MICROCHIP

AN3401

Using Microchip I?’C EERAMs with MPLAB® X and
MPLAB® Code Configurator

Author: Dragos Ciofu
Microchip Technology Inc.

INTRODUCTION

Most embedded control systems require memory and
the most common type used is nonvolatile memory.
Serial EEPROMSs are a popular choice for nonvolatile
storage due to their flexibility and low pin count, power
consumption and cost.

However, the drawback of any EEPROM device,
regardless of manufacturer, is its limited endurance.
Microchip Technology uses refined processes with
tried and tested technology to ensure that parameters,
such as endurance, are competitive in the memory
environment. Microchip’s extensive characterization
processes ensure that data sheet parameters are met
and exceeded.

Endurance is also highly dependent on the actual
application being developed. Workarounds such as
page-cycling or wear leveling can be implemented in
order to extend the lifetime of a part. If you are working
with EEPROMSs for endurance estimates in a specific
application, consult the Total Endurance™ Model
which can be obtained on the Microchip website at
www.microchip.com.

A newly developed product, Microchip’s EERAM, is
made of a volatile SRAM array mirrored by a
nonvolatile EEPROM array. For more information on
EERAM, see
https://www.microchip.com/design-centers/memory/se
rial-eeram

THE 12C PROTOCOL

The Inter-Integrated Circuit (1°C) bus is a widely used
industry standard bus used in the transfer of data
between integrated circuits, such as between serial
EERAMs and microcontrollers. Devices communicate
in a master/slave environment in which the master
always initiates the communication and the slave
device is controlled through addressing. For a broader
overview of the 12C protocol, see Appendix B: “I2C
Overview” at the end of this document.

THE I12C EERAM

To correctly use and deploy I2C EERAMSs in a robust
project, understanding the following topics is recom-
mended:

* Chip Address Inputs

* Bus Pull-Up Resistors

* Power Supply

» Hardware/Software Store Operations
» External Capacitor Choice

If you are not already familiar with these topics, refer to
Appendix C: “EERAM Characteristics”, which
explains how they impact your project.

MICROCHIP EERAM

To address the inherent issue of endurance in
EEPROMS, Microchip Technology has developed
EERAM. EERAM is a serial SRAM product that has
hidden nonvolatile bits. On any power disruption, the
active SRAM array content is moved to the nonvolatile
bits. When power is restored, the nonvolatile content is
restored to the SRAM array and SRAM operation
continues. This model provides unlimited reads and
writes to the SRAM cells, using a standard protocol and
symmetrical read/write timings, while at the same time
providing a transparent mechanism for data retention
on power loss or upon request.

MPLAB® CODE CONFIGURATOR

The MPLAB Code Configurator (MCC) is a free, graph-
ical programming environment that generates seam-
less, easy-to-understand C code that can easily be
integrated into a project. Using an intuitive interface, it
enables and configures a rich set of peripherals and
functions specific to the user’s application. It supports
AVR® microcontrollers and 8-bit, 16-bit and 32-bit PIC®
microcontrollers. MCC is incorporated into both the
downloadable MPLAB® X IDE and the cloud-based
MPLAB® Xpress IDE.

This application note intends to demonstrate how to
interface 12C EERAM devices using MPLAB X 5.05 or
later, the XC series of compilers and the MPLAB Code
Configurator plugin for the MPLAB X IDE.

The Microchip Explorer 8 and Explorer16/32 Develop-
ment Boards are used as the hardware development
platforms.

© 2020 Microchip Technology Inc.

DS00003401A-page 1

www.microchip.com
https://www.microchip.com/DevelopmentTools/ProductDetails/TotalEnduranceSoftware
https://www.microchip.com/design-centers/memory/serial-eeram
https://www.microchip.com/design-centers/memory/serial-eeram
https://www.microchip.com/DevelopmentTools/ProductDetails/TotalEnduranceSoftware

AN3401

The choice of platform or MCU target is not meant as a
definite requirement; however, its adoption will lead to
a faster time to the completion of the project, using
tested and verified code that can fit most applications.

This application note is intended to be a reference for
communicating with Microchip’s 12C serial EERAM
devices using most of Microchip’s PIC microcontrollers,
in conjunction with MCC, without the need of extensive
knowledge in software writing, peripheral programming
or firmware in general. Almost everything related to the
topic can be accomplished due to the capabilities of the
MPLAB Code Configurator plugin.

MCC OVERVIEW

When starting a new project using PIC16, PIC24 or
PI1C32 microcontrollers, setup of the configuration and
all the peripherals can be time consuming, especially
for new projects. The MPLAB Code Configurator is a
plugin for MPLAB X IDE that simplifies this down to a
series of simple selections from the menus within the
MCC. The MCC generates driver code using a Graph-
ical User Interface (GUI). The generated drivers control
the peripherals on PIC microcontrollers. The GUI pro-
vides an easy means for setting up the configuration of
the peripherals.

Additionally, the MCC is used to configure and gener-
ate libraries, which allows the user to configure and
generate code for software libraries and off-chip
peripherals. The generated drivers or libraries can be
used in any PIC device application program.

The MCC requires an MPLAB X IDE project to be cre-
ated or an existing project to be opened before launch-
ing the MCC plugin. This is required as MCC needs to
know the device used in the project to have access to
device-specific information like: registers, bits and con-
figurations and to set up the MCC GUI.

The MCC generates source and header files based on
selections made in the GUI. The generated files are
added to the active project of MPLAB X IDE.

Prerequisites and Installation of the MCC
Plugin
Consult the “MPLAB® Code Configurator User’s

Guide” (DS40001725) for installation instructions, pre-
requisites and getting familiar with the GUI.

To automatically install the MPLAB Code Configurator
Plugin, consider the steps below:

1. In the MPLAB X IDE, select Plugins from the
Tools menu
2. Select the Available Plugins tab

3. Check the box for the MPLAB Code Configura-
tor v3, and click on Install

To manually install the latest available plugin:

1. Access the address hitps://www.micro-
chip.com/mplab/mplab-code-configurator and
click on the Current Download tab, then down-
load the .zip file that contains a .nbm file.

2. In the MPLAB X IDE, select Plugins from the
Tools menu

3. Click on the Downloaded tab, then on Add
Plugins and browse to a location where the .zip
file has been extracted, then select the .nbm file

4. Click Install, which will lead you through the rest
of the procedure

CONFIGURING YOUR PROJECT

Create a new MPLAB X IDE project or open an existing
project. Steps are shown below for creating a project
for the PIC16F 1719 device.

B3 New Project X

Steps Choose Project

1. Choose Project Q Fiter:
&

Cate Projects:

. Standalone Project

|2 Other Embedded (5 Existing MPLAB IDE v8 Project

66 Samples [& Prebuit (Hex, Loadable Image) Project
@ User Makefile Project
[Library Project

(&) Import START MPLAB project
(& Import Atmel Studio Project

Desaription:

| Creates a new standalone appication project It uses an IDE-generated makefie to buid your
|project.

Finish Cancel Hep

Create a normal stand-alone project.

Select the target device. The MPLAB Code Configura-
tor will only load the supported libraries matching the
target device. Internally, the MCC plugin has access to
every resource that a particular target has, from pins,
system peripherals such as clock and integrated
peripherals like MSSP, I2C, UART, etc. Refer to each
target's data sheet to see what capabilities are
enabled. In this particular example, the PIC16F1719
has an MSSP peripheral that can be configured to com-
municate on the I°C bus specification.

Choose an available debugger, for example PICkit™,
an ICD or run the project in Simulator mode.

Having the latest compiler installed ensures the most
optimized output for your code if you are looking for
size or speed.

Name the project and finish the process.

© 2020 Microchip Technology Inc.

DS00003401A-page 2

https://www.microchip.com/mplab/mplab-code-configurator
https://www.microchip.com/mplab/mplab-code-configurator

AN3401

This creates an empty project that contains no files.
Clicking the blue MCC icon in the toolbar will launch the
MCC plugin within MPLAB X IDE.

SELECTING A PERIPHERAL OR
RESOURCE

The MCC Graphical User Interface (GUI) is comprised
of multiple panels, out of which the focus is brought to
the Project Resources and Device Resources panels.

The Device Resources panel lists all the available
resources for the selected target. Historically, this panel
mainly contained the target microcontroller’s peripher-
als, but has evolved to accommodate other useful
resources. Users can take advantage of documenta-
tion, libraries for various stack implementations such as
CAN and LIN, compatible external products like the
Mikro-E line of Click boards™ and, as required for this
application note, Memory Products with I°C EEPROM.

Device Resources | @ | >

¥ Documents
PIC16F1719 Product Page
P Peripherals
P Libraries
P Mikro-E Clicks
¥ Memory Products
¥ Memory
5 47/4850(X EERAM
% 12C E£PROM
P Clock and Timing

When selecting and double clicking a peripheral, like
an ADC, for example, the selected resources will pop
out of the Device Resources panel and into the Project
Resources panel. This means that the respective
peripheral has been selected and prepared for config-
uration and later code generation.

If selecting one of the newer resources, like 12C
EERAM in this case, the MCC plugin will automatically
load the required compatible peripheral (in this case
MSSP) into the Project Resources panel.

In other cases, for other types of libraries, manual
selection of the peripheral to be used may be neces-

sary.

Projects Files Services Resour... x| [=

Tree View || Flat View

Project Resource... Gener.. || Impo.. | Exp..

¥ System
Interrupt Module
Pin Module
System Module
¥ Peripherals
i MSSP [Foundation Services Library by Microchi
¥ Memory Products
¥ Memory
8 47/42300(EERAM
¥ Libraries
¥ Foundation Services

& I2CMASTER.

The figure above shows that MSSP has been loaded
alongside with the 1°C EERAM library.

47/48XXX EERAM

Easy Setup

Information | Configuration | Advanced Settings

Description

EERAM cor
an SRAM

Product Page

When a resource is selected from the Project
Resources panel, the Graphical User Interface corre-
sponding to that resource will be rendered within the
main display area of the MCC window. In this case,
after loading and selecting the I2C EERAM the user
has access to three tabs: Information, Configuration
and Advanced Settings.

© 2020 Microchip Technology Inc.

DS00003401A-page 3

AN3401

CHOOSING AND CONFIGURING AN
EERAM

The Configuration tab contains four drop-down/edit-
able controls:

1. Select Device

2. Select Address Bits

3. Select Buffer Size (bytes)

47/48XXX EERAM

404 Easy Setup

Information || Configuration | Advanced Settings

EERAM Configuration Panel

Select Device ATLO4
A2=0,A1=0

Select Buffer Size (Bytes) B4

Select Address Bits

[]

¥ Example

Generate Example

This is a basic example on how to use an EERAM......

The user can directly select an EERAM device from the
drop-down list. Alternatively, a filter by density can be
applied and the available device list will narrow accord-
ingly.

The options for the Address bits drop-down list will
adjust as well to the device selection and the available
physical address pins on the device.

The GUI provides a check box for generating an exam-
ple. This code example can be ported directly into the
main file to quickly test the functionality of the device in
real bench top conditions.

47/48XXX EERAM

'”‘ 1 Easy Setup

Information | Configuration | Advanced Settings

12C

v [2C

| Hardware Settings

Select 12C Master | I2CMASTER | -

The Advanced Settings tab allows for simple configu-
ration of the 12C bus speed, and the changes applied
here will manifest in the automatic altering of the MSSP
registers to the correct values. This process is trans-
parent to the user, which makes it far easier to use than
manually configuring the registers.

CODE GENERATION

After all changes have been made and the user is sat-
isfied with the selected configuration, by clicking the
Generate button in the Project Resources panel, MCC
will generate all the required files, both headers and .c
files.

SearchResults | Output x| Variables | Call Stack | Breakpoints | Notifications [MCC] | Pin Manager: Grid View
MPLAB® Code Configur:

x ID3 x DebuggerConsole x

A report will be generated in the Output section, usually
on the bottom of the interface. The user will be
prompted to save the current MCC configuration into a
.m3c file within the project folder, that can be shared
between projects or machines for easier portability.

© 2020 Microchip Technology Inc.

DS00003401A-page 4

AN3401

-E Header Files

3 Gﬁ MCC Generated Files
E‘] device_config.h
E drivers
@ EERAM_driver.h
E‘] EERAM_example.h
E‘] i2c_driver.h
E‘] interrupt_manager.h
E] mec.h
L 0T pin_manager.h
_[EQ Impartant Files

] Makefile
L[ED MyConfig.mc3
E Linker Files
-[_,_-E| Source Files

} E| main.c

uses the middle layer for logical operations,
directly calling exposed methods. This ensures
consistency when propagating calls to the driver
layer, as the code becomes very deterministic.

* The user is exposed to an API-like layer, that
through the EERAM_driver.* files provides proto-
types for single-function call operations.

USING THE GENERATED CODE

If the code generation was successful and the check
box for generating an example was enabled, the
example main function would have also been
generated. Its purpose is to showcase the correct
usage of a several generated functions.

=] @i MCC Generated Files

E‘] device_config.c

[aﬁ drivers

; F_‘] i2c_master.c

E‘] i2c_simple_master.c
i2c_types.c
EERAM_driver.c

fﬁ_‘] EERAM_example.c

'F__‘] i2c_driver.c

E‘] interrupt_manager.c

mec.c
L. pin_manager.c
(g Libraries

(&t Loadables

After all of the steps above have been taken, the user
can close the MCC plugin by clicking on the blue MCC
icon and can return to the classic project view in
MPLAB X.

The project structure can be consulted, and one can
observe the presence of several header and source
files grouped under the “MCC Generated Files” nodes.

At this point the project can be successfully built.

MCC PROVIDED LAYERS

MCC provides a two-layer implementation to 12c using
MSSP. A third layer is visible to the user and is gener-
ated by the EERAM library that was loaded before. For
the final user, a final API layer is exposed through the
EERAM_driver.* files. In this stack-up, the implementa-
tion is comprised of:

» The bottom layer is the driver layer that consists
of the i2c_driver.c file and dependences. This
layer operates on the register level and manipu-
lates the MSSP peripheral so that is behaves in
accordance to the I°C bus specification.

» The middle layer is the logical layer, consisting of
the i2c_master.c source file and dependences.
This is where a finite state machine operates on
an Interrupt Service Routine (ISR).

» This ISR iterates through the state machine and
calls the bottom layer whenever register-level
operations are required (i.e., setting buffers, alter-
ing flags).

* The upper layer is the user-accessible layer that

Generated Example

I

=]

void main(void)

€

SYSTEM_Initialize():

while (1)

=

t dataByte =O0xFF;

_© dataBuffer[s] = {0x35, OxFF, OxAA, OxCC, 0x0l, 0x02,

void main_example (void)

t

EERAM SetDeviceAddress (0x00);

EEREM_SetDeviceRddress (0x00) 5
EERAM WriteOneByte (0x10, dataByte);
dataByte = EERAM ReadOneByte (0%0010) 7

EERAM SequentialWrite (0x20, dataBuffer, 4);

EERAM RandomAddressRead (0x22, dataBuffer+2, 2);

EERAM CurrentRAddressRead (sdataByte)
dataByte = EERAM_StatusRegisterGet 05
EERAM AutoStoreEnableBitSet (9x01) 7
EERRM SoftwareStors 0

dataByte = EERAM ArrayModifiedBitGet ()f

EERAM SequentialWrite (0x20, dataBuffer+s, 4);

EERRM_SoftwareRecall 0:

EEREM_RandomBddressRead (0x22, dataBuffer+2, 2);

0x03, 0x08};

© 2020 Microchip Technology Inc.

DS00003401A-page 5

AN3401

The EERAM library generates an example main.c file
that can be altered or imported based on user prefer-
ences. If called, it showcases both basic functionality
as well as the special features of the EERAM range of
products.

Some of the functions called in the example file are:

» Setting the device address

» Writing a byte

* Reading a byte

» Sequential write

» Sequential (or random address) read
- Getting the STATUS register value
- Setting a bit in the STATUS register value
- Using the Software Store function

- Getting a single bit from the STATUS register
(the Array Modified bit)

- Recalling the values from the EEPROM array
within the EERAM

Set Device Address

Documentation for these functions can be obtained by
consulting the generated documentation or the function
prototypes in the corresponding header.

FUNCTION USAGE

The example that was generated (shown in the previ-
ous section) contains the basic functions that an
EERAM can be used with. Going further, here is how
one can employ these functions and how they work.

EERAM SetDeviceAddress = (0x00);

Sets the device address in firmware to reflect the value
corresponding to the Ax address pins of part.

Byte Write

EERAM WriteOneByte (0x0010, OxDE);

FIGURE 1: BYTE WRITE

o), MY5: Wed Dec 11 12:43:35 2019
1

1
Agilent

© 2020 Microchip Technology Inc.

DS00003401A-page 6

AN3401

Byte Read

dataByte = EERAM ReadOneByte (0x0010);

FIGURE 2: BYTE READ

DS0-X 30548, MY54310435: Wed Dec 111250382013
1

Agilent

00a 10a

Sequential Write

EERAM SequentialWrite (0x0020, dataBuffer, 3);

FIGURE 3: SEQUENTIAL WRITE

DS0-X 30544, MY54310495 Wed Des 111252132019
1

Random Address Read

EERAM RandomAddressRead = (0x0022, dataBuffer+3, 4);

FIGURE 4: RANDOM ADDRESS READ

D30+ IY54310435 Wed Dec 11 1258:27 2013

Agilent

quisition

© 2020 Microchip Technology Inc. DS00003401A-page 7

AN3401

STATUS Register Get

SRegValue EERAM StatusRegisterGet();

FIGURE 5: STATUS REGISTER GET

DS0-X 30544, MY54310435 Wed Dec 11 1308:27 2019
1

940.08/ 1 1.43V

Agilent

AutoStore Enable

EERAM AutoStoreEnableBitSet = (0x01);

In order to set the AutoStoreEnable (ASE) bit, the
STATUS register is read, its value is then masked with
the ASE bit value, then written back to the part. In the
capture shown in Figure 6, the ASE bit has already
been set prior to the second attempt to set it, so no
effective change is made and the capture only depicts
the mechanism.

FIGURE 6: AUTOSTORE ENABLE

DS0- 30544, MY54310435 Wed Dec 11131616 2019
1 Vi

© 2020 Microchip Technology Inc.

DS00003401A-page 8

AN3401

Software Store

FERAM SoftwareStore = ();

FIGURE 7: SOFTWARE STORE

DS0-X 30544, MY54310495 Wed Dec 11 1326.07 2018
1

1.4
Agilent

Get AM Bit

AMBitValue = EERAM ArrayModifiedBitGet = ();

FIGURE 8: GET AM BIT VALUE

DS0-X 30544, MY54310435 Wed Dec 1113.27:39 2019
1

Software Recall

EERAM SoftwareRecall();

FIGURE 9: SOFTWARE RECALL

DS0-X 30544, MY54310455: Wed Dec 11132356 2019
1.4

Agilent

-1.000Hz

© 2020 Microchip Technology Inc.

DS00003401A-page 9

AN3401

COMPARING MCC WITH STANDARD
MSSP PERIPHERAL HANDLING

Mid-range Microchip PIC microcontrollers, like the
PIC16, might have a generic MSSP peripheral that can
be used to implement various serial protocols including
the 1°C specification, while PIC24 devices (and also
PIC32 devices) have dedicated 12c peripherals and
they do not rely on a MSSP peripheral for serial com-
munications.

USING MSSP AS I2C ON A PIC16
WITHOUT MCC

Several of the mid-range enhanced core PIC16 micro-
controller devices have a Master Synchronous Serial
Port (MSSP). The MSSP module can be used to imple-
ment either the 12C or the SPI communications proto-
col. The following is an overview of the registers
involved in the configuration of MSSP to function as an
1’c peripheral and is meant to showcase the breadth
and complexity of bit-level manipulation required for
correct use. For more information, see AN735 — “Using

the PICmicro MSSP Module for I?°C Communications”

(DS00735).

MSSP Registers and Functionality

Some key Special Function Registers (SFRs) utilized
by the MSSP module are:

+ SSP Control Register 1 (SSPCON1)

» SSP Control Register 2 (SSPCON2)

» SSP STATUS Register (SSPSTAT)

» Pin Direction Control Register (TRISC)

 Serial Receive/Transmit Buffer (SSPBUF)

» SSP Shift Register (SSPSR) - Not directly acces-
sible

» SSP Address Register (SSPADD)
» SSP Hardware Event Status (PIR1)
* SSP Interrupt Enable (PIE1)
» SSP Bus Collision Status (PIR2)
» SSP Bus Collision Interrupt Enable (PIE2)
To configure the MSSP module for Master 12c mode,
key SFR registers must be initialized in order to config-
ure the MSSP module for Master 12C mode.
» SSP Control Register 1 (SSPCON1)
- 12C mode configuration
» SSP Address Register (SSPADD)
- I12C bit rate
* SSP STATUS Register (SSPSTAT)
- Slew rate control
- Input pin threshold levels
* Pin Direction Control (TRISC)
- SCL/SDA direction

Once the basic functionality of the MSSP module is
configured for Master 12C mode, the remaining steps
relate to the implementation and control of 12C events.
The master can initiate any of the following 12C bus
events:

» Start

* Restart

« Stop

* Read (Receive)

» Acknowledge (after a read)
- Acknowledge
- Not Acknowledge (NACK)

* Write

The first four events are initiated by asserting high the
appropriate control bit in the SSPCON2 register. The
Acknowledge bit event consists of first setting the
Acknowledge state, ACKDT (SSPCON2) and then
asserting high the event control bit, ACKEN
(SSPCONZ2).

Data transfer with Acknowledge is obligatory. The
Acknowledge-related clock is generated by the master.
The transmitter releases the SDA line (HIGH) during
the Acknowledge clock pulse. The receiver must pull
down the SDA line during the Acknowledge clock pulse
so that it remains stable LOW during the HIGH period
of this clock pulse.

When the Slave does not acknowledge the master
during this Acknowledge clock pulse (for any reason),
the data line must be left HIGH by the slave. This
sequence is termed “Not Acknowledge” or “NACK”.

For actual data to be transferred, the SSPBUF register
must be written with the control byte and the data to be
sent. Once the SSPBUF is loaded with data, the MSSP
peripheral will clock out the data at the configured rate.

Pin Assignment

Another aspect involved in the functioning of MSSP as
12c (or any type of supported bus) is the correct pin
assignment. After the MSSP configuration has been
set, the data sheet must be consulted in order to deter-
mine the correct I/0O pins that map to the MSSP periph-
eral.

Depending on the peripheral configuration of the PIC
device in use (i.e., number of MSSP peripherals), the
most common ports used are RC3 and RC4. These
need to be configured as well by setting the correct
data direction according to the role the MSSP plays in
the I12C implementation (master or slave).

© 2020 Microchip Technology Inc.

DS00003401A-page 10

AN3401

Byte Write Routine as Master

void wait ()

{
while ((SSPSTAT & 0x04) || (SSPCON2 & Ox1F));
return H

}

void main (void)

{

_delay ms (100) ;
}
}

SSPCON = 0X28 ;// I2C Master, enable SCL and SDA

SSPCON2 =0 i/

SSPADD = 99 ;// calculated using Fosc/ (4*speed)-1 where speed is 10000
SSPSTAT =0 ;

TRISC = 0x18 ;// using RC3 (SCL) and RC4 (SDA)

char data = 0 ;

while (1)

{

wait () ;

SEN =1 ;// I2C start

wait () ;

SSPBUF = 0x30 ;// control byte (7-bit address + r/nw bit)
wait () ;

SSPBUF = 0x30 ;// send and increment data char

wait () ;

PEN =1 ;// I2C stop

The main takeaway of the example with PIC16 is that
even the simplest bit level implementation of the
peripheral requires a certain expertise with using the
actual MSSP peripheral. Certain bits and flags must be
precisely manipulated for correct operation, which can
be time consuming.

The advantage of this approach is that developing
low-level code leads to a better understanding of the
device in use and makes debugging easier and more
deterministic. The disadvantage is the amount of time
spent in order to get a coherent and working example.

CONCLUSION

When deciding between a bare-bones versus a com-
plete implementation, MCC helps with providing the lat-
ter. By using MCC instantiated code, a predictable and
deterministic implementation can be achieved.
Microchip Technology is continuously adding sup-
ported device libraries and is improving the capabilities
of MCC to serve both prototyping and industrial-grade
code generation. lts ease of use is matched with con-
sistent code, that can be deployed in real-life applica-
tions.

The generated code is documented and visible, and
other implementations can be easily derived from it to
fit every need. For a robust implementation in embed-
ded systems and peripherals, the MPLAB Code Con-
figurator is a great starting point.

REFERENCES

1. AN 734 — “Using the Mid-Range Enhanced Core
PIC16 Devices’ MSSP Module for Slave I°C
Communication” (DS00000734)

2. AN735 - “Using the PICmicro MSSP Module for
I2C Communications” (DS00735)

3. AN 2045 — “Interfacing Serial EEPROMSs with
8-Bit PIC® Microcontrollers” (DS00002045)

4. AN1028 — “Recommended Usage of Microchip
I2C Serial EEPROM Devices” (DS01028)

5. “1024K I°C Serial EEPROM” Data Sheet
(DS20001941)

6. ‘“Inter-Integrated Circuit (IZC)” Reference Man-
ual (DS70000195)

© 2020 Microchip Technology Inc.

DS00003401A-page 11

AN3401

APPENDIX A: REVISION HISTORY

Revision A (April 2020)

Initial release of this document.

© 2020 Microchip Technology Inc. DS00003401A-page 12

AN3401

APPENDIX B: 12C OVERVIEW

An 12C bus can have one or more master devices and
one or more slave devices. The master device is the
device that initiates a data transfer on the bus and is
responsible for generating the serial clock used on the
bus. Any addressed device is then considered a slave.
Data transfers are performed eight bits at a time, start-
ing with the Most Significant bit (MSb). Each device is
recognized by a unique address and can operate as
either a transmitter or receiver.

The physical interface of the bus consists of two bidi-
rectional open-drain lines, one line used for the serial
clock (SCL) and the other used for serial data (SDA).
Each line will require a pull-up resistor to supply voltage
to the lines. Pulling the line to ground is considered a
logical Low, while letting the line float high is consid-
ered a logical High. When the bus is free, both SDA and
SCL are logical High.

Data can be transferred at a rate up to 100 Kbits/s in
the Standard mode, up to 400 Kbits/s in Fast mode, up
to 1 Mbit/s in Fast mode Plus or up to 3.4 Mbits/s in
High-Speed mode. Data on the SDA line must be stable
during the high period of the clock. Any changes on the
SDA line can only occur when the clock signal on the
SCL line is low. One clock pulse is generated for each
transferred data bit.

The I1°C specification defines a Start condition as a
transition of the SDA line from a high-to-low state, while
the SCL line is high. A Start condition is always gener-

ated by the master and signifies the transition of the
bus from an Idle to an Active state. The I2C specifica-
tion states that no bus collision can occur on a Start.

A Stop condition is a transition of the SDA line from a
low-to-high state while the SCL line is high. At least one
SCL low time must appear before a Stop is valid. A
Restart, or Repeated Start, is valid any time that a Stop
would be valid. Amaster can issue a Restart if it wishes
to hold the bus after terminating the current transfer. A
Restart has the same effect on the slave that a Start
would, resetting all slave logic and preparing it to clock
in an address. The master may want to address the
same or another slave. This can be useful for many 12c
peripherals, such as nonvolatiie EEPROM memory, in
which an I12C write operation and a read operation are
done in succession. In this case, the write operation
specifies the address to be read and the read operation
gets the byte of data. Since the master device does not
release the bus after the memory address is written to
the device, a Restart sequence is performed to read
the contents of the memory address.

The ninth SCL pulse for any transferred byte in 1°C is
dedicated as an Acknowledge (ACK). It allows
receiving devices to respond back to the transmitter by
pulling the SDA line low. The transmitter must release
control of the line during this time to shift in the
response. The ACK is an active-low signal, pulling the
SDA line low, indicating to the transmitter that the
device has received the transmitted data and is ready
to receive more.

FIGURE 10: EXAMPLE DATA TRANSFER SEQUENCE ON I2C
scL A ®) (D) (D) © (&)
\ Y X Y X /
SDA 7 /__
Start Condition Address or Data Stop Condition
Acknowledge Allowed
Valid to Change
FIGURE 11: EXAMPLE BYTE WRITE ON A 64-KBIT I12C DEVICE
S
Bus Activity T s
Mast A Control Address Address T
aster R Byte High Byte Low Byte Data 0
T - A N A N - A N P
SDA Line 1010’2*ﬁ\ﬁo| ‘X‘X‘X H
i A A A A
Bus Activity c c c c
K K

X = don’t care bit

© 2020 Microchip Technology Inc.

DS00003401A-page 13

AN3401

APPENDIX C: EERAM
CHARACTERISTICS

Chip Address Inputs

The Chip Address input pins (A0, A1 and A2 or combi-
nations) are used on several devices to support multi-
ple device operation. On devices with this feature, the
levels on these inputs are compared with the corre-
sponding bits in the slave address, and the device is
selected if the comparison is true. Note that the Chip
Address pins are not internally connected on some
devices. Also note that some devices like the 47X04,
47X16 and 47L64 do not have an A0 pin, but instead
have A1 and A2 pins. Refer to the appropriate device
data sheet for more details. For devices with internally
connected Chip Address pins, these inputs must be
hard-wired to either logic ‘0’ or logic ‘1’. That is, they
cannot be left floating, otherwise the device will not
operate correctly.

Power Supply

Microchip serial EERAMSs feature a high amount of pro-
tection from unintentional writes and data corruption
while power is within normal operating levels. But cer-
tain considerations should be made regarding
power-up and power-down conditions to ensure the
same level of protection during those times when
power is not within normal operating levels. A decou-
pling capacitor (typically 0.1 uF) should be used to help
filter out small ripples on Vcc. Consult the most
up-to-date data sheet and specification/recommended
usage when deploying Microchip EERAMSs in sensitive
applications.

Bus Pull-Up Resistors

For proper operation, pull-up resistors are required for
both SCL and SDA buses. However, the resistor value
chosen can have a vast impact on the performance of
the system.

Specifically, three limiting actors must be considered
when selecting pull-up resistor (RP)

» Supply Voltage (Vcc)

» Total Bus Capacitance (CBUS)

» Total High-Level Input Current (IIH)

For an in-depth computation of these factors, consult
AN1028 — “Recommended Usage of Microchip ’c
Serial EEPROM Devices” (DS01028). Most applica-
tions will require the pull-up resistor value to be

2.2 kOhm but this may vary depending on require-
ments.

External Capacitor

One of the key features of the 47XXX devices is the
AutoStore mechanism. To enable this feature, the user
sets the ASE (AutoStore Enable) bit in the STATUS
register to ‘1’ and installs a capacitor connected
between the VCAP pin and ground. However, if the user
decides that only manual store operations are required,
the ASE bit must be set to ‘0’ and the VCAP pin must be
connected to Vcc.

See AN2257 for details on choosing the right external
capacitor for your application and also consult the data
sheet and Microchip application notes for correct
usage.

© 2020 Microchip Technology Inc.

DS00003401A-page 14

AN3401

APPENDIX D: UNDERLYING CODE ANALYSIS

Software License Agreement

Company'’s customer, for use solely and exclusively with products manufactured by the Company.

liability for the breach of the terms and conditions of this license.

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil

THIS SOFTWARE IS PROVIDED IN AN “AS |IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR

This annex helps the reader understand both the func-
tionality of the generated code and the complexity of a
robust I°C implementation.

The entry point for analyzing the code will be the Byte
Read function.

dataByte = EERAM ReadOneByte ; (0x0010) ;

The function implementation is:

uint8 t data

I2C_setDataCompleteCallback (readOneByteHandler & data) ;
address = (address&0xFF00)>>8| (address&0x00FF) >>8
I2C setBuffer (& address,2)

I2C_ setAddressNACKCallback (I2C restart write,NULL) ; //NACK polling
I2C masterWrite () ;
while (I2C BUSY==I2C close()) ; //sit here until finished
return data

}

while (!I2C_open (EERAM DEVICE ADDRESS)) ; //sit here until we get the bus...

The first important call is:

I2C_open (EERAM DEVICE ADDRESS)

This function operates on a structure that maps a num-
ber of flags and data pointers specific to the 12c imple-
mentation on the MSSP peripheral.

© 2020 Microchip Technology Inc.

DS00003401A-page 15

AN3401

typedef struct
{

unsigned busy:1 ;
unsigned inUse:1 ;
unsigned bufferFree:1 ;

unsigned addressNACKCheck:1 ;

I2C_address_t address ; /// The I2C Address

uint8 t *data ptr ; /// pointer to a data buffer

size t data_ length ; /// Bytes in the data buffer

uintlé_t time out ; /// I2C Timeout Counter between I2C events
uintl6 t time out value ; /// Reload value for the timeouts

I2C_fsm states t state ; /// Driver State

I2C error_t error

I2C callback callbackTable[6] ;

void *callbackPayload[6] ; /17 each callback can have a payload
} I2C_status_t ;

This type definition resides in the 12C_master.c file
which is generated by MCC.

The 12C_open() function resets the flags and sets the
device address within this structure. It also calls
I12C_driver_open(). This is also the point where the
code eventually reaches the register level:

_bit I2C driver open(void)
if (!SSP1CONlbits.SSPEN)
{

SSP1STAT = 0x00 ;
SSP1CON1 = 0x28 ;
SSP1CON2 = 0x00 ;
SSP1ADD = 0x3 ;
return true ;
}

else

return false ;

}

Going upwards to the user-available API, the
EERAM_ReadOneByte() function, after the call to
12C_open() one can observe the assignment of a data
complete callback by sending a function pointer as a
parameter:

I2C_setDataCompleteCallback (readOneByteHandler & data);

The readOneByteHandler function is already imple-
mented and basically maps a pointer to the 12c specific
(I2C_status) structure’s data pointer.

© 2020 Microchip Technology Inc. DS00003401A-page 16

AN3401

After the callback has been registered and thus the
pointer remapped, the EERAM_ReadOneByte() func-
tion calls:

I2C setBuffer (&address, 2) ;

In case the slave device (EERAM) does not acknowl-
edge, a restart write is callback is registered through:

I2C setAddressNACKCallback (I2C restart write,NULL); //NACK polling

The next call is 12C_masterWrite(); which in term alters
the 12C_status structure by setting a write flag. Based
on these flags, the code eventually iterates through a
finite state machine that correctly operates the MSSP
peripheral.

© 2020 Microchip Technology Inc. DS00003401A-page 17

AN3401

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA
are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company,
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, BlueSky, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad 1/0, SMART-L.S., SQl,
SuperSwitcher, SuperSwitcher Il, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany
1 GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5987-3

© 2020 Microchip Technology Inc.

DS00003401A-page 18

www.microchip.com/quality
www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS00003401A-page 19
02/28/20

© 2020 Microchip Technology Inc.

http://support.microchip.com
http://www.microchip.com

	Introduction
	The I2C Protocol
	The I2C EERAM
	Microchip EERAM
	MPLAB® Code Configurator
	MCC Overview
	Configuring Your Project
	Selecting a Peripheral or Resource
	Choosing and Configuring an EERAM
	Code Generation
	MCC Provided Layers
	Using the Generated Code
	Generated Example

	Function Usage
	Set Device Address
	Byte Write
	FIGURE 1: Byte Write

	Byte Read
	FIGURE 2: Byte Read

	Sequential Write
	FIGURE 3: Sequential write

	Random Address Read
	FIGURE 4: Random Address Read

	STATUS Register Get
	FIGURE 5: STATUS Register Get

	AutoStore Enable
	FIGURE 6: AutoStore Enable

	Software Store
	FIGURE 7: Software Store

	Get AM Bit
	FIGURE 8: Get AM Bit Value

	Software Recall
	FIGURE 9: Software Recall

	Comparing MCC with Standard MSSP Peripheral Handling
	Using MSSP as I2C on a PIC16 without MCC
	MSSP Registers and Functionality
	Pin Assignment
	Byte Write Routine as Master

	Conclusion
	References
	Appendix A: Revision History
	Revision A (April 2020)

	Appendix B: I2C Overview
	FIGURE 10: Example Data Transfer Sequence on I2C
	FIGURE 11: Example Byte Write on a 64-KBIT I2C DEVICE

	Appendix C: EERAM Characteristics
	Chip Address Inputs
	Power Supply
	Bus Pull-Up Resistors
	External Capacitor

	Appendix D: Underlying Code Analysis
	Trademarks
	Worldwide Sales

