
 2020 Microchip Technology Inc. DS00003401A-page 1

AN3401

INTRODUCTION
Most embedded control systems require memory and
the most common type used is nonvolatile memory.
Serial EEPROMs are a popular choice for nonvolatile
storage due to their flexibility and low pin count, power
consumption and cost.
However, the drawback of any EEPROM device,
regardless of manufacturer, is its limited endurance.
Microchip Technology uses refined processes with
tried and tested technology to ensure that parameters,
such as endurance, are competitive in the memory
environment. Microchip’s extensive characterization
processes ensure that data sheet parameters are met
and exceeded.
Endurance is also highly dependent on the actual
application being developed. Workarounds such as
page-cycling or wear leveling can be implemented in
order to extend the lifetime of a part. If you are working
with EEPROMs for endurance estimates in a specific
application, consult the Total Endurance™ Model
which can be obtained on the Microchip website at
www.microchip.com.
A newly developed product, Microchip’s EERAM, is 
made of a volatile SRAM array mirrored by a 
nonvolatile EEPROM array. For more information on 
EERAM, see 
https://www.microchip.com/design-centers/memory/se
rial-eeram

THE I2C PROTOCOL
The Inter-Integrated Circuit (I2C) bus is a widely used
industry standard bus used in the transfer of data
between integrated circuits, such as between serial
EERAMs and microcontrollers. Devices communicate
in a master/slave environment in which the master
always initiates the communication and the slave
device is controlled through addressing. For a broader
overview of the I2C protocol, see Appendix B: “I2C
Overview” at the end of this document.

THE I2C EERAM
To correctly use and deploy I2C EERAMs in a robust
project, understanding the following topics is recom-
mended:
• Chip Address Inputs
• Bus Pull-Up Resistors
• Power Supply
• Hardware/Software Store Operations
• External Capacitor Choice
If you are not already familiar with these topics, refer to
Appendix C: “EERAM Characteristics”, which
explains how they impact your project.

MICROCHIP EERAM
To address the inherent issue of endurance in
EEPROMS, Microchip Technology has developed
EERAM. EERAM is a serial SRAM product that has
hidden nonvolatile bits. On any power disruption, the
active SRAM array content is moved to the nonvolatile
bits. When power is restored, the nonvolatile content is
restored to the SRAM array and SRAM operation
continues. This model provides unlimited reads and
writes to the SRAM cells, using a standard protocol and
symmetrical read/write timings, while at the same time
providing a transparent mechanism for data retention
on power loss or upon request.

MPLAB® CODE CONFIGURATOR
The MPLAB Code Configurator (MCC) is a free, graph-
ical programming environment that generates seam-
less, easy-to-understand C code that can easily be
integrated into a project. Using an intuitive interface, it
enables and configures a rich set of peripherals and
functions specific to the user’s application. It supports
AVR® microcontrollers and 8-bit, 16-bit and 32-bit PIC®

microcontrollers. MCC is incorporated into both the
downloadable MPLAB® X IDE and the cloud-based
MPLAB® Xpress IDE.
This application note intends to demonstrate how to
interface I2C EERAM devices using MPLAB X 5.05 or
later, the XC series of compilers and the MPLAB Code
Configurator plugin for the MPLAB X IDE. 
The Microchip Explorer 8 and Explorer16/32 Develop-
ment Boards are used as the hardware development
platforms. 

Author: Dragos Ciofu
Microchip Technology Inc.

Using Microchip I2C EERAMs with MPLAB® X and 
MPLAB® Code Configurator

www.microchip.com
https://www.microchip.com/DevelopmentTools/ProductDetails/TotalEnduranceSoftware
https://www.microchip.com/design-centers/memory/serial-eeram
https://www.microchip.com/design-centers/memory/serial-eeram
https://www.microchip.com/DevelopmentTools/ProductDetails/TotalEnduranceSoftware


 2020 Microchip Technology Inc. DS00003401A-page 2

AN3401
The choice of platform or MCU target is not meant as a
definite requirement; however, its adoption will lead to
a faster time to the completion of the project, using
tested and verified code that can fit most applications.
This application note is intended to be a reference for
communicating with Microchip’s I2C serial EERAM
devices using most of Microchip’s PIC microcontrollers,
in conjunction with MCC, without the need of extensive
knowledge in software writing, peripheral programming
or firmware in general. Almost everything related to the
topic can be accomplished due to the capabilities of the
MPLAB Code Configurator plugin.

MCC OVERVIEW
When starting a new project using PIC16, PIC24 or
PIC32 microcontrollers, setup of the configuration and
all the peripherals can be time consuming, especially
for new projects. The MPLAB Code Configurator is a
plugin for MPLAB X IDE that simplifies this down to a
series of simple selections from the menus within the
MCC. The MCC generates driver code using a Graph-
ical User Interface (GUI). The generated drivers control
the peripherals on PIC microcontrollers. The GUI pro-
vides an easy means for setting up the configuration of
the peripherals.
Additionally, the MCC is used to configure and gener-
ate libraries, which allows the user to configure and
generate code for software libraries and off-chip
peripherals. The generated drivers or libraries can be
used in any PIC device application program.
The MCC requires an MPLAB X IDE project to be cre-
ated or an existing project to be opened before launch-
ing the MCC plugin. This is required as MCC needs to
know the device used in the project to have access to
device-specific information like: registers, bits and con-
figurations and to set up the MCC GUI.
The MCC generates source and header files based on
selections made in the GUI. The generated files are
added to the active project of MPLAB X IDE.

Prerequisites and Installation of the MCC 
Plugin
Consult the “MPLAB® Code Configurator User’s
Guide” (DS40001725) for installation instructions, pre-
requisites and getting familiar with the GUI.
To automatically install the MPLAB Code Configurator
Plugin, consider the steps below:
1. In the MPLAB X IDE, select Plugins from the

Tools menu
2. Select the Available Plugins tab
3. Check the box for the MPLAB Code Configura-

tor v3, and click on Install

To manually install the latest available plugin:
1. Access the address https://www.micro-

chip.com/mplab/mplab-code-configurator and
click on the Current Download tab, then down-
load the .zip file that contains a .nbm file. 

2. In the MPLAB X IDE, select Plugins from the
Tools menu

3. Click on the Downloaded tab, then on Add
Plugins and browse to a location where the .zip
file has been extracted, then select the .nbm file

4. Click Install, which will lead you through the rest
of the procedure

CONFIGURING YOUR PROJECT
Create a new MPLAB X IDE project or open an existing
project. Steps are shown below for creating a project
for the PIC16F1719 device.

Create a normal stand-alone project.
Select the target device. The MPLAB Code Configura-
tor will only load the supported libraries matching the
target device. Internally, the MCC plugin has access to
every resource that a particular target has, from pins,
system peripherals such as clock and integrated
peripherals like MSSP, I2C, UART, etc. Refer to each
target’s data sheet to see what capabilities are
enabled. In this particular example, the PIC16F1719
has an MSSP peripheral that can be configured to com-
municate on the I2C bus specification.
Choose an available debugger, for example PICkit™,
an ICD or run the project in Simulator mode.
Having the latest compiler installed ensures the most
optimized output for your code if you are looking for
size or speed.
Name the project and finish the process.

https://www.microchip.com/mplab/mplab-code-configurator
https://www.microchip.com/mplab/mplab-code-configurator


 2020 Microchip Technology Inc. DS00003401A-page 3

AN3401

This creates an empty project that contains no files.
Clicking the blue MCC icon in the toolbar will launch the
MCC plugin within MPLAB X IDE.

SELECTING A PERIPHERAL OR 
RESOURCE
The MCC Graphical User Interface (GUI) is comprised
of multiple panels, out of which the focus is brought to
the Project Resources and Device Resources panels.
The Device Resources panel lists all the available
resources for the selected target. Historically, this panel
mainly contained the target microcontroller’s peripher-
als, but has evolved to accommodate other useful
resources. Users can take advantage of documenta-
tion, libraries for various stack implementations such as
CAN and LIN, compatible external products like the
Mikro-E line of Click boards™ and, as required for this
application note, Memory Products with I2C EEPROM.

When selecting and double clicking a peripheral, like
an ADC, for example, the selected resources will pop
out of the Device Resources panel and into the Project
Resources panel. This means that the respective
peripheral has been selected and prepared for config-
uration and later code generation.
If selecting one of the newer resources, like I2C
EERAM in this case, the MCC plugin will automatically
load the required compatible peripheral (in this case
MSSP) into the Project Resources panel.

In other cases, for other types of libraries, manual
selection of the peripheral to be used may be neces-
sary.

The figure above shows that MSSP has been loaded
alongside with the I2C EERAM library.

When a resource is selected from the Project
Resources panel, the Graphical User Interface corre-
sponding to that resource will be rendered within the
main display area of the MCC window. In this case,
after loading and selecting the I2C EERAM the user
has access to three tabs: Information, Configuration
and Advanced Settings.



 2020 Microchip Technology Inc. DS00003401A-page 4

AN3401
CHOOSING AND CONFIGURING AN 
EERAM
The Configuration tab contains four drop-down/edit-
able controls:
1. Select Device
2. Select Address Bits
3. Select Buffer Size (bytes)

The user can directly select an EERAM device from the
drop-down list. Alternatively, a filter by density can be
applied and the available device list will narrow accord-
ingly.
The options for the Address bits drop-down list will
adjust as well to the device selection and the available
physical address pins on the device.
The GUI provides a check box for generating an exam-
ple. This code example can be ported directly into the
main file to quickly test the functionality of the device in
real bench top conditions.

The Advanced Settings tab allows for simple configu-
ration of the I2C bus speed, and the changes applied
here will manifest in the automatic altering of the MSSP
registers to the correct values. This process is trans-
parent to the user, which makes it far easier to use than
manually configuring the registers.

CODE GENERATION
After all changes have been made and the user is sat-
isfied with the selected configuration, by clicking the
Generate button in the Project Resources panel, MCC
will generate all the required files, both headers and .c
files.

A report will be generated in the Output section, usually
on the bottom of the interface. The user will be
prompted to save the current MCC configuration into a
.m3c file within the project folder, that can be shared
between projects or machines for easier portability. 



 2020 Microchip Technology Inc. DS00003401A-page 5

AN3401

After all of the steps above have been taken, the user
can close the MCC plugin by clicking on the blue MCC
icon and can return to the classic project view in
MPLAB X. 
The project structure can be consulted, and one can
observe the presence of several header and source
files grouped under the “MCC Generated Files” nodes.
At this point the project can be successfully built.

MCC PROVIDED LAYERS
MCC provides a two-layer implementation to I2C using
MSSP. A third layer is visible to the user and is gener-
ated by the EERAM library that was loaded before. For
the final user, a final API layer is exposed through the
EERAM_driver.* files. In this stack-up, the implementa-
tion is comprised of:
• The bottom layer is the driver layer that consists 

of the i2c_driver.c file and dependences. This 
layer operates on the register level and manipu-
lates the MSSP peripheral so that is behaves in 
accordance to the I2C bus specification.

• The middle layer is the logical layer, consisting of 
the i2c_master.c source file and dependences. 
This is where a finite state machine operates on 
an Interrupt Service Routine (ISR). 

• This ISR iterates through the state machine and 
calls the bottom layer whenever register-level 
operations are required (i.e., setting buffers, alter-
ing flags).

• The upper layer is the user-accessible layer that 

uses the middle layer for logical operations, 
directly calling exposed methods. This ensures 
consistency when propagating calls to the driver 
layer, as the code becomes very deterministic.

• The user is exposed to an API-like layer, that 
through the EERAM_driver.* files provides proto-
types for single-function call operations. 

USING THE GENERATED CODE
If the code generation was successful and the check
box for generating an example was enabled, the
example main function would have also been
generated. Its purpose is to showcase the correct
usage of a several generated functions.

Generated Example



 2020 Microchip Technology Inc. DS00003401A-page 6

AN3401
The EERAM library generates an example main.c file
that can be altered or imported based on user prefer-
ences. If called, it showcases both basic functionality
as well as the special features of the EERAM range of
products.
Some of the functions called in the example file are:
• Setting the device address
• Writing a byte
• Reading a byte
• Sequential write
• Sequential (or random address) read

- Getting the STATUS register value
- Setting a bit in the STATUS register value
- Using the Software Store function
- Getting a single bit from the STATUS register 

(the Array Modified bit)
- Recalling the values from the EEPROM array 

within the EERAM

Documentation for these functions can be obtained by
consulting the generated documentation or the function
prototypes in the corresponding header.

FUNCTION USAGE
The example that was generated (shown in the previ-
ous section) contains the basic functions that an
EERAM can be used with. Going further, here is how
one can employ these functions and how they work.

Set Device Address

Sets the device address in firmware to reflect the value
corresponding to the Ax address pins of part.

Byte Write

FIGURE 1: BYTE WRITE

EERAM_SetDeviceAddress = (0x00);

EERAM_WriteOneByte(0x0010, 0xDE);



 2020 Microchip Technology Inc. DS00003401A-page 7

AN3401
Byte Read

FIGURE 2: BYTE READ

Sequential Write

FIGURE 3: SEQUENTIAL WRITE

Random Address Read

FIGURE 4: RANDOM ADDRESS READ

dataByte = EERAM_ReadOneByte (0x0010);

EERAM_SequentialWrite (0x0020, dataBuffer, 3);

EERAM_RandomAddressRead = (0x0022, dataBuffer+3, 4);



 2020 Microchip Technology Inc. DS00003401A-page 8

AN3401
STATUS Register Get

FIGURE 5: STATUS REGISTER GET

AutoStore Enable

In order to set the AutoStoreEnable (ASE) bit, the
STATUS register is read, its value is then masked with
the ASE bit value, then written back to the part. In the
capture shown in Figure 6, the ASE bit has already
been set prior to the second attempt to set it, so no
effective change is made and the capture only depicts
the mechanism.

FIGURE 6: AUTOSTORE ENABLE

SRegValue_EERAM_StatusRegisterGet();

EERAM_AutoStoreEnableBitSet = (0x01);



 2020 Microchip Technology Inc. DS00003401A-page 9

AN3401
Software Store

FIGURE 7: SOFTWARE STORE

Get AM Bit

FIGURE 8: GET AM BIT VALUE

Software Recall

FIGURE 9: SOFTWARE RECALL

EERAM_SoftwareStore = ();

AMBitValue = EERAM_ArrayModifiedBitGet = ();

EERAM_SoftwareRecall();



 2020 Microchip Technology Inc. DS00003401A-page 10

AN3401
COMPARING MCC WITH STANDARD 
MSSP PERIPHERAL HANDLING
Mid-range Microchip PIC microcontrollers, like the
PIC16, might have a generic MSSP peripheral that can
be used to implement various serial protocols including
the I2C specification, while PIC24 devices (and also
PIC32 devices) have dedicated I2C peripherals and
they do not rely on a MSSP peripheral for serial com-
munications.

USING MSSP AS I2C ON A PIC16 
WITHOUT MCC
Several of the mid-range enhanced core PIC16 micro-
controller devices have a Master Synchronous Serial
Port (MSSP). The MSSP module can be used to imple-
ment either the I2C or the SPI communications proto-
col. The following is an overview of the registers
involved in the configuration of MSSP to function as an
I2C peripheral and is meant to showcase the breadth
and complexity of bit-level manipulation required for
correct use. For more information, see AN735 – “Using
the PICmicro MSSP Module for I2C Communications”
(DS00735).

MSSP Registers and Functionality
Some key Special Function Registers (SFRs) utilized
by the MSSP module are:
• SSP Control Register 1 (SSPCON1)
• SSP Control Register 2 (SSPCON2)
• SSP STATUS Register (SSPSTAT)
• Pin Direction Control Register (TRISC)
• Serial Receive/Transmit Buffer (SSPBUF)
• SSP Shift Register (SSPSR) - Not directly acces-

sible
• SSP Address Register (SSPADD)
• SSP Hardware Event Status (PIR1)
• SSP Interrupt Enable (PIE1)
• SSP Bus Collision Status (PIR2)
• SSP Bus Collision Interrupt Enable (PIE2)
To configure the MSSP module for Master I2C mode,
key SFR registers must be initialized in order to config-
ure the MSSP module for Master I2C mode.
• SSP Control Register 1 (SSPCON1)

- I2C mode configuration
• SSP Address Register (SSPADD)

- I2C bit rate
• SSP STATUS Register (SSPSTAT)

- Slew rate control
- Input pin threshold levels

• Pin Direction Control (TRISC)
- SCL/SDA direction

Once the basic functionality of the MSSP module is
configured for Master I2C mode, the remaining steps
relate to the implementation and control of I2C events.
The master can initiate any of the following I2C bus
events:
• Start
• Restart
• Stop
• Read (Receive)
• Acknowledge (after a read)

- Acknowledge
- Not Acknowledge (NACK)

• Write
The first four events are initiated by asserting high the
appropriate control bit in the SSPCON2 register. The
Acknowledge bit event consists of first setting the
Acknowledge state, ACKDT (SSPCON2) and then
asserting high the event control bit, ACKEN
(SSPCON2).
Data transfer with Acknowledge is obligatory. The
Acknowledge-related clock is generated by the master.
The transmitter releases the SDA line (HIGH) during
the Acknowledge clock pulse. The receiver must pull
down the SDA line during the Acknowledge clock pulse
so that it remains stable LOW during the HIGH period
of this clock pulse.
When the Slave does not acknowledge the master
during this Acknowledge clock pulse (for any reason),
the data line must be left HIGH by the slave. This
sequence is termed “Not Acknowledge” or “NACK”.
For actual data to be transferred, the SSPBUF register
must be written with the control byte and the data to be
sent. Once the SSPBUF is loaded with data, the MSSP
peripheral will clock out the data at the configured rate.

Pin Assignment
Another aspect involved in the functioning of MSSP as
I2C (or any type of supported bus) is the correct pin
assignment. After the MSSP configuration has been
set, the data sheet must be consulted in order to deter-
mine the correct I/O pins that map to the MSSP periph-
eral.
Depending on the peripheral configuration of the PIC
device in use (i.e., number of MSSP peripherals), the
most common ports used are RC3 and RC4. These
need to be configured as well by setting the correct
data direction according to the role the MSSP plays in
the I2C implementation (master or slave).



 2020 Microchip Technology Inc. DS00003401A-page 11

AN3401
Byte Write Routine as Master

The main takeaway of the example with PIC16 is that
even the simplest bit level implementation of the
peripheral requires a certain expertise with using the
actual MSSP peripheral. Certain bits and flags must be
precisely manipulated for correct operation, which can
be time consuming. 
The advantage of this approach is that developing
low-level code leads to a better understanding of the
device in use and makes debugging easier and more
deterministic. The disadvantage is the amount of time
spent in order to get a coherent and working example.

CONCLUSION
When deciding between a bare-bones versus a com-
plete implementation, MCC helps with providing the lat-
ter. By using MCC instantiated code, a predictable and
deterministic implementation can be achieved. 
Microchip Technology is continuously adding sup-
ported device libraries and is improving the capabilities
of MCC to serve both prototyping and industrial-grade
code generation. Its ease of use is matched with con-
sistent code, that can be deployed in real-life applica-
tions. 

The generated code is documented and visible, and
other implementations can be easily derived from it to
fit every need. For a robust implementation in embed-
ded systems and peripherals, the MPLAB Code Con-
figurator is a great starting point.

REFERENCES
1. AN 734 – “Using the Mid-Range Enhanced Core

PIC16 Devices’ MSSP Module for Slave I2C
Communication” (DS00000734)

2. AN735 – “Using the PICmicro MSSP Module for
I2C Communications” (DS00735)

3. AN 2045 – “Interfacing Serial EEPROMs with
8-Bit PIC® Microcontrollers” (DS00002045)

4. AN1028 – “Recommended Usage of Microchip
I2C Serial EEPROM Devices” (DS01028)

5. “1024K I2C Serial EEPROM” Data Sheet
(DS20001941)

6. “Inter-Integrated Circuit (I2C)” Reference Man-
ual (DS70000195)

void wait()
{
while ((SSPSTAT & 0x04) || (SSPCON2 & 0x1F));
return ;

}

void main(void)
{

SSPCON = 0X28 ;// I2C Master, enable SCL and SDA

SSPCON2 = 0 ;//

SSPADD = 99 ;// calculated using FOSC/(4*speed)–1 where speed is 10000

SSPSTAT = 0 ;

TRISC = 0x18 ;// using RC3 (SCL) and RC4 (SDA)

char data = 0 ;

while(1)

{

wait() ;

SEN = 1 ;// I2C start

wait() ;

SSPBUF = 0x30 ;// control byte (7-bit address + r/nw bit)

wait() ;

SSPBUF = 0x30 ;// send and increment data char

wait() ;

PEN = 1 ;// I2C stop

_delay_ms(100) ;

}

}



 2020 Microchip Technology Inc. DS00003401A-page 12

AN3401
APPENDIX A: REVISION HISTORY

Revision A (April 2020)
Initial release of this document.



 2020 Microchip Technology Inc. DS00003401A-page 13

AN3401
APPENDIX B: I2C OVERVIEW
An I2C bus can have one or more master devices and
one or more slave devices. The master device is the
device that initiates a data transfer on the bus and is
responsible for generating the serial clock used on the
bus. Any addressed device is then considered a slave.
Data transfers are performed eight bits at a time, start-
ing with the Most Significant bit (MSb). Each device is
recognized by a unique address and can operate as
either a transmitter or receiver.
The physical interface of the bus consists of two bidi-
rectional open-drain lines, one line used for the serial
clock (SCL) and the other used for serial data (SDA).
Each line will require a pull-up resistor to supply voltage
to the lines. Pulling the line to ground is considered a
logical Low, while letting the line float high is consid-
ered a logical High. When the bus is free, both SDA and
SCL are logical High.
Data can be transferred at a rate up to 100 Kbits/s in
the Standard mode, up to 400 Kbits/s in Fast mode, up
to 1 Mbit/s in Fast mode Plus or up to 3.4 Mbits/s in
High-Speed mode. Data on the SDA line must be stable
during the high period of the clock. Any changes on the
SDA line can only occur when the clock signal on the
SCL line is low. One clock pulse is generated for each
transferred data bit.
The I2C specification defines a Start condition as a
transition of the SDA line from a high-to-low state, while
the SCL line is high. A Start condition is always gener-

ated by the master and signifies the transition of the
bus from an Idle to an Active state. The I2C specifica-
tion states that no bus collision can occur on a Start.
A Stop condition is a transition of the SDA line from a
low-to-high state while the SCL line is high. At least one
SCL low time must appear before a Stop is valid. A
Restart, or Repeated Start, is valid any time that a Stop
would be valid. A master can issue a Restart if it wishes
to hold the bus after terminating the current transfer. A
Restart has the same effect on the slave that a Start
would, resetting all slave logic and preparing it to clock
in an address. The master may want to address the
same or another slave. This can be useful for many I2C
peripherals, such as nonvolatile EEPROM memory, in
which an I2C write operation and a read operation are
done in succession. In this case, the write operation
specifies the address to be read and the read operation
gets the byte of data. Since the master device does not
release the bus after the memory address is written to
the device, a Restart sequence is performed to read
the contents of the memory address.
The ninth SCL pulse for any transferred byte in I2C is
dedicated as an Acknowledge (ACK). It allows
receiving devices to respond back to the transmitter by
pulling the SDA line low. The transmitter must release
control of the line during this time to shift in the
response. The ACK is an active-low signal, pulling the
SDA line low, indicating to the transmitter that the
device has received the transmitted data and is ready
to receive more.

FIGURE 10: EXAMPLE DATA TRANSFER SEQUENCE ON I2C

FIGURE 11: EXAMPLE BYTE WRITE ON A 64-KBIT I2C DEVICE

SCL

SDA

Start Condition

(A)

Address or 
Acknowledge 

Valid

Data 
Allowed 

to Change

Stop Condition

(B) (D) (D) (C) (A)

X X XS 1 0 1 0 0A
2

A
1

A
0 PSDA Line

Bus Activity 
Master

Bus Activity

X = don’t care bit

Control
Byte

Address
High Byte

Address
Low Byte Data



 2020 Microchip Technology Inc. DS00003401A-page 14

AN3401
APPENDIX C: EERAM 

CHARACTERISTICS

Chip Address Inputs
The Chip Address input pins (A0, A1 and A2 or combi-
nations) are used on several devices to support multi-
ple device operation. On devices with this feature, the
levels on these inputs are compared with the corre-
sponding bits in the slave address, and the device is
selected if the comparison is true. Note that the Chip
Address pins are not internally connected on some
devices. Also note that some devices like the 47X04,
47X16 and 47L64 do not have an A0 pin, but instead
have A1 and A2 pins. Refer to the appropriate device
data sheet for more details. For devices with internally
connected Chip Address pins, these inputs must be
hard-wired to either logic ‘0’ or logic ‘1’. That is, they
cannot be left floating, otherwise the device will not
operate correctly.

Power Supply
Microchip serial EERAMs feature a high amount of pro-
tection from unintentional writes and data corruption
while power is within normal operating levels. But cer-
tain considerations should be made regarding
power-up and power-down conditions to ensure the
same level of protection during those times when
power is not within normal operating levels. A decou-
pling capacitor (typically 0.1 µF) should be used to help
filter out small ripples on VCC. Consult the most
up-to-date data sheet and specification/recommended
usage when deploying Microchip EERAMs in sensitive
applications.

Bus Pull-Up Resistors
For proper operation, pull-up resistors are required for
both SCL and SDA buses. However, the resistor value
chosen can have a vast impact on the performance of
the system.
Specifically, three limiting actors must be considered
when selecting pull-up resistor (RP)
• Supply Voltage (VCC)
• Total Bus Capacitance (CBUS)
• Total High-Level Input Current (IIH)
For an in-depth computation of these factors, consult
AN1028 – “Recommended Usage of Microchip I2C
Serial EEPROM Devices” (DS01028). Most applica-
tions will require the pull-up resistor value to be
2.2 kOhm but this may vary depending on require-
ments.

External Capacitor
One of the key features of the 47XXX devices is the
AutoStore mechanism. To enable this feature, the user
sets the ASE (AutoStore Enable) bit in the STATUS
register to ‘1’ and installs a capacitor connected
between the VCAP pin and ground. However, if the user
decides that only manual store operations are required,
the ASE bit must be set to ‘0’ and the VCAP pin must be
connected to VCC.
See AN2257 for details on choosing the right external
capacitor for your application and also consult the data
sheet and Microchip application notes for correct
usage.



 2020 Microchip Technology Inc. DS00003401A-page 15

AN3401
APPENDIX D: UNDERLYING CODE ANALYSIS 

This annex helps the reader understand both the func-
tionality of the generated code and the complexity of a
robust I2C implementation. 
The entry point for analyzing the code will be the Byte
Read function. 

The function implementation is:

The first important call is:

This function operates on a structure that maps a num-
ber of flags and data pointers specific to the I2C imple-
mentation on the MSSP peripheral.

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

dataByte = EERAM_ReadOneByte ; (0x0010);

uint8_t data ;

while (!I2C_open(EERAM_DEVICE_ADDRESS)) ; //sit here until we get the bus...

I2C_setDataCompleteCallback(readOneByteHandler & data) ;

address = (address&0xFF00)>>8|(address&0x00FF)>>8 ;

I2C_setBuffer(& address,2) ;

I2C_setAddressNACKCallback(I2C_restart_write,NULL) ;  //NACK polling

I2C_masterWrite() ;

while (I2C_BUSY==I2C_close()) ; //sit here until finished

return data ;

}

I2C_open(EERAM_DEVICE_ADDRESS)



 2020 Microchip Technology Inc. DS00003401A-page 16

AN3401

This type definition resides in the I2C_master.c file
which is generated by MCC.
The I2C_open() function resets the flags and sets the
device address within this structure. It also calls
I2C_driver_open(). This is also the point where the
code eventually reaches the register level:

Going upwards to the user-available API, the
EERAM_ReadOneByte() function, after the call to
I2C_open() one can observe the assignment of a data
complete callback by sending a function pointer as a
parameter:

The readOneByteHandler function is already imple-
mented and basically maps a pointer to the I2C specific
(I2C_status) structure’s data pointer.

typedef struct
{
unsigned busy:1 ;

unsigned inUse:1 ;

unsigned bufferFree:1 ;

unsigned addressNACKCheck:1 ;

I2C_address_t address ; /// The I2C Address

uint8_t *data_ptr ; /// pointer to a data buffer

size_t data_length ; /// Bytes in the data buffer

uint16_t time_out ; /// I2C Timeout Counter between I2C events

uint16_t time_out_value ; /// Reload value for the timeouts

I2C_fsm_states_t state ; /// Driver State

I2C_error_t error

I2C_callback callbackTable[6] ;

void *callbackPayload[6] ; /// each callback can have a payload

} I2C_status_t ;

_bit I2C_driver_open(void)

if(!SSP1CON1bits.SSPEN)
{
SSP1STAT = 0x00 ;

SSP1CON1 = 0x28 ;

SSP1CON2 = 0x00 ;

SSP1ADD = 0x3 ;

return true ;

}

else

return false ;

}

I2C_setDataCompleteCallback(readOneByteHandler & data);



 2020 Microchip Technology Inc. DS00003401A-page 17

AN3401
After the callback has been registered and thus the
pointer remapped, the EERAM_ReadOneByte() func-
tion calls:

In case the slave device (EERAM) does not acknowl-
edge, a restart write is callback is registered through:

The next call is I2C_masterWrite(); which in term alters
the I2C_status structure by setting a write flag. Based
on these flags, the code eventually iterates through a
finite state machine that correctly operates the MSSP
peripheral.

I2C_setBuffer(&address,2) ;

I2C_setAddressNACKCallback(I2C_restart_write,NULL); //NACK polling



 2020 Microchip Technology Inc. DS00003401A-page 18

AN3401

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, 
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, 
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, 
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, 
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, 
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, 
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, 
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, 
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, 
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA 
are registered trademarks of Microchip Technology Incorporated in 
the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, 
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, 
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision 
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, 
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, 
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered 
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any 
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, 
CryptoAuthentication, CryptoAutomotive, CryptoCompanion, 
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average 
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial 
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, 
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, 
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, 
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, 
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple 
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, 
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, 
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and 
ZENA are trademarks of Microchip Technology Incorporated in the 
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in 
the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage 
Technology, and Symmcom are registered trademarks of Microchip 
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany 
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in 
other countries. 
All other trademarks mentioned herein are property of their 
respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5987-3

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the 
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our 
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data 
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not 
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

For information regarding Microchip’s Quality Management Systems, 
please visit www.microchip.com/quality.

www.microchip.com/quality
www.microchip.com/quality


 2020 Microchip Technology Inc. DS00003401A-page 19

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 
Fax: 480-792-7277
Technical Support: 
http://www.microchip.com/
support
Web Address: 
www.microchip.com
Atlanta
Duluth, GA 
Tel: 678-957-9614 
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370 
Boston
Westborough, MA 
Tel: 774-760-0087 
Fax: 774-760-0088
Chicago
Itasca, IL 
Tel: 630-285-0071 
Fax: 630-285-0075
Dallas
Addison, TX 
Tel: 972-818-7423 
Fax: 972-818-2924
Detroit
Novi, MI 
Tel: 248-848-4000
Houston, TX 
Tel: 281-894-5983
Indianapolis
Noblesville, IN 
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA 
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800 
Raleigh, NC 
Tel: 919-844-7510
New York, NY 
Tel: 631-435-6000
San Jose, CA 
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980 
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000 
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880 
China - Guangzhou
Tel: 86-20-8755-8029 
China - Hangzhou
Tel: 86-571-8792-8115 
China - Hong Kong SAR
Tel: 852-2943-5100 
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000 
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200 
China - Suzhou
Tel: 86-186-6233-1526 
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138 
China - Zhuhai
Tel: 86-756-3210040 

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444 
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160 
Japan - Tokyo
Tel: 81-3-6880- 3770 
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600 
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910 
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20 
Fax: 33-1-69-30-90-79 
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0 
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana 
Tel: 972-9-744-7705
Italy - Milan 
Tel: 39-0331-742611 
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286 
Netherlands - Drunen
Tel: 31-416-690399 
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737 
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

02/28/20

http://support.microchip.com
http://www.microchip.com

	Introduction
	The I2C Protocol
	The I2C EERAM
	Microchip EERAM
	MPLAB® Code Configurator
	MCC Overview
	Configuring Your Project
	Selecting a Peripheral or Resource
	Choosing and Configuring an EERAM
	Code Generation
	MCC Provided Layers
	Using the Generated Code
	Generated Example

	Function Usage
	Set Device Address
	Byte Write
	FIGURE 1: Byte Write

	Byte Read
	FIGURE 2: Byte Read

	Sequential Write
	FIGURE 3: Sequential write

	Random Address Read
	FIGURE 4: Random Address Read

	STATUS Register Get
	FIGURE 5: STATUS Register Get

	AutoStore Enable
	FIGURE 6: AutoStore Enable

	Software Store
	FIGURE 7: Software Store

	Get AM Bit
	FIGURE 8: Get AM Bit Value

	Software Recall
	FIGURE 9: Software Recall


	Comparing MCC with Standard MSSP Peripheral Handling
	Using MSSP as I2C on a PIC16 without MCC
	MSSP Registers and Functionality
	Pin Assignment
	Byte Write Routine as Master

	Conclusion
	References
	Appendix A: Revision History
	Revision A (April 2020)

	Appendix B: I2C Overview
	FIGURE 10: Example Data Transfer Sequence on I2C
	FIGURE 11: Example Byte Write on a 64-KBIT I2C DEVICE

	Appendix C: EERAM Characteristics
	Chip Address Inputs
	Power Supply
	Bus Pull-Up Resistors
	External Capacitor

	Appendix D: Underlying Code Analysis
	Trademarks
	Worldwide Sales

