init(). However, httpd_init() is renamed as
lwip_raw_api_init() in this document.

The server home page can be accessed using http://192.168.1.100 if a static IP is used. If a dynamic IP
is used, the corresponding IP address (TCPIP_STACK_INTERFACE_0_desc > ip) is displayed in the
console, and can be browsed for the result, as shown in the figure below.

Figure 3-2. Basic Web Page Using Raw API

Basic webpage using Raw API

3.2 Netconn API
Netconn API is a sequential API built on top of the Raw API. It is easier to use than Raw API at the
expense of lower performances and increased memory footprint. The following section demonstrates how
to develop a server that can serve several requests at the same time using the LwIP Netconn API.

A Netconn API-based program typically uses the following threads:

• Tcpip-thread: LwIP core thread which uses the Raw API.

 AN3120
Basic Web Server Implementations

© 2019 Microchip Technology Inc. DS00003120A-page 11

http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42233-Using-the-lwIP-Network-Stack_AP-Note_AT04055.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42233-Using-the-lwIP-Network-Stack_AP-Note_AT04055.pdf
http://192.168.1.100

• GMAC: net_if driver thread in charge of passing the Ethernet frame from the GMAC IP to the tcpip-
thread.

• One or more user application threads performing the open, read, write, and close operations on
Netconn connections.

The above threads communicate using message passing, which is fully handled by the Netconn API.
Refer to the Application Note, AT04055: Using the lwIP Network Stack, for additional information on the
TCP Netconn API functions. The application flow for a basic TCP connection using the Netconn API is
shown in the figure below.

Figure 3-3. Basic TCP Connection Flow Using Netconn API

Basic TCP connection flow using Netconn API

tcp_init netconn_new netconn_bind netconn_listen

netconn_acceptnetconn_recvnetbuf_datanetconn_write

Table 3-2. TCP Netconn API Functions

API function Description

netconn_new() Creates a new Netconn connection structure

netconn_bind() Binds a Netconn structure to a local IP address or port number

netconn_listen() Sets a TCP Netconn connection into listen mode

netconn_accept() Accepts an incoming connection on a listening TCP Netconn connection

netconn_connect() Connects to a remote TCP host using IP address and port number

netconn_recv() Receives data from a Netconn connection

netbuf_data() Points to the data in first netbuf

netconn_write() Send data on a connected TCP Netconn connection

netconn_close() Closes a TCP Netconn connection without deleting it

netconn_delete() Deletes an existing Netconn connection

The main() in basic_main.c calls basic_netconn() for implementing the basic web server
application. It performs the following initializations:

• Create led task and ethernet task
• Start the FreeRTOS scheduler

void basic_netconn()
{
 /* Create LED task */
 task_led_create();

 /* Create task for Ethernet */
 if (xTaskCreate(netconn_basic_ethernet, "Ethernet_basic", TASK_ETHERNETBASIC_STACK_SIZE,
NULL, (TASK_ETHERNETBASIC_STACK_PRIORITY-1), &xCreatedEthernetBasicTask) != pdPASS) {
 while (1);
 }

 /* Start FreeRTOS scheduler */

 AN3120
Basic Web Server Implementations

© 2019 Microchip Technology Inc. DS00003120A-page 12

http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42233-Using-the-lwIP-Network-Stack_AP-Note_AT04055.pdf

 vTaskStartScheduler();
}

Inside the netconn ethernet task, the tcpip_init() function is called to initialize the LwIP stack. The
sys_sem_wait() function is used to block the progress until the stack is initialized. A new connection
structure is created using netconn_new() and netconn_bind() binds the connection to port 80 on
any IP address. netconn_listen() listens for any incoming connection requests.

void netconn_basic_ethernet(void *p)
{

 struct netbuf *inbuf;
 char *rq;
 unsigned portSHORT len;
 int conn_check;
 sys_sem_t sem;
 err_t err_sem;
 err_sem = sys_sem_new(&sem, 0); /* Create a new semaphore. */
 tcpip_init(tcpip_init_done, &sem);
 sys_sem_wait(&sem); /* Block until the lwIP stack is initialized. */
 sys_sem_free(&sem); /* Free the semaphore. */

 print_ipaddress();

 struct netconn *conn_1, *newconn_1;
 /* create a connection structure */
 conn_1 = netconn_new(NETCONN_TCP);
 /* bind the connection to port on any IP address */
 conn_check = netconn_bind(conn_1, NULL, HTTP_PORT);
 while(conn_check!= ERR_OK)
 {
 LWIP_DEBUGF(LWIP_DBG_ON, ("Bind error=%d\n",conn_check));
 goto conn_close;
 }
 /* tell the connection to listen for incoming connection requests */
 netconn_listen(conn_1);
 for(;;){
 conn_check = netconn_accept(conn_1, &newconn_1);
 while(conn_check != ERR_OK){
 LWIP_DEBUGF(LWIP_DBG_ON, ("Connection accept error=%d\n",conn_check));
 goto conn_close;
 }
 if(newconn_1 != NULL){
 conn_check = netconn_recv(newconn_1, &inbuf);
 while(conn_check != ERR_OK){
 LWIP_DEBUGF(LWIP_DBG_ON, ("Receive error=%d\n",conn_check));
 goto conn_close;
 }
 if(inbuf != NULL){
 /* Get the pointer to the data in the first netbuf
 fragment which we hope contains the request. */
 netbuf_data(inbuf,(void *) &rq, &len);
 /* Check if the request was an HTTP "GET /\r\n". */
 if((NULL != rq)&& (!strncmp(rq, "GET", 3))){
 /* Send the header. */
 conn_check = netconn_write(newconn_1, http_html_hdr,
sizeof(http_html_hdr), NETCONN_NOCOPY);
 if(conn_check != ERR_OK){
 LWIP_DEBUGF(LWIP_DBG_ON, ("Write error=%d\n",conn_check));
 goto conn_close;
 }
 /* Send the actual web page. */
 conn_check = netconn_write(newconn_1, netconn_webpage,
sizeof(netconn_webpage), NETCONN_NOCOPY);
 if(conn_check != ERR_OK){
 LWIP_DEBUGF(LWIP_DBG_ON, ("Write error=%d\n",conn_check));
 goto conn_close;
 }
 }
 netbuf_delete(inbuf);
 }
conn_close: /* Close the connection. */
 netconn_close(newconn_1);

 AN3120
Basic Web Server Implementations

© 2019 Microchip Technology Inc. DS00003120A-page 13

 netconn_delete(newconn_1);
 }
 }
}

In case of error when a connection is being established, the corresponding error code will be displayed as
a debug message. The corresponding IP address is displayed in the console which is known from the
structure TCPIP_STACK_INTERFACE_0_desc.

Figure 3-4. Basic Web Page Using Netconn API

Basic webpage using Netconn API

3.3 Socket API
LwIP Socket API are mainly used for programming distributed applications on the Internet. Refer to the
Application Note, AT04055: Using the lwIP Network Stack, for additional information on the TCP Socket
API functions. The application flow of the TCP connection using a Socket API is as shown in the figure
below.

Figure 3-5. TCP Connection Flow Using Socket API

TCP connection flow using Socket API

bindtcpip_init socket listen

acceptreadwrite

Table 3-3. Socket API Functions

API function Description

socket() Specify the type of communication protocol and it returns a socket descriptor.

setsockopt() Set options associated with a socket.

bind() Assigns a local protocol address to a socket.

listen() Converts an unconnected socket into a passive socket, indicating that the
kernel should accept incoming connection requests.

accept() Returns a new socket descriptor for a client connection in the connection
waiting queue.

 AN3120
Basic Web Server Implementations

© 2019 Microchip Technology Inc. DS00003120A-page 14

http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42233-Using-the-lwIP-Network-Stack_AP-Note_AT04055.pdf

...........continued
API function Description

read() and write() Used to communicate with a socket as long as it is connected.

send() Similar to write(), but allows to specify some options.

recv() Similar to read() but allows to specify some options to control how the data is
received.

close() Closes a socket and terminates a TCP socket.

The main function calls basic_socket() after initializing the microcontroller. basic_socket() is
same as basic_netconn() explained for the Netconn API, except the socket_basic_ethernet().
In the socket webserver task, LwIP stack initialization process is the same as Netconn API. The
difference lies in the APIs being called. The AF_INET macro is used to define the address family. htonl
and htons are APIs used to convert the long and short data into big endian format, irrespective of
whether the system is little endian or big endian. The IP address is displayed in the console in the same
way as mentioned in the Netconn API.

void socket_basic_ethernet(void *p)
{
 struct sockaddr_in address;
 int s_create, new_socket;
 int addrlen = sizeof(address);
 int opt = 1;
 int socket_check;

 sys_sem_t sem;
 err_t err_sem;
 err_sem = sys_sem_new(&sem, 0); /* Create a new semaphore. */
 tcpip_init(tcpip_init_done, &sem);
 sys_sem_wait(&sem); /* Block until the lwIP stack is initialized. */
 sys_sem_free(&sem); /* Free the semaphore. */

 print_ipaddress();

 /*Create a socket*/
 s_create = socket(AF_INET, 1, 0);

 setsockopt(s_create, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT,&opt, sizeof(opt));

 address.sin_family = AF_INET;
 address.sin_addr.s_addr = htonl(IPADDR_ANY);
 address.sin_port = htons(HTTP_PORT);

 /* bind the connection to port */
 socket_check = bind(s_create, (struct sockaddr *)&address,sizeof(address));
 if(socket_check<0){
 LWIP_DEBUGF(LWIP_DBG_ON, ("Bind error=%d\n",socket_check));
 goto socket_close;
 }
 /* tell the connection to listen for incoming connection requests */
 listen(s_create, 3);
 for(;;){
 new_socket = accept(s_create, (struct sockaddr *)&address,(socklen_t*)&addrlen);
 if(new_socket<=0){
 LWIP_DEBUGF(LWIP_DBG_ON, ("Connection error=%d\n",new_socket));
 goto socket_close;
 }
 socket_check = read(new_socket ,buffer, 1024);
 if(socket_check<=0){
 LWIP_DEBUGF(LWIP_DBG_ON, ("Read error=%d\n",socket_check));
 goto socket_close;
 }
 /* Check if the request was an HTTP "GET /\r\n". */
 if(!strncmp(buffer, "GET", 3)){

 AN3120
Basic Web Server Implementations

© 2019 Microchip Technology Inc. DS00003120A-page 15

 socket_check = write(new_socket , http_html_hdr , strlen(http_html_hdr));
 if(socket_check<=0){
 LWIP_DEBUGF(LWIP_DBG_ON, ("Write error=%d\n",socket_check));
 goto socket_close;
 }
 /*Send the actual webpage*/
 socket_check = write(new_socket , socket_webpage , strlen(socket_webpage));
 if(socket_check<=0){
 LWIP_DEBUGF(LWIP_DBG_ON, ("Write error=%d\n",socket_check));
 goto socket_close;
 }
 }
 /*Close connection*/
 socket_close:
 close(new_socket);
 }
}

Figure 3-6. Basic Web Page Using Socket API

Basic webpage using Socket API

 AN3120
Basic Web Server Implementations

© 2019 Microchip Technology Inc. DS00003120A-page 16

4. Advanced Web Server Application
A control panel application running on an embedded web server is used to configure and manage the
system settings. The SAM E54 Xplained Pro acts as the embedded web server. Any client (web browser)
can connect to this server, and control or monitor the application. Implementation of such web server
mainly requires managing the LwIP stack and processing the incoming connections and requests, refer to
Section 4.2. Implementation.

The user interface for this application is provided by means of a dynamic web page (dynamic web page
implies that the web page is updated automatically based on application status). The web page allows
monitoring temperature and light sensor status, controlling the on-board LED and setting alarm if
required. The dynamic web page files corresponding to the demonstration application (HTML, CSS,
JavaScript) are stored in an SD card, refer to Section 4.2. Implementation.

Note:  The application provided is expected to work when the SD card mounted contains all the required
files (as described in the Section 4.2. Implementation) for the web page. The application is tested for
Windows 7 with Google Chrome v73.0.3683.86, Firefox Quantum v66.0.2, Internet Explorer
v11.0.9600.19230.

4.1 Application Setup

4.1.1 Required Components
Hardware prerequisites:

• SAM E54 Xplained Pro evaluation kit
• I/O1 Xplained Pro extension kit
• SD card
• Ethernet cable (RJ45)
• USB cable

Software prerequisites:

• Atmel START
• Atmel Studio 7 (v7.0.1931)
• SAME54_DFP (v1.0.87)

 AN3120
Advanced Web Server Application

© 2019 Microchip Technology Inc. DS00003120A-page 17

4.1.2 Setup Details
Hardware setup details are as follows:

• The I/O1 Xplained Pro extension must be connected to the EXT1 extension header of the SAM E54
Xplained Pro evaluation board.

• Connect the Ethernet port of the PC to the SAM E54 Xplained Pro board using a network cable.
• Insert the SD card.
• Power up the SAM E54 Xplained Pro board by connecting the USB cable to the DEBUG USB

header.

Software setup details are as follows:

Table 4-1. Required Atmel START Software Modules

Modules Description

Ethernet PHY Driver required to implement physical layer functions.

TCP/IP Stack Interface Interfaces the ethernet driver to TCP/IP stack. The LwIP module used is of
version 1.4.0.

FreeRTOS v8.2.3 Offers tasks, scheduling and inter task communication for the application.

FatFs A generic FAT file system module for small embedded systems.

STDIO Redirect Provides means to redirect standard input/output to HAL I/O.

ADC, I2C Drivers needed for the sensors used in the application.

Note:  If a Verifying Flash…Failed issue while programming the .elf file, use the .hex file or .bin file
for device programming on the SAM E54 Xplained Pro board.

 AN3120
Advanced Web Server Application

© 2019 Microchip Technology Inc. DS00003120A-page 18

4.2 Implementation
The application flow for the advanced web server is shown in the figure below:

Figure 4-1. Application Flow

Ethernet

main()

Task creation

LED toggle
Light sensor

convert
Light sensor

read

Temperature

sensor read

GMAC TCP/IP init Webserver

Process

packet
LwIP stack

Process

connection SD card

Datalog

Application functions

External device

Application Flow Overview

The following steps are involved in developing the application:

• Microcontroller initialization
• Application task creation

There are five different tasks being created as shown in the following table.

Table 4-2. Application Tasks

Tasks Description

LED task Led blinking with an interval of 500 ms

Light sensor convert ADC conversion of TEMT6000 light sensor output

Light sensor read ADC channel read and the output is converted to percentage within the light
sensor range

Temperature sensor read I2C read of the AT30TE758 temperature sensor data

Ethernet task Creates a TCP/IP platform for communication with the web page

• TCP/IP connection setup:

 AN3120
Advanced Web Server Application

© 2019 Microchip Technology Inc. DS00003120A-page 19

The task_ethernet task performs the following functions:

– Initializes the LwIP module and the ethernet buffer transfers the processed packets to the LwIP
stack.

– Creates a new thread vBasicWEBServer using sys_thread_new. This task checks for
incoming connection and processes it. The TCP connection is setup in the same procedure as
discussed in the basic web server using Netconn API, but the difference lies in how the received
requests are treated.

• Client- Server communication:
process_connection() function is used for communication between the client and the server. On
a request from the web browser, the server reads the data from the SD card, sending it to the web
browser, and writes the data to the SD card for various commands from the web browser. The
communication flow between client and server is shown in the figure below.

Figure 4-2. Client Server Communication FlowClient server communication flow

ServerClient

GET http://192.168.1.100 HTTP/1.1
Host: 192.168.1.100
User-Agent: Chrome 61
Accept-Encoding: gzip, deflate…
Accept: application/x-ms-application,
image/jpeg, application/xaml+xml,….

Connection setup:
process_connection

Process the request:
process_req

HTTP/1.1 200 OK
Server: SAME54 WEB SERVER
Content-type: text/html
…..
[data requested]

The process_req() function parses the request and searches for the first occurrence of a space
character or \t or \r or \n. It is assumed that the sensor data will not have these tokens. The string
contains the path which is again searched for ‘?’ (user defined symbol), if found the request is said to be
a fetch or set request otherwise, it is taken as a file request.

 AN3120
Advanced Web Server Application

© 2019 Microchip Technology Inc. DS00003120A-page 20

• The request obtained can be classified as a fetch or set request, if the request obtained is: GET /?
get_sensor_data HTTP/1.1\r\n .

• The request obtained can be classified as a file request, if the request obtained is: GET /logo.png
HTTP/1.1\r\n.

The following figure shows the functions calls executed inside the process_req() function.

Figure 4-3. Function Call Graph

Function call graph

parse_respond_fetch_set_req

process_req

fetch_file_path_type

send_requested_file

fetch_conf
fetch_sensor set_led_on

set_led_off
Set_conf_pb
Set_conf_light
Set_conf_temp

Table 4-3. SD Card File Layout

File name Description

index.htm Main html page. Contains the elements of the page and references supporting files that are
needed.

core.css Defines the style of basic elements on the web page

core.js Used to send, request, and process data to/from server

pack.css Defines the style of other elements.

pack.js Used for rendering graphic (chart, icon glow etc.,)

logo.png Microchip logo for the icon.

log.txt File for data log

config.txt Stores configuration data, such as minimum or maximum values.

When the user requests the index.htm file to be displayed on the browser, the browser requests a
connection to the web server. After the connection establishment, the server receives a request for
the .html file. The index page initially runs the image, pack.js, pack.css and core.css, which
defines the page and other element styles.

<link rel = “shortcut icon” type = “image/png” href = “logo.png”>
<script type = “application/javascript” src = “pack.js”></script>
<link href = “pack.css” type = “text/css” rel = “stylesheet”>
<link href = “core.css” type = “text/css” rel = “stylesheet”>

 AN3120
Advanced Web Server Application

© 2019 Microchip Technology Inc. DS00003120A-page 21

Figure 4-4. Web Page Displaying Index Page
Web page display of Index page

DEVICE LIVE
webpage

• Application User Actions: If server gets a fetch or set request, the
parse_respond_fetch_set_req() (Webserver/Web.c) function is called, and the request is
parsed and responded to accordingly. The fetch request part mainly consists of the following two
options:

– fetch_sensor: used to update the status of light and temperature sensor values and button
status

– fetch_conf: used to send the configuration file if requested

The set request part checks for the following options:

– set_led_on: turns on the led
– set_led_off: turns the led off
– set_conf_pb: configures the push button alarm
– set_conf_light: configures the light minimum or maximum values and alarm
– set_conf_temp: configures temperature minimum or maximum values and alarm

The core.js file checks for the user request and performs the necessary actions. It is placed for
processing under the index.htm, which is triggered when the user requests the URL using a web client,
such as a browser.

<script type = “application/javascript” src = “core.js”>
</script>

• User Interface:The SAM E54 Control Panel Demonstration page provides a small introduction of the
SAM E54 Xplained Pro evaluation kit and the demonstration application. Clicking the DEVICE LIVE
option on the web page modifies the view. This page requests sensor data periodically from the
server, along with user specified control and configuration commands.
The status updates on the DEVICE LIVE page are as follows:

 AN3120
Advanced Web Server Application

© 2019 Microchip Technology Inc. DS00003120A-page 22

– Temperature sensor status box shows the temperature values which are updated every second.
This also displays the current temperature value as text, alarm status, minimum, and the
maximum values.

– Similarly, light sensor values are updated every second in the Light sensor status graph, as
shown in the following figure. The current light sensor value, alarm status, minimum, and
maximum values are also displayed.

– Button status box shows the status of the SW0 switch in the microcontroller. The icon turns red
when the button is pressed.

The control and configuration options on the DEVICE LIVE page are as follows:

– The LED switch box turns the LED ‘ON’ when moving the button icon to ON state, and turns
LED ‘OFF’ when moving the button icon to OFF state.

– The Configuration option enables the user to set the minimum and maximum values the sensors
can attain and turns the alarm ON and OFF.

Figure 4-5. Control Panel Web Page

Control Panel webpage
Button statusTemperature sensor status

Light sensor status LED switch

Configuration option

• The collected data is stored in text format in the log.txt file for future reference, which is
accessible from the SD card. The format used to store the data is:
Sensor_idname | Date | Time | Value | max/min.

Note:  The last field maximum or minimum is applicable only if the sensor value exceeds the set
configuration.

 AN3120
Advanced Web Server Application

© 2019 Microchip Technology Inc. DS00003120A-page 23

5. Related Articles and Resources
• Details about SAM E54 Xplained Pro evaluation kit:

https://www.microchip.com/design-centers/32-bit/sam-32-bit-mcus/sam-e-mcus
• Getting started with FreeRTOS :

http://ww1.microchip.com/downloads/en/appnotes/atmel-42382-getting-started-with-freertos-on-
atmel-sam-flash-mcus_applicationnote_at04056.pdf

• Using the LwIP Network Stack:
https://www.microchip.com/wwwAppNotes/AppNotes.aspx?appnote=en591731

• Use of the Ethernet on SAM4E-EK:
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42134-Use-of-Ethernet-on-SAM4E-
EK_AT02971_Application-Note.pdf

• TCP/IP Server-Client with CycloneTCP:
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42738-TCPIP-Server-Client-with-
CycloneTCP_AT16287_ApplicationNote.pdf

Third-party links:

• LwIP source:
https://savannah.nongnu.org/projects/lwip/

• Web development resources:
https://www.w3schools.com/whatis/default.asp

 AN3120
Related Articles and Resources

© 2019 Microchip Technology Inc. DS00003120A-page 24

https://www.microchip.com/design-centers/32-bit/sam-32-bit-mcus/sam-e-mcus
http://ww1.microchip.com/downloads/en/appnotes/atmel-42382-getting-started-with-freertos-on-atmel-sam-flash-mcus_applicationnote_at04056.pdf
http://ww1.microchip.com/downloads/en/appnotes/atmel-42382-getting-started-with-freertos-on-atmel-sam-flash-mcus_applicationnote_at04056.pdf
https://www.microchip.com/wwwAppNotes/AppNotes.aspx?appnote=en591731
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42134-Use-of-Ethernet-on-SAM4E-EK_AT02971_Application-Note.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42134-Use-of-Ethernet-on-SAM4E-EK_AT02971_Application-Note.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42738-TCPIP-Server-Client-with-CycloneTCP_AT16287_ApplicationNote.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-42738-TCPIP-Server-Client-with-CycloneTCP_AT16287_ApplicationNote.pdf
https://savannah.nongnu.org/projects/lwip/
https://www.w3schools.com/whatis/default.asp

6. List of Abbreviations
The following abbreviations are used in this document:

• MCU – Microcontroller unit
• PC – Personal computer
• DHCP – Dynamic Host Configuration Protocol
• PCB – Protocol Control Block
• TCP/IP – Transmission Control Protocol/Internet Protocol
• ICMP – Internet Control Message Protocol
• UDP – User Datagram Protocol
• ROM – Read Only Memory
• LwIP – Light Weight Internet Protocol
• HTML – Hyper Text Markup Language

 AN3120
List of Abbreviations

© 2019 Microchip Technology Inc. DS00003120A-page 25

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online
discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 AN3120

© 2019 Microchip Technology Inc. DS00003120A-page 26

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 AN3120

© 2019 Microchip Technology Inc. DS00003120A-page 27

© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-4770-2

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 AN3120

© 2019 Microchip Technology Inc. DS00003120A-page 28

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2019 Microchip Technology Inc. DS00003120A-page 29

	Introduction
	Table of Contents
	1. Application Overview
	2. LwIP
	2.1. LwIP Configuration
	2.2. Static and Dynamic IP Configuration

	3. Basic Web Server Implementations
	3.1. Raw API
	3.2. Netconn API
	3.3. Socket API

	4. Advanced Web Server Application
	4.1. Application Setup
	4.1.1. Required Components
	4.1.2. Setup Details

	4.2. Implementation

	5. Related Articles and Resources
	6. List of Abbreviations
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

